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Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. However, the symptoms and ra-
diographic appearance of chronic pancreatitis (CP) mimics that of PDAC, and sometimes the 2 entities can also be dif-
ficult to differentiate microscopically. The need for accurate differentiation of PDAC and CP has become a major topic
in pancreatic pathology. These 2 diseases can present similar histomorphological features, such as excessive deposition
of fibrotic stroma in the tissue microenvironment and inflammatory cell infiltration. In this paper, we present a quan-
titative analysis pipeline empowered by graph neural networks (GNN) capable of automatic detection and differenti-
ation of PDAC and CP in human histological specimens. Modeling histological images as graphs and deploying graph
convolutions can enable the capture of histomorphological features at different scales, ranging from nuclear size to the
organization of ducts. The analysis pipeline combines image features computed from co-registered hematoxylin and
eosin (H&E) images and Second-Harmonic Generation (SHG) microscopy images, with the SHG images enabling the
extraction of collagen fiber morphological features. Evaluating the analysis pipeline on a human tissue micro-array
dataset consisting of 786 cores and a tissue region dataset consisting of 268 images, it attained 86.4% accuracy with
an average area under the curve (AUC) of 0.954 and 88.9% accuracy with an average AUC of 0.957, respectively.
Moreover, incorporating topological features of collagen fibers computed from SHG images into the model further in-
creases the classification accuracy on the tissue region dataset to 91.3%with an average AUC of 0.962, suggesting that
collagen characteristics are diagnostic features in PDAC and CP detection and differentiation.
Introduction

Pancreatic cancer is one of the most lethal malignancies with a poor 5-
year survival rate of around 5%–9% that has remained almost stagnant
since the 1960s.1,2More than 85%of pancreatic cancers are pancreatic duc-
tal adenocarcinoma (PDAC), which originates from pancreatic ductal epi-
thelium in the pancreatic head.2 Chronic pancreatitis (CP), though an
entirely different disease with a distinct prognosis compared to PDAC,
can present symptoms and a radiographic appearance similar to PDAC.
The 2 entities can be difficult to differentiatemicroscopically, as the pathol-
ogist sometimes has only a small amount of tissue recovered by fine needle
aspiration or, more rarely, needle biopsy, for examination.3–7 Therefore,
differentiating PDAC and CP is a challenge in pathology where the
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consequence of misdiagnosis can be severe due to the rapid progression
of PDAC and the high frequency of distant metastases.8–10

In clinics, histopathological assessment follows computed tomography,
MRI or ultrasound to ensure the accurate diagnosis of PDAC and CP.3–5,11,12

CP can present similar histomorphological features such as inflammatory
infiltration, dense stroma, angulated glands, cytologic atypia, and tumor-
like duct organization that mimic PDAC. The difficulty in distinguishing
PDAC from CP is further aggravated by the fact that PDAC may induce CP
in the surrounding pancreatic tissue, posing additional challenges to tissue
sampling and diagnosis.3–7

One important hallmark of the tissue microenvironment for both PDAC
and CP is a dense desmoplastic stroma, characterized by the increased de-
position of fibrillar collagen. In PDAC, the extensive desmoplasia present
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in the tumor may contribute to resistance to radiotherapy and hinder drug
delivery.13–15 Besides PDAC, evidence in a variety of cancer types has also
shown that stromal properties are important factors for disease diagnosis,
cancer progression, and tumor response to therapy.16–21 In differentiating
PDAC and CP, the collagen fiber topology at the stromal–epithelial inter-
faces has been shown to be a statistically significant discriminating
feature.22 Quantification of the size, shape, and patterns of collagen fibers
show that these factors might impact tissue stiffness and are associated
with an increased risk of cancer progression.18,23 Many of the findings are
derived from studies using label-free collagen-sensitive imaging modalities
such as second-harmonic generation microscopy (SHG) and polarization-
based optical microscopy, which can enable the quantification of collagen
fibers and desmoplasia.24–30

The advent of digital slide scanners and whole slide imaging (WSI) has
given rise to the opportunity to integrate quantitative algorithms into clin-
ical workflows.31–34 The potential for WSI-based computational analysis is
increasing due to the recent success of deep neural networks in computer
vision and language modeling.35,36 Deep learning has already demon-
strated state-of-the-art performance in tasks such as cancer detection, tissue
segmentation, disease prognostication, and spatial omics analysis.37–39

In this paper, we present a computational workflow for detecting and
differentiating histological samples of PDAC and CP, empowered by ad-
vances in artificial intelligence and collagen-targeted tissue imaging. Our
method ismotivated by the observation that discriminative histological fea-
tures of PDAC and CP span multiple fields and multiple magnifications,
from cell morphology (e.g., variation in epithelial nuclear sizes) to duct or-
ganization, and both diseases are characterized by dense stroma. Thus, a
model with the ability to learn image features across different scales and in-
corporate collagen-based image features would be favored.

The analysis pipeline includes a deep learning model built on graph
neural networks (GNNs)40,41 that can be trained with manually classified,
coarsely annotated regions of varying sizes, alongwith a region proposal al-
gorithm that generates candidate regions in unannotated slides. Built on the
canonical scheme of WSI data processing, the proposed method extracts
local features from image patches but further models the patch-to-patch in-
teractions by constructing graphs from the patch sets and utilizing graph
convolutions.41,42 The use of graph models for analyzing tissue structure
was first suggested in Prewitt and Wu.43 More recently, graph convolution
and deep learning have become the building blocks of many state-of-the-art
tissue analysis workflows. GNNs increase the expressivity of the model by
letting the information flow between adjacent image patches, thus, captur-
ing histomorphological features that span multiple patches.44–46 This more
closely mimics histopathological examinations conducted by pathologists
where relationships between various tissue features are integral to diagno-
sis. Moreover, the analysis workflow incorporates multimodal image anal-
ysis where image features from hematoxylin and eosin (H&E) images and
morphological features of collagen fiber from SHG images are registered
and used as the input of the GNN.

The proposed GNN-based method was evaluated on a human tissue
micro-arrays (TMAs) dataset and a human tissue section, both consisting
of PDAC, CP, and normal pancreas tissue samples. The resultingmodel out-
performs the widely usedmultiple-instance learning (MIL) framework,47,48

on both datasets. Furthermore, we demonstrated that incorporating
collagen-based features extracted from SHG images leads to higher classifi-
cation accuracy than using brightfield H&E features alone confirming the
diagnostic potential of utilizing characteristic collagen topology in differen-
tiating PDAC, CP, and normal pancreas tissue.

Material and methods

Sample sets and pathology annotations

Human tissue microarrays
Seven H&E stained formalin-fixed paraffin-embedded human pancreas

TMAs constructed from 481 cases were purchased from US Biomax
(Rockville, MD, USA), the slide IDs used were: BIC14011b (24 cases),
2

HPan-Ade180Sur-01 (90 cases), HPanAde170Sur-01 (90 cases),
HPan-Ade120Sur-01 (90 cases), PA2081b (96 cases), BBS14011 (48
cases), and PA485 (43 cases). The TMAs consist of cores from 1.0 to
1.5 mm in diameter and were reviewed by 2 US Biomax pathologists. All
slides were scanned with an Aperio CS2 (Leica Biosystems, Wetzlar,
Germany) at 20× magnification, with a pixel size of 0.504 μm/pixel. All
PDAC (380 cores), chronic pancreatitis (193 cores), and normal (213
cores) TMA cores from the slides were used for analysis and image classifi-
cation. The TMA form factor was selected to gain access to a large number
and broad range of samples that would otherwise be difficult to obtainwith
traditional histopathology sections, with the tradeoff being smaller tissue
regions to sample.

Human tissue sections
24 H&E-stained tissue section slides were obtained from Metro Health

Medical Center (Cleveland, OH, USA) with IRB approval. The tissue sec-
tions were obtained from surgical specimens, including Whipple proce-
dures and distal pancreatectomies, and from autopsies. The slide set
contains tissue sections from 12 cases of PDAC and 12 cases of chronic pan-
creatitis. Slides were reviewed and annotated by 2 pathologists (Omid
Savari and Agnes G. Loeffler). For the PDAC slides, roughly 6 regions con-
taining PDAC, 6 regions containing chronic pancreatitis, and 3 regions con-
taining histologically normal pancreas were coarsely marked with
rectangles; for chronic pancreatitis slides, on average 3 regions containing
chronic pancreatitis and 6 regions containing normal-appearing pancreas
were coarsely marked with rectangles. Note that since the regions were
coarsely annotated, a PDAC region might include chronic pancreatitis
sub-regions, and a PDAC or a chronic pancreatitis region might contain
sub-regions with normal tissues. The annotations were made using Aperio
ImageScope (12.4.3) software (Leica Biosystems, Wetzlar, Germany) on
brightfield images scanned by an Aperio CS2 digital pathology slide scan-
ner (Leica Biosystems, Wetzlar, Germany) at 20× magnification, with a
pixel size of 0.504 μm/pixel. The annotation process produced a total of
70 PDAC regions, 112 chronic pancreatitis regions, and 86 normal regions.

Second-harmonic generation microscopy imaging of samples

Annotated regions from the tissue section slides were imaged using a
custom-built multiphoton laser-scanning microscope (LSM) that has been
previously described.49 In brief, a Tsunami Ti:Sapphire laser (Spectra-Phys-
ics, Santa Clara, CA, USA) tuned to 800 nm, with a pulse length of approx-
imately 100 f. was focused on the sample by a 20X/0.75NA air immersion
objective (Nikon, Melville, NY, USA). The SHG signal was collected in the
forward direction, filtered by a narrow bandpass filter centered at 400±
10 nm (ThorLabs, Newton, NJ, USA), onto a H7422-40P photomultiplier
tube (Hamamatsu, Hamamatsu, Japan). The resulting pixel size of the
SHG image is 0.509 μm/pixel. The scanning process and data acquisition
signal were controlled by our custom laser-scanning software, OpenScan.
The acquisition workflow utilizes the open-source software QuPath,50

Micro-Manager, and Pycro-Manager.51,52

Graph neural networks

Graph construction

Image registration, pre-processing, and normalization. Brightfield images of in-
dividual TMA cores and annotated regions were cropped from the Aperio
scans. Brightfield images of annotated regions in the tissue section set
were registered with the corresponding SHG images using the automatic
H&E to SHG registration algorithm described in Keikhosravi et al.53

Image pairs that failed to be registered by the algorithm were further regis-
tered using the method described in Pielawski et al54 or manually regis-
tered by corresponding landmarks in Fiji.55

Each brightfield image was tiled into patches with a size of 256×256
pixels (without overlap); patches were only extracted within tissue regions.
The tiles were then normalized using the H&E image normalization
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algorithm described in Macenko et al56 with batch processing. Every batch
contained 256 patches sampled from all patches. The normalization algo-
rithm then treated the 256 patches as a single input image and performed
normalization. Running the algorithm in batches of patches helped stabilize
the normalization by evenly sampling the whole dataset to include more
types of tissue components while keeping the number of pixels relatively
small. It helps avoid the generation of unbalanced pixel values in a single
TMA or annotated region that might contain insufficient variety.

Registered SHG images of annotated regions in the tissue section set
were normalized by stretching the pixel values between 5 and 99.5 percen-
tile to the full dynamic range. The images were then tiled into patches with
a size of 256 × 256 pixels (without overlap), resulting in SHG image
patches with pixel-wise correspondences to the brightfield image patches.

Patch feature extraction. A feature vector with a shape of 512×1 was then
extracted from every brightfield patch using the ImageNet pretrained
ResNet18.57 For each SHG patch, collagen fiber-specific features such as
width, length, and angle were extracted using CurveAlign and CT-FIRE.58

Fiber segments, alignment coefficients, numbers of fibers, circular mean
and variance of fiber angles, mean and variance of fiber lengths, mean
and variance of fiber straightness, and mean and variance of fiber widths
were finally computed and formed a feature vector with a shape of 10×1
for each patch. The features were normalized to a range from 0 to 1.

Constructing graphs from images. The image of a TMA core or an annotated
region was treated as a single graph, and the patches tiled from the image
were treated as nodes of the graph. Each patch (node) was connected
with the nearest neighboring patches (if they existed) with edge weights
equal to the cosine similarity between the feature vectors of the 2
nodes. The information about a tile (a node feature) consisted of the cor-
responding 512×1 brightfield feature vector in the case of the
brightfield graph or the corresponding 10×1 SHG feature vector in
the case of the SHG graph. A brightfield-SHG graph was constructed
by concatenating the brightfield and SHG feature vectors as the node
features (with a vector size of 522×1).

Graph convolutional network architecture

Feature pre-processing layer. The node features werefirst processed by a fully
connected neural network layer followed by a parameterized ReLU
(PReLU).59 For the brightfield graph and brightfield-SHG graph, the fully
connected layer produced an output vector with a size of 512×1. For the
SHG graph, the fully connected layer produced an output vector with a
size of 32×1. The processed features were then fed to the following
graph convolution layers.

Graph convolution network (GCN). Let V be the set of nodes and hv where
v ∈ V be the node feature vector processed using the procedures described
above. The updated note feature h′v after a 1-hop graph convolution
operation41 is given by

h0
v ¼ PReLU

1
N vð Þk k

X
u∈N vð Þ

Θhu þ b

0
@

1
A;∀v∈V ð1Þ

whereΘ is a weight matrix and b is a bias vector, and u ∈ N vð Þ denotes the
neighbors of node v (including v itself). Three 1-hop graph convolution
layers are stacked and the update h′v of each layer is passed to the next
graph convolution layer. The resulting embedding ho then represents infor-
mation up to 3-hop neighbors from the node. Besides, another type of graph
convolution operation was evaluated in the design. This alternative model
used a single-layer 3-hop simplified graph convolution (SGC) operator that
directly aggregates information in the 3-hop neighborhood of the nodes
without non-linearity between each hop.42 This operation was more mem-
ory and computationally efficient and empirically showed comparable
3

performance to the standard graph convolution. ho was concatenated
with hv to form a new node embedding as output.

Readout layer. The output node embeddings of each graphwere averaged to
produce a graph embedding. The graph embedding was scored by a linear
classification head followed by a sigmoid function to produce a graph pre-
diction with the same shape as the graph label representation using one-hot
encoding. The overall analysis pipeline, including the network training pro-
cedure, is shown in Fig. 1. The objective function with respect to a dataset
containing N image-label pairs can be written as:

θ;Wf g ¼ arg min
θ;W

1
N

XN−1

i¼0

L W f Gi;θð Þ; yið Þ ð2Þ

where L is the loss function, θ is the set of weights parameterizing the graph
convolution network f described above, W is the weight matrix of a linear
layer, and Gi and yi are a graph constructed from an image and its class
label, respectively.

Class coding and loss function. PDAC can induce CP in surrounding areas and
areas with a mixture of the 2 are also often observed. However, when both
CP features and PDAC features are present in the same region, the sample
will be labeled as PDAC. Therefore, we used distributed coding instead of
1-hot coding for class labeling to account for the potential co-existence of
both classes in a sample. Specifically, a normal region or core is labeled
as [0,0], a CP region or core is labeled as [0,1], and a PDAC region or
core is labeled as [1,1]. The final class label is obtained using the following
rule: a prediction is regarded as normal whenboth digits are 0, CPwhen the
first digit is 0 and the second digit is 1, and PDAC when the first digit is 1
(regardless of the second digit). The loss function is multi-label binary
cross-entropy loss. The optimal thresholds for the 2 digits are obtained by
finding the threshold leading to the best true-positive to false-positive
ratio in the validation set for each digit.

Network training specifics
The networks were optimized with stochastic gradient descent with

the Adam solver and the initial learning rate was set to 0.0001.60 The
learning rate was scheduled with cosine annealing without warm
restart.61 The batch size was 1. For the TMA dataset, the cores were ran-
domly separated into 4 equal-size chunks and a 4-fold cross validation
was carried out. For the tissue section dataset, the slides were first ran-
domly separated into 4 equal-size sets, and the annotated areas were
then cropped from the slides to form 4 sets for a 4-fold cross validation.
Cross-validations were repeated 3 times for each dataset, each time with
a new random split.

Region proposal in whole slide images

A region proposal pipeline was used to identify candidate regions in
WSIs of tissue sections. This pipeline took coarsely annotated target re-
gions as inputs and searched for similar regions in WSIs based on the
distribution of patches in the annotated regions. The overall process
can be seen as a task of slide region retrieval for some annotated regions
as queries.

Firstly, patches with a size of 256×256 were extracted from the train-
ing WSIs of the tissue section set without overlap, and the patch feature
vectors were extracted by a ResNet18 pre-trained on ImageNet. A
k-means clusterer K was trained on the feature vectors using mini-batch
k-means.62 Secondly, the same patch extraction and feature extraction pro-
cesses were applied to the annotated regions of PDAC and chronic pancre-
atitis, and the feature vectors of the patches were assigned to the closest
centroid of K. The distribution of centroid assignments was computed
and represented in a vector q. The idea of learning a dictionary of pattern
basis is frequently used in fine-grained image classification.63 Thirdly, a
sliding window of size 8 patches × 8 patches was used to scan through



Fig. 1. Analysis pipeline including multimodal image registration, patch extraction, feature computing, graph construction, and GNN training.
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the WSIs, and the distribution of patch feature vector assignments regard-
ing the centroids of K within the window was computed per sliding step.
The distribution of the assignments was denoted as pij, where i, j are the co-
ordinate of the window center. The cosine similarity between pij and qwas
computed and placed at (i, j). A similarity map was produced after the win-
dow slides through the entire WSI. Lastly, a multi-threshold Otsu’s method
was applied to the similarity map to separate the similarity values into 3
groups corresponding to background, low-similarity, and high-similarity
Fig. 2.Generation of region proposals from aWSI. Patches are extracted fromWSIs and t
k-means clusterer is used to predict the cluster assignments of input patches extracted from
a sliding window is then computed.

4

areas.64 The high similarity regions were processed by a compact water-
shed algorithm that grouped local high-similarity areas into superpixels.65

The bounding boxes of the superpixels were used as the region proposals.
The region proposal algorithm is summarized in Algorithm 1 (Supplemen-
tary material).

The region proposals generated from testing slides were converted into
graphs using the procedure described above and scored by the trained GNN
for predictions. The overall workflow is illustrated in Fig. 2.
heir feature vectors are computed and used to train a k-means clusterer. The trained
an ROI. The similarity of the assignment distributions between annotatedROIs and



Fig. 3. Classification performance on brightfield datasets. Element-wise mean: apply element-wise mean-pooling on the node embeddings, followed by a fully connected
layer. MIL max-pooling: score each node embedding with a fully connected layer, and the resulting scores are processed by a max-pooling operator. Attention MIL:
attention-based MIL networks.46 GCN: graph convolution networks.41 SGC: simplified graph convolution networks.42
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Fig. 5. Recall against the coverage ratio.Vertical axis: Recall; Horizontal axis:
Coverage ratio. The coverage ratio is binned to 25 discrete values. The threshold
returned by multiOtsu’s method is marked in purple.
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Results

Classification of TMA dataset

Baselines
The proposed GNN-based model was compared to 3 other baseline

methods, including a simple model with multiple-layer perceptron (MLP)
followed by element-wise mean-pooling, max-pooling MIL, and a recent
attention-based MIL model.47 The max-pooling and mean-pooling MIL
used the standard assumption of MIL by treating the patches of a TMA
core as a bag of instances. The embeddings of the patches of a core were
element-wise pooled using mean-pooling (element-wise averaging) to
form a bag embedding, and a linear classification (fully connected layer)
then scored the bag embedding to reach a core-level prediction. In max-
pooling MIL, a linear classification head was used to score each patch em-
bedding, and the resulting scores were averaged to produce the final
score. The attention-basedMIL used attention-based pooling on the embed-
dings of the patches to form a bag embedding by computing a weighted
sum of the patch features.

Evaluation metrics
Average accuracy, average F1 score, and area under the curve (AUC)

were used to compare the classification performance. The mean scores
were computed from a 4-fold cross validation following the scheme de-
scribed in the Materials and Methods section. The classification perfor-
mance of the models on brightfield images of the TMA dataset is
summarized in Fig. 3 (top panel). Both GCN and SGC outperform patch-
wise models, including MLP and MIL. GCN shows the best classification
performance with an accuracy of 86.5%, an F1 score of 0.887, and an aver-
age AUC of 0.954.

Classification of tissue section dataset

ROI classification performance
The same evaluation processwas conducted on the brightfield images of

the tissue section dataset with results summarized in Fig. 3 (bottom panel).
The trend of the classification performance of different methods is consis-
tent with the TMA dataset. GCN achieves an accuracy of 88.9%, an F1
score of 0.881, and an average AUC of 0.957, outperforming MIL. We
give a brief explanation of the difference in model performance in the dis-
cussion section.

Region proposal and whole slide scoring
The describedWSI region proposal method was evaluated on the whole

tissue dataset. Region proposals were generated and scored following the
scheme described in the Materials and Methods section. Representative
Fig. 4. Two examples of region proposal generation and detection results. Top row: a PD
proposals; Third column: Detection map; Last column: Annotations (coarsely annotated
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results are shown in Fig. 4. The effectiveness of the region proposal method
was also quantitatively evaluated. The purpose of the region proposal step
is to extract candidate regions from unannotated WSIs that cover positive
regions as much as possible while keeping the total number of regions
needed to be scored by the downstream classification model small.

Fig. 5 plots the recall against the ratio of the area in the WSI covered by
region proposals. A region proposal is considered true positive if it overlaps
with any of the annotations (PDAC and chronic pancreatitis). False nega-
tives are defined as the total area of the annotated regions that are not cov-
ered by any region proposals divided by the average size of region
proposals. Intuitively, decreasing the threshold that selects for high similar-
ity areas results in more region proposals; a threshold of 0 leads to a set of
region proposals that covers the whole WSI with a recall of 1. The ratio of
area covered by the region proposal and the corresponding threshold re-
turned by multi-Otsu’s method is marked with a purple line in the figure.
A set of good region proposals should have a high recall of disease-
positive region coverage while keeping the overall tissue coverage rela-
tively small. Overall, the region proposals achieve an average recall of
0.909 while covering 40.1% of the tissue regions.

Effects of incorporating collagen features

Classification using only collagen features extracted from SHG
The same GNN model was used on the SHG images collected from the

tissue section dataset. The node features of the graph were collagen-based
AC slide. Bottom row: a CP slide. First column: Input WSI; Second column: Region
by a pathologist). The scale bar is 6 mm.



Fig. 6. Classification performance on SHG/Brightfield-SHG dataset collected from the tissue section sample set.
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features extracted from the SHG images using CurveAlign/CT-FIRE. The
classification results are summarized in Fig. 6, showing that collagen-
based features alone are diagnostic and the trained model is significantly
better than a random classifier.
Classification using combined features from brightfield and SHG
To further demonstrate the diagnostic value of collagen-based features,

brightfield-SHG graphs were constructed by concatenating the brightfield
feature vector and the SHG feature vector as node features to train the
GNNmodel. The SHG image and brightfield H&E image of an annotated re-
gion were first co-registered with pixel-wise correspondences such that the
tiled patches of the 2 remained co-registered. The resulting concatenated
feature vector contained brightfield features and SHG features of the
Fig. 7.Representative annotated regions of PDAC, chronic pancreatitis, and interlobular
First row: SHG images. Second row: Overlay view of registered SHG and corresponding
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same tissue area. Representative co-registered brightfield H&E images
and SHG images of the three classes are shown in Fig. 7.

The evaluation results suggest that combining the brightfield H&E fea-
tures with collagen-based features leads to improved performance for both
the complex GNN-based model and the simple MLP (Fig. 6). Specifically,
the GNN model using combined features achieves an accuracy of 91.3%
while the accuracy using brightfield features alone is 88.9% (Fig. 6).

Feature interpretability

ResNet extracted H&E features
The node features of H&E patches were directly computed from

ImageNet pre-trained ResNet18, as suggested in Lu et al66; this could be
an efficient and practical way to extract features from WSI patches. To
duct in the background of normal-appearing acinar tissue (normal pancreatic tissue).
H&E images. The scale bar is 100 μm.



Fig. 8. Top-16 patches closest to the k-means centroid for each cluster (1)–(7) and the 2-dimensional t-SNE embedded plot of the clusters. class (1): Blank areas (hollow intra-
gland areas); class (2): Mostly adipose tissue; (3–4): Stroma and collagen without any obviously malignant cells; class (5): Mostly chronic inflammation, sometimes in a
collagenous stroma and sometimes admixed with acinar tissue; class (6): Benign tissue, including acini, islets of Langerhans, and ducts; class (7): Cancer-appearing duct
parts with disorganized collagen, some contains stroma with acute inflammation or chronic inflammation.
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validate that the computed features are discriminative, the top 16 patches
closest to each k-means centroids are shown in Fig. 8 in the case of k =
7. The feature vectors of patches are also embedded in 2 dimensions
using t-SNE67 and labeled with k-means clustering results in the figure.
The choice of k = 7 was experimentally determined. Our pathologist vali-
dated the following: the patches cluster of class 1 corresponds to blank
areas; most of the patches in class 2 have adipose tissue; patches in class 3
and class 4 contain stroma and collagen without any obviously malignant
cells; patches in class 5 mostly contain chronic inflammation, sometimes
in a collagenous stroma and sometimes admixed with acinar tissue; class
6 contains benign tissue, including acini, islets of Langerhans, and ducts;
patches in class 7 contain cancer-appearing duct parts with disorganized
collagen, and some contain stroma with acute inflammation or chronic in-
flammation.

Collagen-based features
In a previous study where collagen-based features were used for a sim-

ple binary linear classifier on PDAC and CP, the importance of each
collagen-based feature was evaluated separately.22 Here, we show an alter-
native way to quantify the importance of the input feature in the setting of
the GNN model. We removed one of the input features (for width, angle,
straightness, length, both the mean and variance were removed) and
Fig. 9. Performance drop after removing one of the features. The performance drop
ismeasured by averaging all themetrics. A larger performance drop (higher value in
the chart) indicates that the removed feature uniquely captures information that the
other feature do not and has higher impact in the discriminative process (e.g., the
length of the collagen fibers).
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trained the same GNN to perform classification, and observed the
performance percentage drop, as shown in Fig. 9. Amore significant perfor-
mance drop after the removal suggests that the removed features are more
important.

Discussion and future work

Importance of graph models in pancreas histomorphology

The results show that modeling WSI regions as graphs is beneficial for
building a computational classifier for the differential diagnosis of PDAC
and CP. A potential reason for the accuracy improvement is that the diag-
nostic features of PDAC and CP span multiple patches and are difficult to
capture using patch-wise representations. In the histomorphology of pan-
creatic cancer, tumor regions are defined as malignant epithelium arranged
in atypical ducts, clusters of cells, or individual cells infiltrating into the sur-
rounding tissue. The diagnostic criteria range from nuclear to architectural,
including large variations in epithelial nuclear size, incomplete epithelium
around ducts, angular and branching ducts, disorganized duct distribution,
and ducts appearing in architecturally aberrant locations. Many of these
features overlap with those of CP, including the increasing deposition of fi-
brillar collagen and desmoplastic stroma in the tissue microenvironment.
These issues make obtaining expressive features from the image data in
both patch-wisemethods andMIL-basedmethods a challenge. Even though
manyMIL-basedmethods use bag-of-patch representations and learn a joint
representation of all image patches, they could still perform incompetently
as the spatial relations of the patches are not modeled and the features to
aggregate in MIL operators are restricted to the field-of-view of a single
patch.47,48 Though patches extracted from multiple magnifications can be
used in MIL frameworks, the receptive field is still fixed for eachmagnifica-
tion, and the spatial relation between patches in the same magnification is
not considered (See Fig. 10).

By contrast, GNNs model the patch-to-patch interactions by deploying
message passing between adjacent patches and updating the node features
to encode information from the neighboring patches. The updated node
features can eventually incorporate features up to k hops away, determined
by the number of graph convolution layers, forming representations that



Fig. 10. (A) Comparison of feature extraction by graph representation in GNN and bag-of-patch representation in MIL. (B) An incomplete duct of PDAC (one hallmark of
malignancy) could be under-represented in MIL because the shape of the whole duct is lost in the bag-of-patch representation.
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correspond to a largerfield of view. For example, the GNN could potentially
learn the features of duct organization or an incomplete duct by propagat-
ing the information of a tile with disrupted epithelium to the adjacent
tiles that form a duct object, as illustrated in Fig. 10. Therefore, compared
to MIL-based models, a GNN-based model could capture the spatial ar-
rangement and relationship of malignant cells to each other, to the stroma,
and to other tissue elements. It is interesting that this kind of carry-over or
comparison from field to field begins to approximate the manner in which
pathologists evaluate or “read” slides in the clinical setting.

Construction of graphs from histopathological images

One important step in using graph models in WSI analysis is the con-
struction of graphs from images. The proposed method follows a nearest
neighbor scheme where each patch is connected to its non-empty adjacent
patches. Though easy to implement, thismethod does not exploit the nested
structure of tissue components and redundant texture-like information that
9

is often spatially continuous. More complex approaches such as multiscale
quadtree approximation68 and constructing refined graphs based on the
results of patch-wise spatial agglomeration69,70 could potentially remove
redundancies and result in graphs that encode the tissue structure and rela-
tions of components in more efficient ways.

Model the interaction between histopathology modalities

Examination of H&E stained slides is the standard clinical histopatholo-
gical approach to assess surgically excised pancreatic tissue. Special modal-
ities such as histochemistry or immunohistochemistry are seldom used to
differentiate between benign (CP) and malignant tissue. However, the re-
search applications of multimodal histopathology have been rapidly ad-
vancing with promising results that could benefit clinical histopathology.

Given our prior knowledge of the importance of fibrillar collagen in the
tissue microenvironment of PDAC and CP,22 we incorporated collagen-
based features extracted from SHG images, superimposed on the original



Fig. 11. Out-of-distribution regions can lead to false-positive detection results. Representative out-of-distribution regions are marked with yellow boxes. Left panel: a slide
that contains malignant ducts, CP regions, and smooth muscles. Right panel: a slide from autopsy that contains CP regions as well as tissue pieces from other organs. (a):
small intestinal mucosa. (b): normal pancreatic bile duct (near the ampulla of Vater). (c)–(d): small intestinal smooth muscle. (e): stomach. (f): esophagus. (g):
gallbladder. The scale bar in the top row is 2 mm, and the scale bar in the bottom row is 200 μm.

B. Li et al. Journal of Pathology Informatics 13 (2022) 100158
H&E images, into the analysis. Even with the collagen fiber features alone,
the GNN model achieves classification accuracy significantly better than a
random classifier, showing that the features are discriminative for differen-
tiating PDAC from CP. In the multimodal analysis pipeline, the feature vec-
tor pairs of registered image patches from both imaging modalities are
concatenated to form the input to the model. After combining the
collagen-based features from SHG images with the features from the corre-
sponding H&E images, the downstream GNN achieves better accuracy in
classification, as expected. To fully leverage the strength of GNNs, one
could treat the features of another modality also as graph nodes and build
a graph, while also connecting the nodes of 2modalities that are paired spa-
tially. Note that the inter-modality edge weights can be learned separately
from the weights that connect the nodes spatially, forming an architecture.
This could grant GNNs the flexibility to let information flow and interact
between modalities.

Furthermore, recent works using image synthesis have shown that
cross-modality image-to-image translation can be used to map images of
one imaging modality to another.75–76 A similar approach has been applied
to synthesizing an SHG image from standard H&E images.48 Future explo-
ration will build on this method with necessary model generalizability im-
provement to generate high-quality SHG-like synthetic images from
brightfield images of H&E-stained slides and apply CurveAlign/CT-FIRE
to extract the topological features of collagen fibers. The advantage of
such a method is that the morphological characteristics of the collagen fi-
bers can be derived from H&E images alone, and thus avoid the use of
laser scanning SHG imaging, which is not commonly available in the clinic.
Another future direction is to incorporate information from patient demo-
graphics and radiographics that could provide more systematic views of
the patient’s condition.

Out-of-distribution samples

The quality of tissue sampling is critical to both visual inspection and
computational analysis in histopathology. For PDAC and CP detection,
low-quality tissue sampling or slide preparation could lead to inadequate
tissue regions that fail to support an accurate diagnosis. For example, if
the pancreas lesion is not sampled to get adequate epithelium in
fine-needle aspiration, the cytopathologist would not be able to make a di-
agnosis of adenocarcinoma. In computational analysis, tissue sampling
could affect the distribution of training samples. Thus, if the tissue compo-
nents included in the training set are not exclusive, the resulted classifier
can encounter out-of-distribution tissue regions and give over-confident
false-positive results.

In our experimental setting, the pancreas tissue sections are annotated
coarsely with PDAC, CP, or normal regions. However, when applying the
classifier to all candidate regions extracted from the entire tissue on a
slide, the classifier predicts some false-positive regions (PDAC or CP) with
high confidence. These were areas of smooth muscle (duodenal muscularis
10
propria), or tissue from another organ entirely (mostly from autopsy cases).
These were not annotated by the pathologist because they were intuitively
not “regions of interest.” For the classifier, however, these were clearly out-
of-distribution samples that had not been previously labeled and were
therefore erroneously predicted as malignant (Fig. 11). This could be re-
lated to a known artifact of discriminative classifiers including deep neural
networks.71 The discriminative distribution density saturates at 1 even for
the case where the input value to the last Sigmoid layer is arbitrary large
which could be caused by an out-of-distribution sample that is very far
away from any of the correct class distributions. Therefore, to facilitate
the real-world applications of deep learningmodels in assisting clinical his-
topathology, it is important to incorporate uncertainty estimation into the
classifier72 or construct generative classifiers where out-of-distribution in-
puts could be detected.73 The uncertainty estimation results can be used
to build an active learning workflow where uncertain inputs are presented
to pathologists for further annotations.74 The classifier can then be fine-
tuned and learn to make correct predictions on these inputs, enhancing
the accuracy for tissue types that are not well represented in the existing
training set.
Conclusion

In summary, we developed a GNN-based analysis pipeline for detecting
and differentiating PDAC and CP in histological images. To our knowledge,
this is the first DL and GNN-based computational workflow for the differen-
tiation of PDAC and CP in histopathology. Evaluation results indicate that
modeling histological images as graphs significantly improves classification
accuracy. Meanwhile, conventional analysis models such as MIL can be
overly simple for cases where diagnostic features span multiple patches.
Furthermore, the incorporation of collagen fiber-based features increased
the accuracy of the classifier, highlighting once again the potential diagnos-
tic value of collagen characteristics and the potential clinical benefits of uti-
lizing advanced imaging modalities.
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