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Abstract

Background: Multiple high-throughput molecular profiling by omics technologies can be collected for the same
individuals. Combining these data, rather than exploiting them separately, can significantly increase the power of
clinically relevant patients subclassifications.

Results: We propose a multi-view approach in which the information from different data layers (views) is integrated
at the levels of the results of each single view clustering iterations. It works by factorizing the membership matrices in
a late integration manner. We evaluated the effectiveness and the performance of our method on six multi-view
cancer datasets. In all the cases, we found patient sub-classes with statistical significance, identifying novel sub-groups
previously not emphasized in literature. Our method performed better as compared to other multi-view clustering
algorithms and, unlike other existing methods, it is able to quantify the contribution of single views on the final results.

Conclusion: Our observations suggest that integration of prior information with genomic features in the subtyping
analysis is an effective strategy in identifying disease subgroups. The methodology is implemented in R and the
source code is available online at http://neuronelab.unisa.it/a-multi-view-genomic-data-integration-methodology/.
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Background

Stratifying patients into distinct subgroups can lead to
more accurate diagnostic and treatment strategies. Cur-
rent methods for patient stratification are usually based
on gene expression data and apply cluster algorithms
to identify groups of patients having similar expression
profiles [1-3]. For example, multivariate gene expres-
sion signatures have been shown to discriminate between
disease subtypes, such as recurrent and non-recurrent
cancer types or tumour progression stages [4]. In addi-
tion to gene expression data other omics data types,
such as miRNA (microRNA) expression, methylation or
copy number alterations, can be used to improve the
model accuracy for patient stratification. For example,
somatic copy number alterations provide good biomark-
ers for cancer subtype classification [5]. Data integration
approaches to efficiently identify subtypes among existing
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samples has recently gained attention. The main idea is to
identify groups of samples that share relevant molecular
characteristics. Strategies of data integration of multiple
omics data types poses several computational challenges,
as they deal with data having generally a small number of
samples and different pre-processing strategies for each
data source. Moreover, they have to cope with redun-
dant data as well as the retrieval of the most relevant
information contained in the different data sources.
Methods for clustering multiple data layers can be
grouped into three main categories, namely early, inter-
mediate, and late integration. Early integration methods
directly combine all features into a single dataset [6—8];
intermediate integration methods build joint representa-
tions of data given the views [9]; late integration methods
preprocess separately each individual view, subsequently
combining the results [10, 11]. Late integration methods
are often preferred when combining continuous and dis-
crete data together, such as CNV and mRNA. Omics data
are highly dimensional data and subject to non-Gaussian
noise. Therefore, integrating them with an early or inter-
mediate integration techniques may lead to highly noisy
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patterns unless appropriate regularization techniques are
used which, however, lead to a very complex multi-view
learning process.

A number of data integration approaches for patients
subgroups discovery were recently proposed, based
on supervised classification, unsupervised clustering or
biclustering. These methodologies are called multi-view
learning [12]. Examples of supervised approaches are
[13, 14]. Multi-view biclustering has been used in a
cocaine user subtyping [15]. Finally multi-view clustering
methodologies have been intensively used also if in few
cases on omics data. Multi-view clustering applied to bio-
logical data includes iCluster [16] and SNF [9]. iCluster
uses a joint latent-variable model to identify the group-
ing structure in multi omics data. On the other hand,
SNF uses a network-based approach to combine different
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omics data (e.g., mRNA expression, DNA methylation and
microRNA expression data) to identify relevant patient
subtypes. However, the contribution of the individual data
sources to the classification output is not quantified in any
of these multi-view clustering methods.

In this study, we propose a new computational frame-
work for multi-view clustering that aims to combine
dimensional reduction, variable selection, clustering (for
each available data type) and data integration methods to
find patient subtypes, as described in Fig. 1.

First, the cluster-based correlation analysis is used to
reduce the number of features for each data type (genes,
miRNAs, protein, etc.). Second, a ranked-based method
is employed to select the features based on their ability
to separate patient subtypes. Third, clustering is used
to identify patient subtypes independently from each
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Fig. 1 The proposed approach: The computational approach is composed of four steps. First, the data is pre-processed. In each view feature with
low variance are filtered out. Furthermore, the features are clustered in order to reduce the input dimension. From each cluster prototype are
extracted. These prototypes are the only features used in following steps (a). Second, the prototypes are ranked by the patient class separability and
the most significant ones are selected (b). Third, the patients are clustered and the membership matrices are obtained (c). Fourth, a late integration

approach is utilized to integrate clustering results (d)
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reduced dataset. Fourth, integrative clustering methods
are exploited to find more robust patient subtypes and
assess the contributions of different data types used for the
identification of all the patient subtypes. Detailed infor-
mation on each step can be found in Additional files 1
and 2. We tested our method on large genomic data sets
including different omics data types, such as the Cancer
Genome Atlas (TCGA) data sets (http://cancergenome.
nih.gov/). Our comparison experiments suggest that our
method outperforms other existing integration methods,
such as Tw-Kmeans [7] and SNF [9].

Results and Discussion
We developed a novel methodology for cluster analysis of
multiple genomic data types.

We compared it with recently developed methods: the
integrative clustering algorithm, namely SNF [9]. and the
Tw-Kmeans [7], an early integration multi-view cluster-
ing model. Using TCGA datasets from 4 different tumor
types (Table 1), we evaluated the cluster impurity error,
the Normalized Mutual Information [17] and the cluster
stability of all the considered algorithms.

The evaluation metrics computed for each dataset are
summarized in Table 3. Our unsupervised method shows
a mean error of 27,47 %, normalized mutual informa-
tion (NMI) of 28 % and stability of 85 %. Moreover, the
error can significantly decrease when using prior informa-
tion. Indeed, our method with prior information reduces
the error to 6,30%. The other methods used in the
comparison study show a higher mean error from the low-
est 30,83 % of SNF to the highest 30,93 % of Kmeans. They
also show a lower NMI (the maximum value reached is
26 % of Ward’s method) and variable stability from the
lowest 51 % of the Kmeans to the highest 96 % of the
partitioning around medoids (pamk).

The class label and the p-value for each cluster obtained
after the integrative step is reported in Fig. 2, where the
label indicates the subclass to which patients in the cluster
belong, while the p-value measures the statistical signifi-
cance of a cluster. In the case of the dataset OXF.BRC.1,
the patients are divided into four classes: LumA, LumB,
Her2 and Basal. We observed eight relevant clusters, four
of which are subclasses of class LumA (cluster 4 - pvalue
250 x 107% cluster 5 - pvalue 8.71 x 107%; cluster
6 - pvalue 2:92 x 1073; cluster 11 - pvalue 1.97 x 1073)
and two are subclasses of class LumB (cluster 2 - pvalue
3:93 x 107%; cluster 10 - pvalue 5:14 x 1073). We also
report the influence of each data on the final cluster. While
it is obvious that the clusters are obtained considering
all the genomic data views, the information needed to
identify a specific subclass can be more relevant in a par-
ticular data type instead over the others. For example, the
clusters 3, 6 and 11 of the OXF.BRC.1 dataset are both
labeled as LumA. miRNA expression contributes for the
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100 % to define the cluster 11, the gene expression is
mainly determining the cluster 3 (57 %), while for cluster 6
they are equally important. This could mean, for example,
that patients in cluster 11 are particularly characterized
by miRNA expression while patients in cluster 3 by gene
expression.

As shown in Fig. 3, the integrative clustering performed
generally better that the clustering on each single data
view. In the TCGA.BRCA dataset, the mean cluster impu-
rity is about 26 % when patients are grouped by the gene
expression and 43 % when they are grouped by their
miRNA expression profiles. However, combining the gene
and the miRNA expression profiles, 26,50 % of error in
unsupervised mode and 9 % in semi-supervised mode are
obtained, respectively. Only in a few cases, the patient
grouping based on a single data view performs better than
the one obtained with multiple data types.

Figure 4 depicts the comparison between the two inte-
gration methods, either with or without prior informa-
tion. The matrix factorization based method reaches
the higher stability (about 85%) in all the cases. With
respect to the cluster impurity, the difference is almost
always negligible. The greatest difference occurs when
passing from the unsupervised to the semi-supervised
approach. The cluster impurity for the unsupervised clus-
tering is about 30 % and about 7 % for semi-supervised.
Therefore, for more accurate sub-typing of classes semi-
supervised integration was used, which maintains high
stability and reduces the classification error compared
to the classes. However, in case of unbalanced patient
classes, the prior information is needed to increase the
prediction.

Since we tested different algorithms at each step of our
methodology, we aimed at understanding if a common
pipeline for all the datasets could be applied. After the
execution of all the analyses, we observed that the best
algorithms for the first and second steps strongly depend
on the data. We found that K-means is the best algo-
rithm for step 3 for the TCGA.BRACA, OXEBRCA.1
and OXE.BRCA .2 datasets (Table 2). At the last step, the
matrix factorization approach provided lower errors and
greater stability as compared with the general linear inte-
gration methods on the majority of the datasets. This
result corroborates our hypothesis that a late integration
approach is better for it allows using the best algorithms
for each data type.

In order to evaluate the performance of the proposed
method, we systematically compared it with Tw-Kmeans
and SNF algorithms (Table 3). Anyhow, we did not com-
pare our method with iClust, as it has been show to
have worse performance than SNF, with which we deal in
this study [9]. We confirmed that late integration works
more efficiently in integrating different views of genomic
data. This is due to the large complexity and difference
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Table 1 Datasets: Description of the datasets used in this study

Dataset Response N(0) N(T) N(2) N(3) Gene RNASeq microRNA miRNASeq Protein Copy Clinical
expression expression expression number data

Breast Cancer from The Cancer genome Atlas, N = 151

TCGABRC Pam50 (Her2,Basal,LumA,LumB) 24 13 55 59 X X
Breast Cancer from The Gene Expression Omnibus, N = 201

OXF.BRC.1 Pam50 (Her2,Basal,LumA,LumB) 26 6 117 52 X X

OXF.BRC.2 Clinical (Level1, Level2, Level3, Level4) 73 54 42 32 X X
Prostate Cancer from Memorial Sloan-Kettering Cancer Center, N = 88

MSKCC.PRCA Tumor stages T1vs. T2, T3, T4 53 35 X X X X
Ovarian Cancer from The Cancer Genome Atlas, N = 398

TCGA.OVG Tumor stage IIl, Tumor stage Ill, Tumor stage IV 33 315 50 X X X
Glioblastoma Multiforme from The Cancer genome Atlas, N = 167

from TCGA.GBM (Classical, Mesechymal, Neural, Proneural) 37 54 24 52 X X

“N"is the number of subjects for each dataset. Niis the number of samples in the i-th class. An x denotes if that view (column) is available for a specific dataset (row)
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Fig. 2 Multi-View Clusters Statistics: For each cluster class label, the p-value and the view contribution are reported. For all the six datasets, the results
showed that the matrix factorization method gives lower classification error and better accuracy than the approach with general linear integration

between the views. When views have different numerical
and statistical characterizations, it is more convenient to
individually analyze single data types and then combine

the results in a multi-view analysis. This becomes more
and more important as the number of views involved in
the analysis increases.
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Fig. 3 Cluster Impurity difference between single view and integration analysis: Cluster impurity was evaluated as the fraction of objects that were
inconsistent with the label of the cluster. It was calculated using each data type alone and by integrating them. Errors decreased with the
integration approach in particular when the semi-supervised methodologies were used

Evaluation of genes in breast cancer datasets

We selected a robust set of features from each ana-
lyzed dataset in order to find common features (Fig. 5a)
and highlight shared patterns by enrichment analysis
(Fig. 5b). Each list of features was obtained by using the
Borda-count rule across the leave-one-out replicates. The
enrichment analysis was performed by using the DAVID
functional annotation tool [18, 19] and graphically dis-
played with the R package BACA [20]. Figure 5b reports
a chart indicating unique and common Gene Ontology
(GO) terms found by using DAVID on the different lists. It
is possible observe that the three lists of features highlight
similar GO annotations, involved for instance in regula-
tion of kinase activity and regulation of cellcycle. The list
of genes shared between the three breast cancer datasets
can be found in Additional file 3.

Conclusions
In this study, we proposed a methodology for multiple
genomic data type analysis aiming at patients subtyping.

The methodology is composed of four steps using state
of the art algorithms. Furthermore we systematically
searched for the best algorithm for each step on six of
benchmark datasets. We performed experiments in a late
integration fashion, with two different algorithms. Since
we were interested in high accuracy in class patient
subtyping, we used prior information as a new view in the
integration process. We found that the integrative clus-
tering outperforms the single view approaches on all the
datasets. We also showed that our method is stable by
executing clustering on perturbed datasets removing one
patient at a time and evaluating the normalized mutual
information between all the resulting clusterings.

Methods

The proposed methodology for the analysis of multi-
view biological datasets takes in input # matrices M; €
REixP for i =1,...,n, where F; is the number of features
(genes, miRNAs, CNV, methylation, clinical information,
etc.) and P is the number of patients and a vector c/
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.. Matrix Factorization Error 35,00% 11,83% 33,33% 7,00%
 GLIError 33,00% 13,00% 30,00% 14,33%
Fig. 4 Difference between alternative integration methods: The mean cluster stability is reported, as calculated on four covariates represented by
the type of experiment executed. Clustering stability was calculated by comparing the unsupervised and the semi-supervised mode, both using
either all the features or only the selected prototypes

Table 2 Best combination of methods for each step: Summary of the best combination of algorithms for each view used to obtain the
best grouping of patients that identifies significant sub-classes

(@) (b) (© (d)
Dataset Views Feature Feature Patients Late
clustering selection clustering integration
TCGABRCA RNASeq Pam CAT-score Kmeans MF
miRNASeq Pam CAT-score Pam
TCGA.OV Gene Expression Pam Random Forest DM MF
Protein Expression Pam - DM
miRNA Expression Pam - DM
TCGA.GBM Gene Expressions Spectral CAT-score Kmeans MF
miRNA Expression Ward - Kmeans
OXF.BRCA.1 Gene Expressions Pam Random Forest Ward GLI
mMiRNA Expression Pam Random Forest Kmeans
OXF.BRCA.2 Gene Expressions Pvcluster CAT-score Kmeans MF
miRNA Expressions Pam Random Forest Kmeans
MSKCC Gene Expressions Pam CAT-score Kmeans MF
miRNA Expressions Pam - Pam
CNV Spectral CAT-score Kmeans
Clinical - - Pam

In the feature selection column the symbol (-) means that feature selection was not executed because the number of features was small. Symbol (DM) in Patient clustering
column means that same classification error was obtained with all the algorithms used




Table 3 Validation Results: The mean classification error, normalized mutual information (NMI) and stability, on all datasets, are shown, measuring the agreement between the

clusters resulting from an approach and the real patient classification

Feature Integration Algorithm Error NMI Stability
Single View All Feature - Ward 30,08 % 26 % 86 %
- Kmeans 30,93 % 25% 51 %
- Pamk 30,75 % 24 % 94 %
Selected Prototype - Ward 30,72 % 26 % 89 %
- Kmeans 30,36 % 25% 52%
- Pamk 30,78 % 24 % 96 %
Multi-View All Feature Early Integration Tw-kmeans 37,10 % 24 % 69 %
All Feature Intermediate Integration SNF 30,83 % 22 % 83 %
All Feature in Cluster of Selected Prototype Intermediate Integration SNF 3131% 18 % 82 %
Selected Prototype Late Integration unsupervised MF/GLI 27,47 % 28 % 85 %
Selected Prototype Late Integration semi-supervised MF/GLI 6,30 % 63 % 84 %

Bold font in percentage indicates best performance in the experiments
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of classes labels, and yields a multi-view partitioning
G = Ui'(=1 (G;) of patients. The multi-view integration
methods also return a matrix C where c[j, ] is the contri-
bution of view i to the final multi-view cluster ;.

The approach consists of four main steps as shown in
Fig. 1:

1. Prototype Extraction: for each view, the features were
filtered by variance and clustered in order to find
prototypes, reducing the input data dimension.

2. Prototype ranking: the prototypes found in the step 1
were ranked based on their ability to separate the
classes.

3. Single view clustering: in each view, the samples were
clustered using the prototypes created in the steps 1
and 2 as features

4. Integration: single view clustering results were
integrated with a late integration approach, in order
to obtain the k final multi-view meta-clusters

The late integration methodology can be considered as
a further step of the proposed data mining pipeline, in
which the clustering results of each single view are uni-
fied. This approach offers a number of significant advan-
tages: (i) clustering algorithms can be optimally chosen
with respect to each single view; (ii) it can be natu-
rally parallelized; (iii) representation issues are avoided
since clustering results are the inputs to the integration
algorithms.

Prototype extraction

The features with low variance across the samples were
eliminated. Therefore the data were clustered with respect
to the patients and the cluster centroids were selected
as the prototype patterns. The centroid of each clus-
ter was selected as the most correlated element with
respect to the other elements in that cluster. Differ-
ent clustering algorithms were used: Pvclust [21], SOM
[22], hierarchical clustering with Ward’s method [23], K-
means [24], Partitional Around Medoids [25] and Spectral
clustering [26].

The idea is to evaluate several popular clustering
techniques and compare their behaviour on the different
views with respect to the hierarchical method that is the
standard algorithm used to cluster genes. As noted in [27],
cluster analysis is a complex and interactive process and
results change based on its parameters. Therefore, each
algorithm was executed for different values of K. For each
algorithm and for each K, clustering performance was
evaluated according to the following evaluation function:

EC+1

1(1C+1
+1

VAL = —
2

i +(1—S)+CG) 1)
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where IC is the complete diameter measure, representing
the average sample correlation of the less similar objects
in the same cluster; EC is the complete linkage measure,
representing the average sample correlation of the less
similar objects for each pair of clusters; S is the single-
ton factor and CG is the compression gain. The evaluation
function was defined in order to obtain the output value
normalized between 0 and 1. The complete diameter and
the complete linkage measures were calculated with the R
“clv” package [28]. The number of singleton was normal-
ized in a range (0,1) in order to be comparable with the
correlation measure. It was defined as S = N/(K —1). The
compression gain was defined as CG = 1 — (K/Nge),
where K is the number of clusters and N is the number of
elements to be clustered.

Each clustering algorithm was executed on n different
values of K and the corresponding results were evaluated
with the function VAL. Values close to 1 indicate a clus-
tering with similar objects in the clusters, weakly linked
clusters, with few singletons and with a good compres-
sion rate. A numeric score was then assigned to each K
value by considering the average values of the VAL func-
tion compiled over the clustering results obtained with
the different algorithms. Then, the K showing the high-
est score was chosen and subsequently used to identify
the best clustering algorithms having the first two highest
scores with respect to the selected k value. In Algorithm 1
is reported the computational procedure followed to fine-
tuned the k-values for the cluster analysis.

Algorithm 1 Procedure for the k-values fine-tuning
1: procedure CHOOSEK(k € K = (k1, ko, - - , ki), data)
OUTPUT: BestK: the optimal number of clusters;
BestAlgol, BestAlgo2: The first two best performing
algorithms;
2 forallk € K = (ky, ko, - -
3 L’;V < VAL(Pvclust(data, k))
4 Lim < VAL(Kmeans(data, k))
5: LK < VAL(SOM (data, k))
6
7
8
9

-, k) do

pr <« VAL(Spectral(data, k))
L’IZ < VAL(Pam(data, k))
L{j/ < VAL(Ward(data, k))

k k pk gk gk gk 1k
§* = mEAN(LE, LK, L, 1%, 15, 1L
10: end for
11:  BestK < WHICH.MAX(S¥)
122 BestAlgo; < WHICH.MAX ({L§551<,Lff;’<,L5651<,
BesK 7 BesK 7BesK
LSPES ,LpeS ,LweS ])
13: BestAlgoy < WHICH.MAX <{L§§5K,Lfﬁjl(,LsB“K,

preSK,LIEESK, LﬁESK} \ {BestAlgOI })
14: end procedure
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OXF.BRCA.1

TCCA.BRCA

(a) Venn Diagram

number of genes related to the same GO term

Fig. 5 Breast Cancer Gene Analysis: (@) the Venn diagram shows the number of common relevant genes between the three datasets. The analysis
highlights 45 common genes between the three lists. (b) The bubble plot displays the enriched GO terms found by using DAVID. A transparent
bubble indicates a set of significant genes, a dark bubble indicates a set of highly significant genes. The diameter of the bubble indicates the
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Feature ranking

If the number of prototypes, after the fist step, was still
high, further dimensional reduction by feature selection
was done. Feature ranking was performed by computing
the CAT-score [29] and the Mean Decreasing Accuracy
index calculated by Random Forests [30]. The parame-
ters of RF-based classifiers were fine-tuned by using the
R package rminer [31]. It provides a function that first
tunes the hyper parameter(s) of a selected model by using
bootstrap methods and subsequently builds the corre-
sponding supervised data-mining model. For each rank,
the cumulative sum of the ranking score was computed
and four different cuts based on the cumulative values
were taken. Cuts took into account all the features needed
to maintain 60%, 70%, 80 % and 90 % of the cumu-
lative value. An example is shown in section Prototype
Extraction of Additional file 1. These different groups of
features were used to cluster patients in each single view,
with the same single view clustering algorithms used in
the previous step. The number of clusters K was con-
sidered as the number of classes. For each clustering,
the error was calculated as the dispersion obtained in
the confusion matrix between class labels and cluster-
ing assignments. The clustering algorithm that reached
the minimum error for each view was then selected.
These clustering results were used as the input to the late
integration step.

Integration

Two late integration methods were used: the matrix fac-
torization approach [11] and a general model for multi-
view integration [10]. The first method [11] combines
information by factorizing the membership matrix of
patient single-view clusterings. The method starts by
transposing all the membership matrices and stacking
them vertically obtaining the matrix of cluster X €
RX" where [ is the total number of cluster in C.
The objective is to find the best approximation of X
such that

X=PHand P >=0,H >=0 2)

The results of the factorization are two matrices: P €
RXK that projects the clusters in a new set of k meta-
clusters and H € R*" whose columns can be viewed
as the membership of the original objects in the new set
of meta-clusters. Based on the values in the projection
matrix P, we can calculate a matrix T € Rk, Tyf indicates
the contribution of the view V), to the f-th meta-cluster.
Based on values in P it is also possible to find the opti-
mal value of k for the number of multi-view clusters we
want in output. The matrix factorization was run with a
range of values for k as input and the algorithm returns
the factorization for the best value of k.

The second method exploits the intuition that the opti-
mal clustering is the consensus clustering shared by as
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many views as possible. This can be reformulated as an
optimization problem where the optimal clustering is the
closest to all the single view clusterings under a certain
distance or dissimilarity measure. Clusterings are again
represented as membership matrices.

Formally the model can be described as follow: given
a set of clustering membership matrices M = [M;,...,
Myl e Rixz and a positive integer k, the optimal clus-
RﬁXk and the optimal
mapping matrices P =[Py, ..., Pyl € leer are given by the
minimization:

min GI(M||BP)
B,P

tering membership matrix B €

s.t. P>0 (3)
B>0Bl=1

where GI(M||BP) is the generalized Kullback-Leibler
divergence such that

X,‘
GIX||Y) = Z (logx,jlogl/’f - X+ Yij)
- ij

y

subject to the constraint that both P and B must be non-
negative and that each row of B must sum to one.

By taking the membership matrix for each of the pre-
vious clusterings, and, using these two late integration
methods, a multi-view clustering was obtained. Experi-
ments were performed in two ways: the former uses all
the prototypes for classification; the latter uses only the
most relevant ones for class separability. Each one of these
approaches were performed both in unsupervised and
semi-supervised manners, respectively.

The semi-supervised approach consists of giving a pri-
ori information as input to the techniques of late integra-
tion via a membership matrix of patients with the exact
information of their classes. This information is com-
bined with the membership of the patients compared to
the single view clustering and integrated in metaclus-
ters. This can be a useful approach mainly when the
data set is composed of unbalanced or under represented
classes.

Derivation of subclasses

Once the multi-view clusters were obtained, a subclass
was assigned to each one. For each cluster, the number
of objects of each class was calculated and the class with
more representative patterns was assigned as the cluster
label. Then, a p-value was calculated in order to verify the
statistical significance of the subclass by the Fisher’s exact
test [32].

Validation
The method was compared with classical single view
clustering algorithms, early and intermediate integration
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approaches. For each method clustering impurity, nor-
malized mutual information (NMI) and cluster stability
were evaluated. Cluster impurity was defined as the num-
ber of patients in the cluster whose label differs from that
of the cluster. Given two clustering solutions C/; and Cl
NMI was computed as the mutual information between
the two clustering normalized by the cluster entropies.
The NMI was computed between clustering results and
real patient classifications.

Since prior information was introduced, the stability
of the system was tested with leave-one-out technique.
A test in itself was run on the first step to gener-
ate a stability index for the prototypes of the obtained
clusters. Then, the steps 2, 3 and 4 were evaluated
jointly to assess the stability of the selected features
and to evaluate the robustness of the multi-view clus-
tering results. Furthermore, a borda-count [33] method
was performed to find the final list of features selected
over the leave-one-out experiments for the integration
step.

At the end of this process, N different clustering assign-
ments were obtained, one for each removed patient. An
N x N matrix M was created, where M(i,j) was the
normalized mutual information (NMI) between the clus-
tering obtained removing patient i and the clustering
obtained removing patient j. Then the mean of the matrix
M was calculated, indicating the stability measure of the
method.

The comparison study involved the following methods:

Kmeans, Hierarchical and Pam single view clustering
Tw-Kmeans, an early integration multi-view
clustering algorithm

e SNF, an intermediate integration multi-view
clustering algorithm

Experiments with single view clustering algorithms
were executed in feature concatenation mode: data from
views were concatenated and used as a new greater fea-
ture space. This kind of experiments were run both on
the most variable features for each view and on the most
relevant prototypes found after the first and second steps
of our approach. Experiments with Tw-kmeans were exe-
cuted on all the features without any manipulation of the
initial datasets. Experiments with SNF were executed both
using all the features and using all the features that belong
to the clusters associated to the relevant prototypes.

Dataset collection and preparation

Six datasets were downloaded from The Cancer Gen-
ome Atlas (TCGA) (https://tcga-data.nci.nih.gov/tcga/),
Memoral Sloan-Kettering Cancer Center (http://cbio.
mskcc.org/) and from NCBI GEO (http://www.ncbi.nlm.
nih.gov/geo/) (See Table 1).
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TCGA.BRC

Breast cancer dataset from the TCGA repository (https://
tcga-data.nci.nih.gov/tcga/ - Breast invasive carcinoma
[BRCA]). The samples in this dataset correspond to breast
cancer patients with invasive tumors. Genomic data for
two views were downloaded: RNASeq and miRNASeq
(Level 3). Because level 3 data corresponds to already
preprocessed data, only the batch effect was removed by
the comBat method in the R “sva” package [34]. Patients
were subsequently divided into four classes (Her2, Basal,
LumA, LumB), using PAM50 classifier [35, 36].

OXF.BRC.1

Breast cancer dataset from a study performed at Oxford
University [37]. Data were downloaded from Gene
Expression Omnibus Dataset (http://www.ncbi.nlm.nih.
gov/geo/). Data were available for two views: mRNA
and microRNA expression under the accession num-
ber GSE22219 and GSE22220. Patients were divided into
four classes (Her2, Basal, LumA, LumB), using PAMS50
classifier [35, 36].

OXF.BRC.2

Breast cancer dataset from a study performed at Oxford
University [37]. Data were downloaded from Gene
Expression Omnibus Dataset (http://www.ncbi.nlm.nih.
gov/geo/). Data were available for two views: mRNA
and microRNA expression under the accession number
GSE22219 and GSE22220. Patients were divided into four
classes (Levell, Level2, Level3, Level4) using clinical data
also retrieved from the same source. See Table 4 for
classes definition.

TCGA.GBM

Glioblastoma cancer dataset from the TCGA reposi-
tory. The samples in this dataset correspond to glioblas-
toma patient with invasive tumors. TCGA website was
accessed (https://tcga-data.nci.nih.gov/tcga/ - Glioblas-
toma multiforme [GBM]) and publicly available data for
two views were downloaded: gene expression and miRNA

Table 4 Oxford Dataset: Oxford Dataset, class definition by

clinical data

Class Clinical information

Levell er=1,node =0, grade =1-2
er=1,node =0, grade = 3-4

Level2 er=1,node > 0,grade = 1-2
er=1,node > 0,grade = 3-4

Level3 er=0,node =0, grade =1-2
er=0,node =0, grade = 3-4

Level4 er=0,node > 0,grade = 1-2

er=0,node > 0, grade = 3-4
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expression. Also clinical data was retrieved. The patients
were divided info four classes: Classical, Mesechymal,
Neural and Proneural as described in [38].

TCGA.OVG

Ovarian cancer dataset from the TCGA repository
(https://tcga-data.nci.nih.gov/tcga/ - Ovarian serous cys-
tadenocarcinoma [OV]). The samples in this dataset
correspond to patient affected by ovarian serous cys-
tadenocarcinoma tumors. Publicly available data for three
views were downloaded: gene expression, protein expres-
sion, and miRNA expression. Clinical data were down-
loaded in order to classify patients in three categories. In
particular patients were classified by clinical stage: first
class: stage IA, IB, IC, IIA, IIB and IIC, second class: IIIA,
IIIB and IIIC, third class Stage IV.

MSKCC.PRCA

Prostate cancer dataset from a study performed at
the Memorial Sloan Kettering Cancer Center (http://
cbio.mskcc.org/). The samples in these datasets corre-
spond to patient prostate cancer tumors. The MSKCC
Cancer Genomics data portal (http://cbio.mskcc.org/
cancergenomics/prostate/data/) was accessed and data for
five views were downloaded: clinical data, gene expres-
sion, microRNA expression and copy number variation.
Patients were classified in two classes by using clinical data
by the tumor stage: class one is Tumor Stage I and class
two is Tumor Stage II, III and IV. Classification of patient
was done according to a previous study performed on the
same dataset [14].

Additional files

Additional file 1: It contains a section for each step of the
methodology in which the tables and figures with the results for each
dataset are reported. (PDF 1495 kb)

Additional file 2: Each sheet refers to each dataset analysed,
reporting the results of the single-view clustering patients. Clustering
errors for each algorithm and each cut of feature are also reported.

(XLSX 54 kb)

Additional file 3: It contains the gene symbols and description for all
shared genes between the tree breast cancer datasets highlighted by
the analysis. (DOCX 14 kb)
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