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Causal Inference Analysis for Poorly
Soluble Low Toxicity Particles, Lung
Function, and Malignancy
Philip Harber*

Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States

Poorly soluble low toxicity particles such as carbon black and titanium dioxide have raised

concern about possible nonmalignant and malignant pulmonary effects. This paper

illustrates application of causal inference analysis to assessing these effects. A framework

for analysis is created using directed acyclic graphs to define pathways from exposure to

potential lung cancer or chronic airflow obstruction outcomes. Directed acyclic graphs

define influences of confounders, backdoor pathways, and analytic models. Potential

mechanistic pathways such as intermediate pulmonary inflammation are illustrated.

An overview of available data for each of the inter-node links is presented. Individual

empirical epidemiologic studies have limited ability to confirm mechanisms of potential

causal relationships due to the complexity of causal pathways and the extended time

course over which disease may develop. Therefore, an explicit conceptual and graphical

framework to facilitate synthesizing data from several studies to consider pulmonary

inflammation as a common pathway for both chronic airflow obstruction and lung cancer

is suggested. These methods are useful to clarify potential bona fide and artifactual

observed relationships. They also delineate variables which should be included in analytic

models for single study data and biologically relevant variables unlikely to be available

from a single study.

Keywords: causal inference analysis, directed acyclic graph, carbon black, chronic obstructive pulmonary disease

(COPD), lung cancer, particulate toxicity, causation analysis, pulmonary inflammation

INTRODUCTION

Poorly soluble low toxicity particles (PSLTs) have received increased interest over the past few
years. Concerns about possible malignant or nonmalignant pulmonary disease effects are being
addressed. However, available epidemiologic data leave considerable uncertainty about the presence
and magnitude of significant effects in humans. In general, studies of chronic pulmonary disorders
(e.g., chronic airflow obstruction, CAO) andmalignancies such as lung cancer (CA) are particularly
challenging because of long latencies and major changes in typical workplace exposures over time.
Although more mechanistic data are suggested by animal and in vitro studies, the applicability to
human health is constrained by species differences and differences in toxokinetics.

Causal Analysis
Causal inference analysis (CIA) provides an explicit framework for identifying and representing
interacting factors of different types in complex multi-step causal pathways (1). It is particularly
useful for delineating variable sets to be considered as covariates, defining exposure variables more
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clearly, and identifying potential biases leading to misleading
conclusions. These methods also allow explicit consideration of
mediators between exposure and disease outcomes.

Causal considerations have long been implicit in science;
research increasingly seeks to provide explanations rather than
simple descriptions. A causal relationship between A and B (A→
B) may conceptualized as either deterministic or probabilistic.
In a deterministic relationship, A is sufficient to cause B. It is
probabilistic if an intervention setting A to a fixed value changes
the probabilistic distribution of B. Current assessments of the
likelihood that PSLT’s produce CA and/or CAO follow the latter
inferential probabilistic paradigm.

Significant conceptual advances concerning causation
occurred in the early 20th and early 21st. In the early 1900’s,
Popper conceptualized that an explanation may be considered
scientific if it is possible to refute it by empirical observations.
Similarly, Fisher, Pearson, and others helped create the
basis for modern statistical hypothesis testing and statistical
inference techniques.

Observational studies such as those assessing exposures and
long-term health in humans must consider multiple factors.
Such factors may be empirically measurable for inclusion as
variables in statistical calculation models or be unmeasured
but of potential interest. Such factors may increase or decrease
the apparent relationship between the predictors and outcomes
of interest; they may also prevent identification of bona fide
causal relationships or lead to the appearance of artifactual
relationships. Confounders in regression models are a such
empirically measurable factors worthy of consideration. Even
unmeasurable factors should be considered for interpreting the
significance of calculated models. Occasionally, a measurable
instrumental variable may be used to infer an important
unmeasured factor.

Focus upon causation evaluation methodologies reignited in
the early 21st century to deal with this potential complexity.
Causal inference analysis helps identify the set of variables,
whether measurable or unmeasured, that should be considered.
Directed acyclic graphs (DAGs) are increasingly used to both
facilitate ascertaining estimands and to force logical thinking
and explicit representation of how they might relate. This paper
illustrates how such DAGS may be applied to understanding
several potential PSLTs effects.

Using pulmonary inflammatory response as an example, the
paper then illustrates how DAGsmay be applied to consideration
of underlying biologic mechanisms in a single study. It then
extends these principles to suggest how approaches analogous
to DAGs may facilitate explicitly expressing potential underlying
mechanisms even if information comes from separate studies.
While mechanistic reasoning is already extensively used, the
graphic approach facilitates explicit and logical representation.

Directed Acyclic Graphs (DAGs)
DAGs are based upon underlying quantitative probabilistic
models as described by Greenland et al. in 1999 (2).
These methods may be applied for both facilitating specific
calculations and for forcing explicit consideration of potential
relationships (1).

A directed acyclic graph is composed of a series of nodes
and links. The graph is built by including the set of all variables
that affect the relationship between the predictor and outcome.
Thus, for a complex topic such as PSLT effects, the graph may
become complex. In this paper, the graphs are built sequentially
beginning with very simple relationships and then adding more
considerations. By including a full set of variables, the formal
graph approach helps determine those variables that would not
affect the primary relationship of interest. The DAG may include
a series of alternate pathways.

In a DAG, causal relationships must be both directed and
unidirectional. The direction of causation is indicated by a single
arrow. That is, A→ B and B→ A cannot both be included.
Causation generally is probabilistic rather than deterministic. In
addition to causal links (represented by arrows), associations not
implying causation may also be shown (e.g., by dashed lines
without arrows).

The DAG is acyclic, meaning that even with a complex series
of nodes and links, a variablemay not have a directed path leading
back to itself. Thus, A→ B and A→ C→ D→ B may be present
but A→ C→ B→ D→ A is not acceptable.

Paper Overview
This paper applies these methods to examine the specific
questions: Do PSLTs such as carbon black (CB) cause chronic
airflow obstruction (CAO) or lung cancer (CA), and if so, is
this mediated by inflammation? The paper is illustrative and
does not presuppose that such relationships exist. The approach
is described in three sections: Frameworks (Section Framework
for DAG Analysis) describes use of directed acyclic graphs
(DAGs) to frame hypotheses and identify variables appropriate
for analysis. DAGs consist of a series of nodes and links
representing segments of potential causal pathways between the
exposure and the possible outcomes. They also represent links
to variables, both measured and unmeasured, that should be
considered to avoid misleading results. Data for some variables
identified as relevant may be challenging to acquire in a single
study. Available data (Section Available Data) provides examples
of data available for the many of the individual causal pathway
link segments, although they may not be directly combined in
a specific quantitative model. Implications (Section Implications
of the Causal Mechanistic Analysis) suggests approaches for
understanding disease development mechanisms by considering
information from multiple studies. Potential future studies
for CAO and CA are suggested. The approach emphasizes
how existing data may be applied rather than providing a
comprehensive summary of all relevant research data.

These considerations may contribute to understanding of
PSLT effects in several ways: 1) Graphical methods such as
DAGs make assumptions about causal pathways explicit. 2)
It encourages specifically stating the set of variables deemed
necessary and sufficient for understanding causal associations.
3) Limitations of data likely to be available from individual
studies are described. 4) Examples illustrate how appropriate
or inappropriate variable selection or adjustments may impact
accuracy of measures of association. 5) Specific suggestions for
qualitative inferences from distinct studies are shown.
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FIGURE 1 | Directed Acyclic Graph (DAG) representations. The figure illustrates three causal sequences: (A) PSLT causes CA and CAO (solid line with arrowhead). (B)

Clarification–the causation of CA and CAO are independent. However, a noncausal association may be observed between CA and CAO (dashed line without arrow).

(C) PSLT acts through the mediator of inflammation. (D) Summary of representational symbols. (E) PSLT and INFL are indirectly assessed by associated job and

biomarkers respectively. Unfilled nodes are not directly observable. PSLT, poorly soluble low toxicity particles; CA, cancer; CAO, chronic airflow obstruction;

INFL, inflammation.

FRAMEWORK FOR DAG ANALYSIS

This section describes applications of DAGs for explicitly
representing a framework for causal relationships and lays the
foundation for assessing the role of empirical data in Section
Available Data in specifying the relevant DAG. This section also
illustrates methods to reduce the likelihood of misleading results.
It also suggests potential intermediate steps along the path from
exposure to disease.

Fundamental Hypothesis
Potential pathways from PSLT exposure to final disease outcomes
(CAO and CA) are represented as nodes and links. For simplicity,
the nodes (PSLT, CAO, and CA) are shown as binary elements
(yes, no). However, these methods may be extended to graded
effects (e.g., CAO might be represented with a quantified
physiologic airflow obstruction), or the strength of a causal link
may be quantified. The figures include a series of DAGs showing
progressively richer causal networks. Relationships between
nodes are represented by a line with an arrow if the relationship is
causal, by dashed lines without an arrow if the association is not
causal, and by lighter dashed lines if it may be artifactual.

The traditional epidemiologic mortality study hypothesis
asking whether PSLT predicts development of CA and CAO is
shown in Figure 1A. This illustrates a direct causal or “front door
path”. This is further clarified in Figure 1B, suggesting that PSLT
exposure predicts CA and CAO, but they occur independently.
In this circumstance, an association of CAO and CA would
be observed even if there is no actual causal pathway between
these outcomes. In addition, the apparent strength of association

between PSLT and CA (e.g., odds ratio) may be attenuated by
adjustment for the presence of CAO.

The mechanistic hypothesis that a causal relationship between
PSLT and CAO or CA is mediated via pulmonary inflammation
is shown in Figure 1C. For simplicity, the two health outcomes
are combined in a single node. Figure 1D summarizes the
common symbols.

However, there are several ambiguities in the apparently
simple representation of the hypothesis.

• Even if inflammation is a critical intermediary step,
inflammation per semay not be the final effector for producing
airway damage or malignant cellular transformation (i.e.,
there may be additional intermediary steps).

• The number of potentially observable measures of
inflammation, particularly in humans, is limited and
may not truly reflect the in vivo inflammatory process.

• Inflammation is not a specific entity; rather, there are
numerous inflammatory pathways, many of which are
interactive and/or cross-regulatory. These are often assessed
indirectly by measuring associated biomarkers (Figure 1E).

• “PSLT” is not a specific entity, and its definition is ambiguous.
While many would agree that carbon black and titanium
dioxide fall within this group, inclusion of other materials such
as coal dust is less certain.

• Even for a specific agent, potential effects and pathways may
depend upon the characteristics of size, particle size, dose,
dose rate, charge, and surface properties. These were recently
reviewed by Borm and Driscol (3).

• The exposure term (e.g., PSLT) may either refer to the specific
agent or to a surrogate of exposure such as job title. Laboratory

Frontiers in Public Health | www.frontiersin.org 3 July 2022 | Volume 10 | Article 863402

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Harber Causal Inference Analysis-Particles

FIGURE 2 | Utilizing DAG’s to illustrate “Backdoor Paths” /confounding. (A)

(“Backdoor Path”): Common unknown/unspecified factors increase the

likelihood of both smoking and exposure. An artifactual apparent association

between PSLT and CA/CAO may appear. X = pathway blocked by proper

adjustment. (B) Adjustment for smoking blocks the pathway including

PSLT-Unknown-CA (Abbreviations are summarized in Figure 1).

studies may use a chemically defined agent with specified dose
or even assessed initial or retained dose. Neither exposure
nor dose are typically precisely measured or controlled in
human studies. Rather, these are assessed with proxy measures
such as job title, job duration, etc. as approximate surrogate
measures of actual dose (Figure 1E). The correlation between
the surrogate and the actual dose is likely to be heterogeneous
over time and among study sites.

• Time course: Inflammatory events early in the time course
may initiate events ultimately leading to CAO/CA, but the
mechanistic or exposure events later in the pathway may be
different. Implications are discussed below.

Explicit consideration of pathways involving both observable
and significant but unknown (non-recorded) factors is essential
for analysis and interpretation. Backdoor pathways, representing
artifactual associations such as the well-known confounder of
tobacco smoking are illustrated in Figure 2A. For example,
smoking may be associated with exposure if common but
unobserved socioeconomic or cultural factors increase the
likelihood of working in a heavily exposed job and of
smoking. Members of socially disadvantaged groups may be
disproportionately likely to have jobs with heavy exposure and
come from homes in polluted areas or have grown up with
parental smoking. Adjustment for smoking, which produces
both CA and CAO (Figure 2B) prevents the appearance of an
incorrect causal association between PSLT and the outcomes.

Conversely, adjustment for an intermediary step such
as inflammation may reduce the likelihood of identifying
a true relationship between PSLT and the outcomes. This
potential overadjustment is illustrated in Figure 3A. Similar
considerations apply if there are both a direct and an

inflammation mediated pathway (Figure 3B) (The figure is
simplified by assuming each of the nodes is directly observable).
In contrast, adjustment for inflammation may create an
artifactual association between PSLT and CA if both PSLT and
smoking cause inflammation, but inflammation is not actually
the mediator between PSLT and CA (see Figure 3C). In this
“collider” situation, a false association between PSLT and CA
would be observed if the PSLT-CA measure of association
(e.g., odds ratio of CA on PSLT) is adjusted for inflammation
(Adjustment for smoking would eliminate this effect, but it
is preferable to simply not adjust for inflammation). Thus,
assessment of which factors to use and when to adjust is
facilitated by DAGs.

Constraints Upon Observable Data in
Human Studies
In addition to the consequences of long latency and occasional
ambiguity in defining “exposure”, observational studies in
humans require additional framework considerations. Such
ambiguities may contribute to inconsistency among studies.
These include distinguishing early vs. late steps in the causal
chain and practical constraints upon measures of inflammation
that may be collected noninvasively.

The importance of time is summarized in Figure 4. A study
of whether PSLT predicts subsequent CAO or CA must cover
a long time span. Even if the worker remains active in the
industry until near the date at which diagnosis is made, it
is necessary to reconstruct exposures many years in the past.
This is particularly important since workplace air concentrations
were often orders of magnitude greater in the past. In many
instances, retrospective exposure assessment does not occur until
near the date of diagnosis and is therefore subject to recall
bias and/or missing data. Other workers may have left the
industry long before recognition of CAO or CA, making cohort
identification challenging.

Many studies utilize estimated cumulative exposure as the
predictor of a possible health effect. However, the same
cumulative exposure may be accrued with very different dose
rates and latencies as shown in Figure 4. For example, some may
have moderate exposure over many years, while others may have
an early brief but very intense exposure. Misinterpretation of
causal relationships may result from not considering the time
varying nature of longitudinal exposures (4).

Both biologic and operational consequences of the time course
are illustrated in Figure 5, in which time is divided into early,
mid, and late eras. The latter begins when the fully advanced
disease is present.

Biologic considerations about PSLT’s warrant consideration
of the assumption that cumulative exposure is the optimal
predictor. This is particularly true for PSLT’s for which
clearance and deposition may have thresholds, overloading, or
significant nonlinearities. For example, clearance processes may
be overwhelmed with very high early exposures but not with
more moderate exposures. Limited epidemiologic adjustment
methods such as overweighting or underweighting exposure by
calendar date or excluding either recent or very remote exposures
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FIGURE 3 | Intermediate and alternative pathways. (A) The hypothetical pathway from PSLT to CA/CAO is mediated through inflammation. Statistical adjustment for

inflammation may attenuate or block the pathway. (B) Inflammation is an alternative pathway from exposure to CA/CAO; adjustment for inflammation will potentially

modify the apparent strength of the association. (C) There is no path from PSLT to CA/CAO. However, adjusting for inflammation may open an artifactual pathway

from PSLT to CA/CAO (shown in gray) (Abbreviations are the same as in Figure 1).

FIGURE 4 | Exposure temporal profiles. The figure illustrates that the same cumulative dose may be received with different temporal patterns. (A) If exposure controls

improve over time, long tenure workers have a relatively high exposure early in their career and then much less later. (B) Constant moderate exposure. (C) Extremely

heavy exposure for short duration, then leaving industry with no subsequent exposure (Abbreviations are the same as in Figure 1). Changes in exposures over time

are reflected by the height of bars within the PSLT node.

does not fully address biologic considerations such as short-
term or long-term clearance, tissue repair, threshold doses, or
other mechanistic considerations. Underestimation of remote
exposures due to applying more recent data to earlier years (5)
may lead to overestimation of the regression coefficient of CAO
upon exposure.

The simple DAG of Figure 1 is augmented for analytic
clarity in Figure 5. This framework expresses several possible
considerations. Examples of several human inflammatory
markers are shown in Table 1. Figure 5 represents that
inflammation is better represented as a cascade of steps rather
than as a single node, and there are multiple inflammatory

pathways of which only some are likely to be relevant.
Unlike animal and in vitro studies, the range of inflammatory
biomarkers appropriate for human studies must be limited
to noninvasive or minimally invasive procedures. Hence, the
observable biomarker for each inflammatory step may be
correlated with but not synonymous with the actual mediator
(dashed line in the figure); the available biomarkersmay therefore
be indirect measures rather than direct assessment of the
inflammatory steps. They are still useful, but they may only be
loosely correlated to the actual inflammatory element.

The figure also suggests that markers measured at various
times may reflect various mechanistic aspects differing in their
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FIGURE 5 | Temporal aspects of pathways. Using example from Figure 4A, the implications for observable data over time are illustrated. Time is divided in three eras:

Early exposure, Mid for subsequent years of work, and Late after the disease outcome has been diagnosed. Inflammation processes in these three eras may involve

different mechanisms, denoted by subscripts e, m, and l. Since INFL is not directly observable, it is assessed by relevant tests in each of these three times. The

vertical open arrow indicates that some mechanisms such as particle clearance or repair mechanisms may be specific to one time era (e.g., some particle burden

from early exposures may be cleared and therefore reduce transition from early to mid-inflammation). A hypothetical from PSLT to CA/CAO is shown by the dashed

upper arrow. Other abbreviations are the same as in Figure 1.

TABLE 1 | Markers of pulmonary inflammation (examples).

Invasive:

Animal sacrifice and histology/biomarker measurement

Bronchial biopsy, bronchial lavage

Less invasive human sampling:

Exhaled breath analysis (frozen or otherwise)

Minimally invasive measures:

Exhaled indicators: FeNO: (Exhaled nitric oxide)

(Subject to upper airway contamination)

(Short-term responsive)

(Does this reflect “important” mediator?)

Non-pulmonary biomarkers:

Nonspecific indicators e.g., CRP- C-reactive protein

CC16 – Club Cell 16: Mediator or a protector?

Micro-RNA

Omics:

Genomics

Epigenomics

Proteomics

Metabolomics

Targeted SNP’s or hypothesis generating GWAS

Markers of Effect

Lung function

Quantitative CT scan

significance. Measurement of an early step may be more relevant
for some outcomes in comparison to others. Measures of
inflammation are more frequently assessed proximate to the
health effect diagnosis (“mid”) than in the early years of exposure.
Measurement of inflammatory markers in the several years

immediately preceding diagnosis of CA or CAO may overlook
the importance of inflammation in the earlier years in initiating
the pathogenic sequence.

Reverse causation is another potential concern. For example,
rather than PSLT leading to CAO and CA, it is possible that
CAO increases the retained dose of PSLT if airway dysfunction
reduces clearance of inhaled PSLT and therefore increases the
effective retained dose of PSLT. It also is plausible that CA causes
inflammation rather than the reverse causal relationship (in the
”late” era). This is illustrated by several of the empirical studies
discussed below.

Solution to Complexity
The complexity of a causal inference framework, as illustrated
by the DAGs, does not imply it is impossibly challenging to
understand whether there are bona fide causal relationships
between PSLT and the health outcomes.

Much of the complexity is addressable by collecting
complete and accurate data on as many variables as feasible
in a specific study. This may require long-term studies
of a worker group or acquiring data previously obtained
(an example is provided in Section Implications of the
Causal Mechanistic Analysis). Appropriate adjustments to
block backdoor pathways, avoiding adjustments that may
introduce artifactual biases, or use of analytical models
incorporating do-calculus may help (6). Careful analysis may
also identify variables that need not be studied, thereby
improving study efficiency (7). In special well-circumscribed
circumstances, estimation of effect in one population may be
aided by incorporating data from other studies; Pearl applied
terms such as transportability and meta-synthesis to these
approaches (6, 7). While this paper emphasizes specifying
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the DAGs using expert knowledge derived from existing
studies, causal structures may sometimes be derived from
data themselves with causal distributional notation beyond
associational measures (7).

Similarly, information necessary to thoroughly assess the
postulated intermediary steps from a single work history—health
outcome study. Rather, explicitly delineating the individual node
and link segments permits considering available data for each of
these segments. For some, analogous human data are available,
and for others relevant animal data are applicable. Thus, explicit
framework analysis promises to overcome inherent constraints
of using a single study and integrating empirical data with
conceptual understanding. This approach is illustrated in Part
2 below.

AVAILABLE DATA

The complex causal inference links and nodes shown in Figure 5

make it unlikely that a single set of human data can traverse
all the nodes in the causal pathway. However, data applicable
to the each of the links in aggregate may guide consideration
of mechanistic hypotheses. The analytic framework described in
this paper illustrates how information of several types may be
synthesized. It does not provide a specific method for calculating
a precise quantitative measure of association (2).

The section includes examples of data types relevant to each of
the segments linking particles to inflammation and inflammation
to disease. Categories of supportive information include biologic
plausibility, disease associations, common exposure associations,
common genetic risk factors (e.g., proinflammatory genes),
early/pre-lung cancer studies, common mediators, prospective
population-based studies, consistency with mediators measured
in animal toxicology studies, and internal consistency of
postulated mechanisms.

Overall Associations
Several epidemiologic studies have examined the hypotheses that
PSLT produces CAO and that PSLT produces CA with studies of
carbon black (CB). The CB-CAO relationship was addressed by
studies of Harber inNorth America (8, 9) andGardiner in Europe
and the United Kingdom (5) examining the relationship between
estimated cumulative exposure and respiratory outcomes. Both
observed that chronic exposure led to a reduction of the forced
expiratory volume in one second (FEV1), with the average
slope of 0.7ml and 1.2 m/ per cumulative mg-year/m3 inhalable
dust respectively. And effect upon the forced vital capacity was
observed in the North American but not the UK/European study.
These were cross-sectional studies in which cumulative exposure
was retrospectively estimated for the total duration of work for
each subject; North American subjects had an average of 14.1
years of exposure (8, 9).

These studies illustrate the practical impact of retrospective
exposure assessments. Cumulative exposure estimates were
considerably higher in the Harber than the Gardiner studies since
the former used all available data to assign exposures in the
earlier calendar periods, whereas the latter appliedmeasurements
from the early 1990s to earlier years (5, 8). This methodologic

difference is likely to account for differences in regression
coefficients for FEV1. Neither considers the temporal pattern or
dose rate.

Several epidemiologic mortality studies have addressed the
relationship between CB and CA (10–13). In addition, several
comprehensive reviews consider this possible association and
pointed out the inconclusive nature of the studies (14).

Indicators of Inflammation
As discussed in Section Framework for DAG Analysis,
“inflammation” is itself complex since it changes over time
and includes many alternate pathways. For human data to be
germane to the mechanistic hypothesis under consideration, the
measures must be minimally or noninvasive, capable of repeated
measurement over time, and reasonably anticipated to correlate
well with the actual biologic processes. Potential markers are
shown in Table 1 and their timing is described in Figure 5.

Associations Between Diseases
Cross-sectional studies show that several established lung
diseases with persistent inflammation are associated with
an increased cancer incidence (e.g., tuberculosis, idiopathic
pulmonary fibrosis, and CAO) (15–17). These relationships
might arise either because inflammation is an underlying cause of
both CA and the nonmalignant disease or is a consequence rather
than cause of the nonmalignant disease and/or CA. A recent
review summarized data supporting a common antecedent for
both CAO and CA (18). Many such studies suffer from only
looking at “late stage” findings and depend upon fully established
clinical diagnoses.

Longitudinal studies overcome this limitation. The US
National Health and Nutrition Examination Survey (NHANES)
identified 113 incident lung cancers during the 17 year follow-
up (19). Moderate or severe CAO at baseline was associated
with a significantly elevated risk of subsequent incident CA
(OR = 2.6, CI = 1.5–3.8). Analogous data were reported by
O’Callaghan (20). Thus, despite limitations, disease association
studies provide some support for the proposed mechanism.

Inflammation Concurrent With CA or CAO
Studies have also demonstrated that inflammation is frequently
present when CAO or CA is diagnosed. Limited weight should
be given to studies showing of inflammation at the time of CA
diagnosis such as, the adverse prognostic impact of inflammation
at the time of diagnosis (21, 22). These may be important for
guiding treatment but have limited import for describing the
significant pathway (see Figure 5).

Associations Between Particle Exposure
and Inflammation
Human and animal data support a role of pulmonary
inflammation. These studies include both population-based air
pollution studies with long-term exposures as well as shorter-
term acute exposures (e.g., air pollution episodes, wildland fires),
and laboratory studies in chambers. Animal studies have been
particularly fruitful in showing that with adequate dose, PSLT’s
can lead to inflammation. This is likely to depend upon the dose
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FIGURE 6 | Potential of CAO as a biomarker. This figure includes simplified elements from Figure 5. CAO occurs both in the early and the mid times and therefore

may be empirically ascertained throughout the long time from exposure to potential illness. In this figure, COPD is chronic obstructive pulmonary disease, a defined

disease entity rather than a measurable trait such as CAO. Smoking, commonly the most important confounder, may generally be ascertained and subject to

adjustment (Abbreviations are the same as in earlier figures; Several components from prior figures are not shown to facilitate graphical clarity).

time profile and may proceed through several distinct pathways.
Human studies are more limited. For example, a study among CB
workers and nonexposed controls found increased eosinophils
with CB exposure. The differences in peripheral inflammatory
markers between CB exposed and unexposed workers were more
evident when analyses were stratified by smoking status (23, 24).

Associations Between Inflammation and
CA/CAO
Several prospective studies support causal associations between
inflammation and CA and CAO. For example, in an 8 year
follow-up, elevated C-reactive protein (CRP) was associated with
an elevated risk of subsequent lung cancer (hazard ratio =

3.39) (25). Since the increased CRP antedated the CA, reverse
causation (CA→ inflammation) is unlikely. An analogous
study using high-sensitivity CRP was reported by Muller (26).
Association of CRP with lung functional morbidity such as
airway hyperresponsiveness or hospitalization has also been
reported (27, 28). Genetic studies support this thesis (29, 30).

IMPLICATIONS OF THE CAUSAL
MECHANISTIC ANALYSIS

The two preceding sections establish an analytic framework
and provide suggestive data applicable to each segment of the
pathway. This part suggests their practical implications.

First, causal inferential mechanistic analysis is useful for
identifying relevant factors to be considered and suggesting
considerations for appropriate and inappropriate adjustments
in specific statistical models. Additionally, analogous principles
extend to synthesizing data across studies for inferential purposes
and informing underlying mechanistic considerations.

Second, translating observed data into practical policy may
benefit from mechanistic considerations. Dose and dose rate are
particularly germane if the mechanism suggests that clearance
may either reduce the effective dose or become saturated at high
dose rates. Reliance upon estimated total cumulative dose is not
robust to such considerations. In addition, it is useful to consider
whether intermediary steps are potentially irreversible or may be
counterbalanced by repair mechanisms. Irreversible mutational
changes may be contrasted with inflammatory sequences subject
to internal homeostatic controls. The analysis presented in this
paper does not in itself address these questions specifically for
the PSLT’s, but it establishes a framework through which other
data such as animal toxicology studies may be integrated with
observable human data.

Third, these approaches facilitate planning future research
studies to strengthen the empirical database. As shown in Section
Framework for DAG Analysis, it is unlikely to be practical
to measure inflammatory markers throughout a working
lifetime and thereafter to link early inflammatory responses to
subsequent CAO or CA identified decades later. However, the
individual segments (node-link-node) may be studied, albeit
in different individuals. For example, the relationship between
PSLT and inflammation may be assessed in exposed workers
with different temporal dose patterns (see Figure 3). Such results
may contribute to assessing the significance of current lower-
level industrial worker exposures and/or effects upon end-users.
Similarly, resolution of inflammatory markers after cessation of
exposure may be assessed.

Fourth, the different time courses for detecting CAO and CA
might be leveraged to gain insight. Unlike CA, which is typically
diagnosed at a specific “late” point in time, CAO develops
gradually and is detectable early in its course well before advanced
disease such as chronic obstructive pulmonary disease is present
(see Figure 6). If inflammation is central to the development of
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both outcomes, monitoring CAO may provide insight into the
temporal/concentration exposure characteristics associated with
inflammatory responses. CAO is easily measured repetitively
and noninvasively at low cost with spirometry or associated
inflammation biomarkers such as exhaled nitric oxide. Assessing
temporal course of CAO with different temporal exposure
patterns would provide insight relevant to the significance
of dose-time exposure patterns. Ongoing industry medical
surveillance programs may already have data permitting such
analyses. This approach, while currently hypothetical, may be
practically implementable.

SUMMARY

Causal inference analysis such as use of DAGs is a very useful
tool to help clarify many of the significant questions concerning
the health significance of poorly soluble low toxicity particles. It

is useful both for representing the set of appropriate variables
and guiding analytic models for individual studies. Its principles
of identifying relevant variables and their potential effects may
be applied as a heuristic to graphically represent relationships
explicitly to foster qualitative synthesis of information from
disparate studies.
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