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Image medical semantic segmentation has been employed in various areas, including medical imaging, computer vision, and
intelligent transportation. In this study, the method of semantic segmenting images is split into two sections: the method of the
deep neural network and previous traditional method. 'e traditional method and the published dataset for segmentation are
reviewed in the first step. 'e presented aspects, including all-convolution network, sampling methods, FCN connector with CRF
methods, extended convolutional neural network methods, improvements in network structure, pyramid methods, multistage
and multifeature methods, supervised methods, semiregulatory methods, and nonregulatory methods, are then thoroughly
explored in current methods based on the deep neural network. Finally, a general conclusion on the use of developed advances
based on deep neural network concepts in semantic segmentation is presented.

1. Introduction

Semantic segmentation of medical images is also known as
pixel-level classification.'e task is to cluster the parts of the
image side by side, which belong to a class of similar objects
[1]. 'e other two key functions of the image are to classify
the image’s surface and define it. Image classification ensures
that each image is exchanged as an equal group of images of
similar groups, and monitoring also refers to the object’s
location and recognition. For predicting pixel level, image
segmentation can be used as it categorizes each pixel.
Furthermore, there is a task that identifies and separates
joints called sample segmentation [2, 3]. Medical image
semantic segmentation has a variety of applications, such as
road sign detection [4], colon crypt segmentation [5], land-
use classification, and land surface classification [6]. It is also
widely used in medicine, such as brain and tumor detection
[7] and discovering and tracking medical devices in surgery
[8]. Numerous applications of segmentation in medicine are
listed in some studies [8]. Scene resolution is of great sig-
nificance in advanced driver assistance systems (ADAS) or

car driving areas and depends extensively on semantic image
segmentation ([9–11]). Research has developed a deep-
learning (DL-) based system for assessing disease. 'is
system automatically scans the location of the disease and
measures the shape, size, and percentage of the disease on
the CT image of people who have COVID-19 disease. In this
study, a strategy (HITL) was proposed for the repeated
production of training samples. 'is method is for radiol-
ogists to evaluate the results of DL segmentation, make
changes, and frequently add more tutorials to update the
model. As a result, they speed up the algorithm’s develop-
ment cycle [12]. As recent findings show, before choosing to
use chest CT, a significant number of imaging studies need
to be checked for patient diagnosis or patient screening.
Artificial intelligence technology, particularly DL analysis
tools, could potentially be created to support radiologists in
triage, quantification, and data analysis. Artificial intelli-
gence solutions can analyze several cases to determine if a
chest CT scan shows lung abnormalities. If the software
significantly increases the risk of developing the disease, the
case will be reviewed by a radiologist or a physician for
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further treatment/quarantine. Such systems or their modi-
fications, after validation and testing, can be a key factor in
the diagnosis and control of patients with the virus [13]. 'e
pandemic of COVID-19 appears to have negative impacts on
world health and well-being. An important method in
combating COVID-19 is efficient screening in infected
patients, and one of the most important screening methods
is radiological test utilizing chest radiography. Preliminary
studies have shown that patients infected with COVID-19
have problems with chest radiographs. COVID-Net is
implementing a deep concealer neural network architecture
to diagnose COVID-19 patients implying chest X-ray (CXR)
images motivated by the academic community’s open-
source endeavors. 'is information is accessible to the
public [14]. In the context of e-healthcare, Zhang et al.
showed a privacy-preserving optimization of the clinical
pathway query method (PPO-CPQ) [15]. Ala et al. have used
a metaheuristic algorithm and optimized an appointment
scheduling issue for healthcare systems depending on the
quality of fairness service [16]. Also, Xu et al., to simulate
pathogenesis diagnosis, proposed a computer technique
called network differentiation [17]. Segmentation accuracy
has greatly improved since the reemergence of the deep
neural network. In general, traditional methods are called
the methods that came before the deep neural network. 'e
following parts of this convention are followed in this study
and standard segmentation techniques are briefly analyzed
in this article, and, most significantly, this development
builds on the recent progress of adopting and organizing a
deep neural network from different aspects. Furthermore,
the image segmentation measurement and assessment da-
tabases are checked. 'e rest of this study is organized as
follows: In the dataset and assessment criteria, Section 2
explores the semantic segmentation of the image. A de-
scription of traditional methods is given in Section 3. Section
4 outlines recent developments in detail. Finally, a de-
scription of the work performed is given with conclusions in
Section 5.

2. Datasets and Evaluation Metrics

2.1.Datasets. Many general datasets are currently connected
to image segmentation, such as PASCAL VOC, MS COC,
ADE20K, and, in the field of the autonomous driving area,
Cityscapes [11] and KITTI ([9, 10]). 'e challenge of visual
object classes, or VOCs, consists of two components [15]: (1)
image and annotation datasets that are available to the public
and (2) annual workshops and competitions that are held
online on some websites and sometimes in person.'emain
challenges have been dealt with since 2005. By 2012, the
challenge included 20 classes. Educational and validation
data contained 11530 images containing 27450 annotated
objects with areas of interest and 6929 segmented images.
Also, in image segmentation, datasets have been extensively
utilized.'eMicrosoft COCO dataset [2] contains images of
91 objects, where a 4-year-old person can quickly identify
with 2.5 million labeled samples in 328,000 images. Authors
also introduced the dataset with a detailed statistical analysis
compared to PASCAL data [15], ImageNet data [18], and

SUN data [19]. An analysis of 50 chest X-ray images of 25
positive COVID-19 cases was confirmed because of the lack
of an available COVID-19 dataset. Seven distinct architec-
tures from neural networkmodels are used in COVIDX-Net.
Each deep neural network model can analyze the number of
X-ray images to identify the patient’s state as negative or
positive COVID-19 [20]. 'e authors in [20] collected
images from 5 different sources to test this idea and generate
a dataset of 170 X-ray images and 361 CT images of COVID-
19. Two explanations exist for the use of photographs from
these sources. First, to help radiologists diagnose COVID-19
worldwide, it is important to design an advanced tool.
Second, for the scientific community and the general public,
photographs of these sources are openly available. Also, the
images used in it will be publicly available in a GitHub
repository [21]. With 150 classes of objects and materials,
ADE20K data [17] is another scene analysis criterion.
ADE20K data contains the object segmentation mask and
component segmentation mask, unlike other datasets. 'ere
are also several pictures of parts of the head (like the mouth,
eyes, and nose). In the training suite, there are precisely
20210 images, and there are 2,000 images in the validation
suite and 3,000 images in the experimental suite [17]. Some
of these images are depicted in Figure 1.

'e Cityscapes dataset is a criterion that focuses on
understanding the meaning of urban street scenes [11]. 'e
collection contains 30 groups obtained from 50 towns in
5,000 fine annotated pictures. 'e selection period, which
includes spring, summer, and autumn, is also several
months. Figure 2 displays one of the images of this data in
the annotations.

'e KITTI dataset [9], another autonomous driving
dataset recorded by driving on highways and in rural areas
around Karlsruhe, is another example of semantic image
data. On average, a maximum of 15 cars and 30 pedestrians
can be seen in each image. Zhou et al. proposed a model for
evaluating the clarity of screen content and natural scene
images while blind [10]. Lv et al. proposed a deep-learning-
based fine-grained visual computation [11]. Liu et al. have
investigated the Style and Characters Inpainting Based on
CGAN [12]. Road detection, stereo reconstruction, light
current visual measurement, 3D object detection, and 3D
tracking are the principal functions of this dataset (http://
www.cvlibs.net/datasets/kitti/). One use of image segmen-
tation is in automated vehicles. 'e system uses augmented
reality to describe the amount of automation and its de-
pendability to increase the system’s confidence and reli-
ability. In addition to the above databases, there are many
others such as SUN, the Visual Database of Shadow De-
tection or Texture Segmentation (https://zenodo.org/record/
59019#.WWHm3oSGNeM), Berkeley segmentation dataset
[22], and LabelMe dataset [23] whose complete information
can be found (http://homepages.inf.ed.ac.uk/rbf/CVonline/
Imagedbase.htm). 'ere are various imaging models in the
field of medical data, most of which have been applications
of DL methods onMRI, mammography, or CTscan imaging
data. However, different areas of the body have this data or
even other imaging samples. However, the main focus of this
research is on three datasets, which are from the brain and
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Test image Ground truth FCN-8s SegNet DilatedNet Cascade-DilatedNet Objectness Map

Figure 1: Examples of ADE20K data images. From left to right and from top to bottom, the first segmentation of object masks is seen. 'e
second to fifth elements of photo segmentation are linked to the object’s portions (e.g., body parts, glass parts, and photo board parts). In the
sixth segment, parts of the head are displayed (such as the eyes, mouth, and nose) [17].

Figure 2: One of the images in the Cityscapes database [17].
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chest areas. One of the most important brain MRI datasets
working on diagnosing tumors, Alzheimer’s, and MS is
BraTS dataset (https://ieee-dataport.org/competitions/
brats-miccai-brain-tumor-dataset). From the download
path of this dataset, there will be four folders: T1, T2, Flair,
and T1Ce, respectively. Each section has 155 sections, MRI
image sections are weak, and there are 155 sections for a
dataset and 210 sections for a high-grade Glioma dataset. At
the same time, 75 sections are in another type of Glioma.
Hence, the number is 285 cases. 'is dataset has versions
between 2012 and 2019, and an example of the images of this
dataset is in form (3). 'ere is also another original dataset
called TCGA-GBM, which has higher quality 3D images
than BraTS (https://portal.gdc.cancer.gov/projects/TCGA-
GBM) (see Figure 3).

'ere are also valid datasets in the field of mammog-
raphy images used to diagnose breast tumors, one of the
most important of which is a dataset called MIAS (https://
www.mammoimage.org/databases).

Also, on the same website, other datasets called DDSM,
AMDI, and IRMA are used to diagnose cancerous tumors in
different shapes and sizes as benign and malignant. An
example of these images is shown in Figure 4.

2.2. EvaluationMetrics. For image segmentation and scene
analysis, standard performance assessment metrics include
pixel resolution Pacc , middle resolution Macc, region in-
tersection upon the union MIU, and connection area
sharing frequency weight FWIU. It is presumed that nij

describes the number of class i pixels that are supposed to
belong to class j, where there are various groups nd and it is
assumed that ti � Jnij represents the number of pixels in
class i. All of these relationships are written in the four
following formulas [26]:
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'ere are also other evaluation metrics for the seg-
mentation of medical images, which are popularly used in
scientific societies. 'ese include accuracy, sensitivity,
specificity, recall, ROC curve, and Area under Curve (AUC)
rate.

3. Traditional Methods

Before presenting deep neural networks, features and
classification methods are applied to the most important
topics [19]. A feature is a piece of data that is applied to

solving computational tasks in machine vision and image
processing. 'at is the same context of machine learning
precision and the identification of patterns [27]. For se-
mantic segmentation in images, a number of features are
used, such as pixel color, histogram of oriented gradients
(HOG) ([28]), scale-invariant feature transform (SIFT)
[29], local binary pattern (LBP) [30], SURF method [31],
Harris Corner Detection [32], method of Shi-Tomasi [33],
subpixel corner method [34], SUSAN edge method [35],
Features from Accelerated Segment Test (FAST) [36],
FAST-ER method [37], AGAST method [38], AGAST
multiscale detection method [39], the bag-of-visual-words
(BOV) [40], the Poselets method [41], the Textons method
[42], and many other methods. Approaches to image se-
mantic segmentation do not include supervised or unsu-
pervised cases [43]. In particular, thresholding, which is
commonly used in gray surface images, is a simple method.
In the medical industry, optimization, classification, and
diagnosis are very common, using imaging equipment
([44–46]). In general, in this regard, thresholding methods
are very efficient. K-means clustering means an unsuper-
vised clustering process. 'e K-means algorithm specifies
that the number of clusters must be defined in advance.'e
points of k are initially randomly positioned in the property
space. Additionally, each datum is allocated to the closest
points. 'e gravity points are then successively transferred
to the middle of the cluster. 'is process proceeds until the
stop criterion is met [47]. 'e problem of segmentation can
be used as an energy model, resulting from a compression
method [48]. Intuitively, edges are an important part of
segmentation, and there is also much research on edge
recognition ([49–53]). Also, edge-based approaches and
regional growth methods are other branches. Support
vector machines (SVMs) are binary classifiers that are well
studied and are employed in many jobs. Inseparable linear
problems can be solved with the slack variables, too
[54, 55]. 'e core approach was also used for integral tasks
by the mapping of dimensional broader features. A Markov
random field (MRF) is a set of randomized variables with
an indirect diagram of a Markov attribute. Also, the
Markov stochastic grid is a directionless graphical model
(http://host.robots.ox.ac.uk/pascal/VOC/voc2010/results/
index.html; [56]).

In general, a case study has been made between the
methods of segmentation in images in the field of semantic
segmentation, which is shown in Table 1. Classic studies on
the detection of cancerous tumors from MRI images have
also been presented. In [57], the method of Brownian
motion of water molecules to produce contrast has been
done. Also, in [58] an improved edge detection method for
segmentation is presented. 'e watershed method and the
hierarchical clustering algorithm have also been studied in
[59]. Also, in [60], anisotropic diffusion based on seg-
mentation and pattern based on group classification based
on support vector machine and segmentation with FCM has
been done. 'e application of a genetic algorithm and
discrete wavelet transform thresholding method is presented
in [59]. Qiao et al. have presented a local wavelet acoustic
pattern and an MLP optimized by a modified Whale
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Optimization algorithm for classification of underwater
objects [59].

Also, [65] presents a combined approach called ant
colony optimization (ACO) algorithm and genetic algo-
rithm. In [66], the chaotic firefly algorithm based on the
FCM algorithm has been performed. 'e application of the
optimal Particle Swarm Optimization (PSO) in [67] has also
been studied, and in [68] a bat optimization algorithm for
segmenting MRI images for different purposes is presented.
In general, a case comparison between the existing methods
in the segmentation field in MRI images has been done,
which is shown in Table 2.

In the field of classical methods used to segment
mammographic images, we can refer to the research [69]
that has used the segmentation method of regional growth
with a cellular neural network with a specific threshold. 'e
use of a Back-Propagation (BP) neural network has also been
considered in [70]. Applying the new Näıve Bayesian
method in [71] has also been considered in this field. In [72],
the regression-based evolutionary methods are used to di-
agnose breast cancer tumors to estimate and predict the
remaining life based on the size of the tumor. In [73], the
classification or diagnosis of breast cancer in mammo-
graphic images combined with wavelet analysis and genetic
algorithm is presented. Xu et al. provided a method for
identifying, classifying, and predicting nucleic acid-binding
proteins [74].

Also, [75] presents a semisupervised adaptive algorithm
named GrowCut for the segmentation of tumors of interest
areas or ROI of mammographic images based on the
amendment of the law of automatic evolution. In general, a
case comparison has been made between the methods

available for segmentation in mammographic images, which
is shown in Table 3.

4. Recent Deep Neural Network
Methods in Segmentation

4.1. Artificial Neural Network (ANN). Biological neurons are
inspired by the artificial neural network (ANN). An artificial
neuron is an essential element of an artificial neural network.
Each artificial neuron has only inputs that weigh. Neurons
issue a scale following a transfer function or activation
function. An instance of a neural model is shown in Figure 5.

Based on artificial neurons, the accumulation of different
neurons is automatically Autoencoder [81], Restricted
BoltzmannMachine (RBM) [82], Recurrent Neural Network
(RNN) or convolutional neural network (CNN) [83], Long
Short-Term Memory (LSTM) [84], and other models. 'e
basic architecture is shown in Figure 6.

A shared weight architecture, influenced by biological
mechanisms, is used by the convolutional neural network
(CNN) [83]. 'e connection pattern between neurons
mimics the development of the visual cortex of the animal.
Acceptance is another essential term, indicating that indi-
vidual cortical neurons can respond to stimuli only in a small
region of the visual field. 'ey also have immutable or
complex spatial properties dependent on the architecture
with shared weight and spatial characteristics. Due to this
excellent structure, the convolutional neural network has
gained significance which caused image classification, seg-
mentation, and detection. In the following section, recent
developments using convolutional neural networks in the
semantic segmentation of the image will be presented.

Figure 3: Example of BraTS dataset [24].
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Figure 4: Sample image of normal and malignant tumor based on MIAS dataset [25].
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Table 1: Comparison between existing methods for semantic segmentation.

Reference Year Method Advantages Disadvantages

Bourdev et al. [28] 2010 HOG Ability to specify areas, especially at the edges,
with high clarity and accuracy

High computational complexity,
inability to be used in a wide range of

applications

Xia et al. [27] 2005 HOG Ability to specify areas, especially at the edges,
with high clarity and accuracy

High computational complexity,
inability to be implied in an extended

variety of applications

Lowe [29] 2004 SIFT Accurate identification of areas and edges
High computational complexity,

inability to be implied in an extended
variety of applications

He and Wang [30] 1990 LBP High capability in cryptography and image data
encryption and edge detection operations 'e algorithm is slow

Bay et al. [31] 2008 SURF Accurate identification of areas and edges
High computational complexity,

inability to be used in a wide range of
applications

Derpanis [32] 2004 Harris corner
detection

Ability to find the corners of an image outside the
edges, ability to be used in a wide range of high-

sensitivity image processing systems
Low accuracy and slow method

Shi and Tomasi [33] 1994 Shi-Tomasi Ability to specify areas, especially at the edges,
with high clarity and accuracy

High computational complexity,
inability to be used in a wide range of

applications

Medioni and
Yasumoto [34] 1987 Corner detection

with subpixels

Ability to find the corners of an image outside the
edges, ability to be used in a wide range of high-

sensitivity image processing systems
Low accuracy and slow method

Smith and Brady
[35] 1997 SUSAN corner

detection

Accurate edge detection based on texture and
brightness and better capabilities than classic

operators such as Canny and Prewitt

Low accuracy in high-resolution
images and slow method

Rosten and
Drummond [36] 2005 FAST Ability to specify areas, especially at the edges,

with high clarity and accuracy

High computational complexity,
inability to be used in a wide range of

applications

Rosten et al. [37] 2010 FAST-ER
Ability to specify areas, especially at the edges,
with high resolution and precision in multiscale

modes

High computational complexity,
inability to be used in a wide range of

applications

Mair et al. [38] 2010 AGAST Ability to specify areas, especially at the edges,
with high clarity and accuracy

High computational complexity,
inability to be used in a wide range of

applications

Leutenegger et al.
[39] 2011 Multiscale AGAST

Ability to specify areas, especially at the edges,
with high resolution and precision in multiscale

modes

High computational complexity,
inability to be used in a wide range of

applications

Venegas-Barrera
and Manjarrez [40] 2004 BOW Ability to specify areas, especially at the edges,

with high clarity and accuracy

High computational complexity,
inability to be used in a wide range of

applications

Brox et al. [41] 2011 Poselets Ability to specify areas, especially at the edges,
with high clarity and accuracy

High computational complexity,
inability to be used in a wide range of

applications

Zhu et al. [42] 2005 Textons Ability to specify areas, especially at the edges,
with high clarity and accuracy

High computational complexity,
inability to be used in a wide range of

applications
Strauss and
Hartigan [47] 1975 K-means Ability to find clusters in images and cluster them Slow method and need to combine

with faster methods

Shen et al. [54] 2004 Edge detection and
regional growth

Ability to specify areas, especially at the edges,
with high clarity and accuracy

High computational complexity,
inability to be used in a wide range of

applications

Shan et al. [55] 2004 SVM
High capability in high-precision image

classification operations in pairs and the ability to
separate features with vectors

High computational complexity, slow
method

Shotton et al. [56] 2006 MRF
High capability in high-precision image

classification operations in pairs and the ability to
separate features with vectors

High computational complexity, slow
method
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4.2. Fully Convolutional Network (FCN). 'e article in [86]
represents the first study in the image segmentation field to
present ANNFCN. Replacing the utterly connected layer with
the fully convolutional layer is the fundamental concept of
this method. Using the interpolation layer, the network
recognizes that the output size is just like the input required
for segmentation. Most significantly, by successful inference
and learning, the network is educated, takes on the required
size, and produces the correct size output. 'e FCN was
introduced in VGG-Net and has reached a substantial role in
the segmentation of PASCAL VOC (20 percent relative in-
crease to 62.2 percent of the average IU in 2012). However, the
assumption takes less than one-fifth of a second for a regular
image. 'e main FCN architecture is shown in Figure 7.

4.3. Interpolation against Parsing in Medical Image Semantic
Segmentation. 'e parsing layer is also approved in the
semantic segmentation of images and the FCN architecture.
Degradation and sampling layers in the pooling layer that
define pixel type labels and predict segmentation masks are
the degradation network used in [88]. Unlike FCN in [88],
this grid is used for proposed thing designs to get the
synthetic parts as an example for the final semantic seg-
mentation. 'e sampling method step adopts two-line in-
terpolation, which can be found in [86]. 'e sampling stage
of the samples has commonly approved two-line interpo-
lation due to the computational efficiency and good retrieval
of the original image. 'e decomposition operation is an
inverse calculation of the convolution function that can also
retrieve the input size. It can then be utilized to segment the
function mapping size to the original input size to retrieve it.

'e architecture used in [88] is seen in Figure 8 . Some
researchers still use the decomposition layer in multiple
versions to introduce semantic segmentation, which can be
found in [74, 89, 90].

CT images are also used to obtain information about
COVID-19 patients. 'e CT image shows the condition of
the patients’ lungs and shows how much the disease has
affected the lungs.

4.4. Connect FCN with CRF and Other Traditional Methods.
Responses in the last layer of deep convolutional neural
networks (DCNNs) are not sufficiently localized to effec-
tively segment an entity, according to DeepLab research
[92]. Mixing an ultimately linked random field or CRF in the
DCNN end layer solves this poor localization property.
Authors’ method in the test determined in the semantic
image segmentation work of PASCAL VOC-2012 reaches
71.6% IOU accuracy. After this, they implement another
segmentation architecture by matching Domain Transform
(DT) with DCNN [92]. Since the dense CRF inference is
costly in terms of computation, Domain Transform (DT)
relates to a modern method of maintaining edge filtering. A
reference edge mapping governs the smoothing rate. 'e
Domain Transform (DT) is several times more rapid than
the dense CRF assumed. Finally, studies compare the effects
of semantic segmentation and reliably document the
boundaries of the object. Researchers also use superpixels to
segment images in the domain of the semantic segmentation
[93]. Reference [94] deals with semantic segmentation by
merging rich details, including mixing label fields and high-
order relationships, in the Markov random field (MRF).

4.5. Dilated Convolution. 'e majority of semantic seg-
mentation methods focus on the compatibility of con-
volutional neural networks (CNNs), initially designed to
classify images. Dense prediction, however, is structurally
distinct from classification, as are semantic image seg-
mentation tasks. An instance of an open structure of con-
volution can be seen in Figure 9. Reference [92] has
previously used this technique in its work, which is named
Atheros convolution or convolution hole [92] or open
convolution [96]. Convolution was originally developed to
efficiently calculate wavelet transform in an “algorithm à
trous” scheme [97]. Reference [96] systematically presented

Table 1: Continued.

Reference Year Method Advantages Disadvantages

Hassantabar et al.
[61] 2020 CNN

Ability to diagnose the COVID-19 infected lung
tissue for segmentation and classification of

patients

(i) Small numbers of images
(ii) Unable to find illness severity

Dorosti et al. [62] 2020 Sensitivity analysis
'is approach can help in the identification of
beneficial parameters as well as the avoidance of

patient mortality in all sorts of disease

(i) Data limit
(ii) Ignoring other variables

Sharifi et al. [63] 2021 CNN Diagnosis of fatigue foot using CNN (i) High computational complexity
(ii) Integrated only on CNN method

Laradji et al. [64] 2021
Supervised
consistency
learning

'e best loss function for prediction
(i) Unable to detect patients uniquely
(ii) Should be connected to other
methods

Inputs

x1

x2

xm ωm

ω2

ω1

φ (·) y
Output

Activation
FunctionSum

Weights

Σ

b
Bias

... ...

Figure 5: Model of artificial neurons [80].
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Table 2: Comparison between existing methods in the segmentation field in MRI images.

Reference Year Method Advantages Disadvantages

Darwiesh et al.
[57] 2016

'emethod of Brownian motion of
water molecules to produce

contrast

Detecting edge areas to
separate sections with tumors
and nontumor sections

(i) Lack of detection of tumors in other
tumors or other areas
(ii) High computational complexity and
slow method
(iii) Lack of separation of areas with benign
and malignant tumors

Aslam et al. [58] 2015 Edge detection
Detecting edge areas to
separate sections with tumors
and nontumor sections

(i) Lack of detection of tumors in other
tumors or other areas
(ii) High computational complexity and
slow method
(iii) Low accuracy
(iv) Lack of separation of areas with benign
and malignant tumors

Qiao et al. [59] 2021 Watershed and hierarchical
clustering algorithm

Detecting edge areas to
separate sections with tumors
and nontumor sections

(i) Lack of diagnosis of tumors in other
tumors or other areas
(ii) High computational complexity and
slow method
(iii) Low accuracy
(iv) Lack of separation of areas with benign
and malignant tumors

Ain et al. [60] 2014

Concrete anisotropic emission
based on group classification,
support vector machine (SVM),

and FCM

High accuracy in diagnosing
and classifying areas with
tumors

Lack of comparison with previous
methods and lack of consideration for
comparison with DL methods or other
neural networks

Mobahi et al.
[48] 2011

Genetic algorithm and discrete
wavelet transform threshold

method

Detecting edge areas to
separate sections with tumors
and nontumor sections

Karnan, and
Selvanayaki [65] 2010

'e combined approach of ant
colony optimization algorithms

and genetic algorithm

Detecting edge areas to
separate sections with tumors
and nontumors sections

(i) Lack of diagnosis of tumors in other
tumors or other areas
(ii) Very high computational complexity
and slowness of the method
(iii) Low accuracy
(iv) Lack of separation of areas with benign
and malignant tumors

Ghosh et al. [66] 2018 FCM-based chaotic firefly
algorithm

(i) Detecting edge areas for
separating tumor and
nontumor sections
(ii) High execution speed with
the complexity of the method
(iii) Accurate detection of
features

(i) High computational complexity
(ii) Lack of separation of areas with benign
and malignant tumors

Zhu et al. [67] 2018 Particle swarm optimization (PSO)

(i) Detecting edge areas for
separating tumor and
nontumor sections
(ii) High execution speed with
the complexity of the method
(iii) Accurate detection of
features

(i) Lack of diagnosis of tumors in other
tumors or other areas
(ii) High computational complexity and
slow method
(iii) Lack of separation of areas with benign
and malignant tumors

Alagarsamy et
al. [68] 2019 Bat algorithm

(i) Detecting edge areas for
separating tumor and
nontumor sections
(ii) High execution speed with
the complexity of the method
(iii) Accurate detection of
features

(i) Lack of detection of tumors in other
tumors or other areas
(ii) High computational complexity and
slow method
(iii) Lack of separation of areas with benign
and malignant tumors

Memiş et al.
[158] 2020 Deep CNN

Finding the head bone femoral
and femur properties for low-
quality MRI images

(i) Small volume of the dataset for
validation and verification
(ii) Unable to support any types of disease

Duran et al.
[159] 2020 Self-attention model End-to-end attention model

with multiple classes

(i) Only unable to detect prostate cancer
(ii) An additional mechanism for CAD
models
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Table 2: Continued.

Reference Year Method Advantages Disadvantages

Hu et al. [137] 2019 3D-DenseUNet-569

(i) Adaptable to depthwise
separable convolution
(ii) Drop the GPU processing
time

(i) Low-level feature extraction
(ii) Improper for big data
(iii) Unable to adapt to 2D images

Karayegen &
Feyzi [161] 2021 Deep learning models

(i) High prediction method
(ii) Differing modality of MRI
images
(iii) 3D image analysis

(i) Limited dataset for verification
(ii) Do not use all image area
(iii) Needs ground truth

Ahmadi et al.
[162] 2021 Deep spiking neural network

(i) Low computational
complexity
(ii) Used quantum filter
(iii) High accuracy

(i) Multistep method
(ii) Overfitting in some analysis

Ahmadi et al.
[163] 2021 Robust PCA and CNN

(i) Clustering and
segmentation method
(ii) Automated clustering
(iii) Used remove outliers
(iv) High accuracy and
sensitivity

(i) High complexity
(ii) Do not support 3D images

Table 3: Comparison between existing methods in the field of segmentation in mammographic images.

Reference Method Advantages Disadvantages

Rouhi et al.
[69] 2015

Regional growth with a
cellular neural network with a

specific threshold

Ability to diagnose benign and
malignant tumors, high accuracy in

classification

High computational complexity
(i) Lack of accurate detection of areas with
tumor
(ii) Lack of comparison with previous
methods

Kaymak
et al. [70] 2017 Back-Propagation (BP)

A convenient way to use in neural
network training, highly fast
execution speed in training

Uncertainty of the exact type of approach
proposed and lack of comparison at the time
of classification and uncertainty of benign and

malignant tumors

Karabatak
[71] 2015 Näıve Bayesian

Ability to diagnose benign and
malignant tumors, high accuracy in

classification

High computational complexity
(i) Lack of accurate detection of areas with
tumor
(ii) Lack of comparison with previous
methods

Wang et al.
[72] 2018 Regression-based methods

Ability to estimate and predict
remaining life based on tumor size,

high accuracy in detection

Pereira et al.
[73] 2014 Wavelet analysis and genetic

algorithm

Ability to diagnose benign and
malignant tumors, high accuracy in

classification

High computational complexity
(i) Lack of accurate diagnosis of areas with
tumor
(ii) Lack of comparison with previous
methods

Cordeiro
et al. [75] 2016 Semisupervised adaptive

algorithm GrowCut

Ability to diagnose benign and
malignant tumors, high accuracy in

classification

High computational complexity
(i) Lack of accurate detection of areas with
tumor
(ii) Lack of comparison with previous
methods

Ahmed et al.
[76] 2020 Mask RCNN

(i) Increased AUC for transfer
learning
(ii) Use for X-ray mammographic
image

(i) Low accuracy
(ii) Used low volume dataset for verification
(iii) High rate of oversampling

Lee et al. [77] 2020 Multiscale grid average
pooling

(i) Utilizing global and local spatial
feature
(ii) Novel attention module
(iii) Ultrasound image dataset

(i) Lower accuracy of segmentation
(ii) High computational complexity
(iii) A small volume of the dataset

Soulami
et al. [78] 2021 UNet model

(i) High accuracy for breast cancer
detection
(ii) High f1-score and AUC

(i) High complexity model
(ii) Overfitting in some models
(iii) Lower volume of analysis

Huang et al.
[79] 2021 Fuzzy fully CNN (i) Fuzzy membership function

(ii) Conditional random fields

(i) Low sensitivity
(ii) Low intersection over union
(iii) Low resolution and poor quality
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a module using discrete complexities for collecting multi-
scale textual information. 'is architecture is based on open
convolution, which supports the expansion of the expo-
nential receiver field without losing sharpness or coverage,
since the available convolution contains networked (or
segmented) network artifacts in the input data.

Reference [98] created an approach called dilated re-
sidual networks (DRN) to eliminate these artifacts and
further improve network efficiency.

4.6. Progress in theMain Pillar of theNetwork. 'e network’s
main column refers to the network’s main structure. As it
turns out from image classification tasks, the key source of

image medical semantic segmentation is derived. 'e FCN
[86] approved the VGG-16 net structure [99], which per-
formed exceptionally well in ILSVRC14. Authors also
considered the architecture of AlexNet [100], which won
ILSVRC12, as well as GoogLeNet [101], and performed well
in ILSVRC14.'e VGG network has been validated in many
previous studies [92, 94]. Following the release of ResNet or
the deep residual network [102], DeepLab took its place in
the ILSVRC 2015 classification work and implemented it,
and semantic segmentation has made new progress. To reach
a sufficient configuration, [103] evaluates the various
changes of a fully complex residual network, including
feature mapping resolution, number of layers, and field of
view size. Also, [104] examines the remaining deep networks

Input layer
(3 nodes)

Hidden layer
(5 nodes)

Output Layer
(2 nodes)

Figure 6: An example of a model of an artificial neural network [85].
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Figure 7: FCN architecture [87].
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and explains some of the experimentally observed habits. As
a result, authors get a shallow network architecture that in
the ImageNet classification dataset is dramatically better
than much deeper ones. Recently, ResNeXt [105] was in-
troduced as the next generation of ResNet. 'is network is

the basis for entering the ILSVRC 2016 classification work,
in which it has won second place. GoogleNet also acquires
extensions such as Inception-v2, Inception-v3 [106], In-
ception-v4, and Inception-ResNet [101], which has already
been approved in the article [107].
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Figure 8: Convolution decomposition network architecture [91].

Foreground
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(a)

Foreground

Background

(b)

Foreground

Background

(c)

Figure 9: An example of an available convolution structure (Atrous convolution or hole convolution). (a) Convolution layer with 3 × 3 core
size; a normal displacement operation with expansion parameter-1, (b) open convolution with expansion parameter-2, and (c) open
convolution with expansion parameter-3 [95].
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5. Pyramid Methods in Semantic Segmentation

Aside from adopting networks with strong core columns,
researchers are also trying to combine a pyramid strategy
with CNN. A clear example of that is a pyramidal structure.

5.1. Image Pyramid. An image pyramid [108] is a series of
sequentially segmented images before any of the desired stop
criteria has been met. 'ere are two different types of image
pyramids: the Gaussian pyramid used for image sampling
and the Laplacian pyramid used to recreate a scattered image
from the lower image (with lower resolution).'ree levels of
the image pyramid can be seen in Figure 10.

In the field of image semantic segmentation, [110] es-
tablishes a network that can efficiently boost output with
traditional multiscale image input and sliding pyramid
mixing. 'is architecture captures the sense of the back-
ground patch. Similarly, by feeding input images of various
sizes into a deep sharing network, DeepLab implements an
image pyramid structure [111] that extracts multiscale
functionality. 'e resulting features are combined for pixel
classification at the end of each deep grid. You can see the
picture pyramid used in the CNN system in Figure 11.

'e Laplacian pyramid is also used to segment medical
images semantically, and the reader can refer to the article in
[113]. Authors have a multiresolution redevelopment archi-
tecture based on a Laplacian pyramid that utilizes higher-
resolution map jump connections and a polygonal gate to
change reconstructed boundaries with low-resolution function
maps gradually. Reference [114] introduces a method of scene
interpretation, and, through the Laplacian pyramid, the raw
input image is transformed. In comparison, CNN creates a
series of feature charts and generates each scale in two phases.

5.2. Atrous Spatial Pyramid Pooling (ASPP). Inspired by the
image pyramid technique, [92] Atrous Spatial Pyramid
Pooling (ASPP) is suggested to be done to provide robust
object segmentation at different scales. ASPP explores the
powerful fields-of-views (FOV) and the convolution feature
layer with a multisampling rate filter and then captures the
artifacts at various scales in the scene. ASPP architecture is
seen in Figure 12.

5.3. Pyramid Pooling. According to the Pyramid Pooling
shown in Figure 11, through gathering image data based on
various regions, [115] exploits global knowledge capacity and
calls its pyramid scene parsing network, known as PSPNet.'e
excellent results therein show that, with pyramidal pooling, a
PSPNet brings a new mIoU score record of 85.4 percent in
PASCAL VOC 2012 and brings 80.2 percent in Cityscapes
dataset by experiments in [115]. Pyramid Pooling adopts
multiple pooling size scales and applies the output to the
original size for sampling processing. Finally, to shape a
composite feature profile, it obtains the findings. Different
scales of the size of the pool with different colors are marked in
Figure 13. In general, pyramidal pooling can be used for any

mapping of features. For example, the program in [115] applies
pyramidal pooling in the pool5 layer.

5.4. Feature Pyramid. As mentioned in research back-
grounds such as [117], the feature pyramid is an important
component in image work for recognizing objects of various
sizes. Object detectors have avoided displaying pyramids
with recent DL methods because the computational volume
and memory are compact. In [117], authors use the CNN
multiscale pyramid hierarchy to build special pyramids at an
additional cost. Also, a Feature Pyramid Network (FPN) has
been created to construct high-level semantic maps at all
scales. Machine learning also has many applications in the
optimal selection of feature extraction [118–122].

6. Multilevel and Multistep Feature Methods

CNN may be known as a feature extractor [123], and, as a
feature, CNN-based detection algorithms usually use the
last-layer output. For dense forecasting, however, the data in
this layer is too big. Instead, in localization, the primary
layers can be correct but do not present the meaningful state.
'ey describe hypercolumns as the activation vectors of all
CNN units above that pixel to achieve both. You will see the
form adopted as superstores in [123] in Figure 14. 'e FCN
[86] has already approved jumps, as seen in Figure 5. 'e
multilevel approach appears to have been used in the study
[123], and multimodeling is a group approach to visuali-
zation ([125, 126]). In comparison to the multilevel ap-
proach, the multistage technique is utilized in semantic
segmentation [107] to improve its accuracy and speed, which
recommends the deep layer cascade (LC) method. 'e deep
layer cascade (LC) method consists of multiple independent
models, unlike the conventional model cascade (MC)
([125, 126]). As a multisubset model cascade, the LC system
uses a single deep model, classifying several basic parts into
the shallow stage and concentrating the deeper stage on
several hard sections. 'is not only increases the produc-
tivity of segmentation but also accelerates both deep network
training and research (Figure 12).

7. TheMostPracticalDeepLearningMethods in
Medical Image Segmentation

'e application of DL techniques to segmentation methods
and MRI imaging aiming at brain tumors has been studied
extensively. In general, different structures of a convolu-
tional neural network can be acknowledged as the best DL
technique in this research with studies on a convolutional
neural network with a deeper layer [127], two-way con-
volutional neural network [128], cascaded CNN [129],
multidimensional convolutional neural network [130], fully
convolutional neural network (FCNN) for training with
CRF [131], three-dimensional model of the convolutional
neural network, two-dimensional model of the convolu-
tional neural network [132], extreme learning machine
(ELM) [133], Growing Deep Convolutional Network
(GCNN) [134], complete convolutional neural network with
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Atheros convolution pyramid features [135], three-dimen-
sional convolutional neural network test-time augmentation
[136], and convolutional neural network referred to as CRF-
based multicascade [137]. All the weaknesses along with the
general application of all the advantages of the classical
methods are presented in Table 2, and it is seen in the
available and studied methods and also all of them have a
wide range of applications. Yang et al. have used a portable
evanescent wave sensor to detect SARS-CoV-2 using a
CRISPR-based [138]. Reference [139] also uses DL methods
to detect and classify breast tumors. 'ree different DL
architectures, GoogLeNet, VGGNet, and ResNet, have been

considered, and analysis has been performed between these
methods. Visual detection and evaluation of breast tumors
with DL principles are also presented in [140], which uses
the combined methods of K-means and SURF algorithms in
the structure of DL networks based on multiclass support
vector machine. 'e detection of breast cancer using an
extreme learning machine (ELM) based on feature fusion
with deep convolutional neural network features is pre-
sented in [141]. Also, in [142], the extraction of a distinct
pattern for the histopathological image classification of
breast cancer has been done through an automated structure
based on a convolutional neural network. All the weaknesses
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along with the general application of all the advantages of the
classical methods are presented in Table 3; and it is seen in
the available and studied methods and all of them have a
high range of applications. Figure 15 shows chest radio-
graphs in healthy individuals and COVID-19 patients, re-
spectively (see Table 4).

8. Discussion

A primary application in image processing and computer
vision is image medical semantic segmentation. In addition
to a brief overview of image semantic segmentation and
traditional medicine, this article discusses recent advances in
image semantic segmentation, particularly based on deep
convolutional neural networks in the following aspects: (1)
fully convolutional network, (2) method of sampling
method, (3) combining FCN with CRF methods, (4) dilated
convolution approaches, (5) progress in the main pillar of
networks, (6) pyramid methods, and (7) multistage prop-
erties and multilevel methods. So far, there have been more
and better ways to segment medical images semantically
more accurately or faster or both with higher accuracy and
speed, as well as better performance. Finally, the authors of
this article hope that this review of recent advances in image
medical semantic segmentation will help researchers in this
field.

Maghdid et al. [21] reviewed a comprehensive, pre-
processed dataset on X-rays and CT scan images from a
variety of sources and provided an algorithm for accurate
diagnosis of COVID-19 using DL and transmission
learning tools. Also, a modified model was used by CNN
and AlexNet as a pretested network on ready-made X-ray
and CT scan datasets. After extensive experiments in both
datasets, it has been shown that the proposed COVID-19
model predicts high accuracy and low response time. It is
important to note that their proposed DL pattern has
shown equivalent performance compared to that of a
specialist radiologist. In addition, it can significantly
improve the efficiency of radiologists while performing
clinical practice [21]. Researchers are searching for new
ways of screening, and the DL added to the chest X-rays of
patients has shown positive outcomes. 'e computational
cost of these approaches is still high considering their
popularity, which causes difficulties with accessing them.
'erefore the main purpose of this research is to ac-
commodate the COVID-19 screening issue in chest X-ray
with a reliable and successful approach in terms of
memory and processing time. DL is a branch of artificial
intelligence (AI) machine learning related to algorithms
that are inspired as artificial neural networks by the
structure and operation of the brain by using far higher-
quality input images without any processing time. In
addition, it is faster and cheaper to embed these versions
in devices with more limited settings such as smartphones.
To make use of embedded and large-scale devices, models
can need little memory and carry out research quickly;
and it encourages smartphones and emergency devices to
work with them. DL models are complicated, so, to avoid
inserting connections, a large number of things are

necessary. In the training suite, for example, where the
learning network performs well, to have less performance
in the test suite, a large number of items are required.
Unfortunately, there is not much data available for most
real-world problems, even though the dataset is still small.
Efficient training in deep neural networks has also been
rendered possible through studying data transmission and
amplification strategies in the small number of COVID-
19-related images [144]. A popular approach for survival
analysis and event prediction is the CPH model. 'is is
therefore a semiparametric model, which suggests that the
probability of misdiagnosis is a linear mixture of the
clinical variables of the patient. In a fully data-driven way,
the DL model can learn and infer high-order nonlinear
interactions between clinical variables and disease effects.
Data improvement techniques in DL will also make the
model more robust to information noise and lost infor-
mation, which usually happens in clinical datasets. It is
also possible to expand the DL model to incorporate time-
dependent factors such as vital signs and elevated visual
attributes such as CT or X-ray images. It is inevitable to
lose data on certain factors in reality and the real world.
Data lost in less than three variables was then permitted in
authors’ online measurement tool, and risk evaluation
based on DL methods can still be given by the field. In the
clinical experience of Liang et al. [152], mild cases of
COVID-19 are generally limited, and these are acute cases
that need to be further investigated by physicians. Clas-
sified cases of their patients are clinically and economi-
cally expensive to manage COVID-19, especially due to
the rapid outbreak of the disease which can happen and
the high mortality rate related to acute disease, which has
a high cost. By submitting clinical information online,
medical personnel can use the predicted risk index to
hospitalize patients and accordingly arrange patient
treatment plans. In this way, medical resources can be
appropriately allocated [152]. Arora et al. [26] suggested a
DL model for estimating the number of patients who may
have COVID-19 infection. 'ey estimated the number of
new cases of new coronaviruses in various states of the
Indian Union for a span of one day to one week. For
prediction, they utilized repetitive neural networks and
Long Short-TermMemory (LSTM) and then tested several
LSTM models in the Indian dataset and concluded that
deeper LSTM models such as stacked LSTM, circular
LSTM, and two-way LSTM were more accurate than
simple LSTM models. To date, no research studies on
COVID-19 cases have been reported from all Indian
states, according to the authors. In one study, to predict
the number of COVID-19-positive cases in the Indian
states, Arora and colleagues suggested DL models. Be-
cause of the growing number of positive cases in India,
exploratory data analysis has been undertaken. Depend-
ing on the number of cases and the daily growth rate, the
government classifies states into mild, moderate, and
severe areas to take strong action against the quarantine of
the entire country, and this may cause economic and
social problems. As predictive models, recurrent neural
networks (RNN) are used based on long-term and short-
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(a) (b)

Figure 15: (a) Radiographic images of a healthy person’s chest. (b) Chest radiographs of patients with COVID-19 [143].

Table 4: DL methods used in COVID-19 detection and diagnosis.

Author Purpose Method Advantages Disadvantages DL architecture Results

Luz et al.
[144]

To provide an
accurate and

efficient method for
COVID-19

screening with
chest X-rays for
memory and

processing time

Using EfficientNet
artificial neural networks High accuracy

Large and
heterogeneous

database

'e use of
algorithms, or
artificial neural
networks, is

inspired by the
brain’s structure
and function

From the
hierarchical
classification,

experiments were
performed to
evaluate the

performance of
the neural

network in the
COVID-19 data.
It became possible

to use data
transfer

techniques and
reinforce data.'e
accuracy was 93.9

Liu et al.
[12]

Determining areas
of infection and
examining the

lungs with the help
of a chest CT scan

Use of CT scans to
evaluate COVID-19,
evaluation of system
performance based on
DL. 'is experiment was

performed on 249
patients

Patient
availability, high

accuracy

Lack of sufficient
information

Classification
based on DL of
VB-Net neural

network

A DL system was
developed for the
segmentation and
measurement of
infection areas in

CT scans of
patients with

COVID-19. 'e
quantitative

evaluation showed
high accuracy for
the infected area
based on POI

criteria

Li et al.
[13]

Development of
artificial

intelligence CT
imaging tools to

diagnose
coronavirus and
isolate sick people
away from healthy

people

Uses powerful 2D and
3D DL models. Modifies
and adapts existing AI
models. 'is experiment
was performed on 157

patients

High accuracy Complexity 2D and 3D DL
models were used

'e AI-based
analysis is rapidly
evolving in the
diagnosis of

coronavirus, and
the detection is
being made with
great accuracy
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Table 4: Continued.

Author Purpose Method Advantages Disadvantages DL architecture Results

Wang and
Wong
[14]

Assist physicians in
improving COVID-

19 screening

Polymer reverse chain
reaction screening from
RT-PCR to diagnose

COVID-19

Better
understanding
and character
analysis by
physicians,

accelerating the
development of

high-precision DL
solutions

Complexity,
being time-
consuming

Use of artificial
intelligence

systems based on
DL, hardening

and evaluation of
COVID-Net

prototype using
Keras DL library
with TensorFlow

background

Assist physicians
in improving

screening, use of
CXR images to

diagnose COVID-
19

Ghoshal
and
Tucker
[145]

Evaluation of prop
weights-based
elliptic irritable
neural networks

(BCNN) to improve
performance for

COVID-19
diagnosis

Using the transmission
learning method in

COVID-19 X-ray images

Improvements in
the diagnosis of
COVID-19

Uncertainty in
detection for
radiologists

Use of DL for
classified tasks, as

well as chest
radiographic
diagnosis for
COVID-19

Estimated
uncertainty with
DL can warn
radiologists of

incorrect
predictions, which
increases the use

of DL in
diagnosing the

disease

Narin
et al. [146]

Evaluation of the
use of focal neural
network-based

methods to detect
an infected patient

using X-ray
radiography of the

chest

Use InceptionV3,
ResNet50, and

InceptionResNetV50 to
diagnose infected patient

High-
performance
ResNet50 model
(i) High accuracy
(ii) Cost reduction

Ambiguity in
matrices

Using COVID-19
X-ray images for
DL models, using

transition
learning methods

Preliminary
diagnosis of
COVID-19

patients to prevent
the spread of this
disease in other
people, using the
ResNet50 model
with 98% accuracy

Hemdon
et al. [20]

'e
implementation of
a DL framework for

automated
COVID-19

diagnosis of X-ray
images

It was performed on 50
chest X-ray photographs
of 25 positive COVID-19
cases. Seven distinct

architectures from deep
concealer neural

network models are used
in COVIDX-Net

Automatic
diagnosis of
COVID-19

Complexity

Use the COVID-
19 classification to
diagnose COVID-

19 on X-ray
images

automatically
using one of the
DL frameworks

X-ray images
based on the
COVIDX-Net
framework
proposed

Zhang
et al. [147]

Detection and
differentiation of
viral patient from
the nonviral patient

Experiment on
COVIDX data including
106 COVID-19 cases

Strengthen and
improve the
model, more
efficiency in
treatment

Complex
calculations

Analysis of
medical images
including staging
detection and
drawing of
pathological

abnormalities, X-
ray image change

Detection of the
abnormality by
viral pneumonia
screening works
well on chest X-

ray images
'e learning

model is useful for
predicting job

failure
We have the

CAAD model and
we have never

seen such cases in
COVID-19, the
data had 83.61%
AUC, and the
sensitivity was

70.71%
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Table 4: Continued.

Author Purpose Method Advantages Disadvantages DL architecture Results

Maghdid
et al. [21]

Provide artificial
intelligence tools

for fast and
accurate detection
of COVID-19,

create a
comprehensive set
of X prototypes

Using X-rays and
scanning CT images and
using DL algorithms

Creating
intelligent
detection
methods with
higher efficiency
(i) Increasing
detection speed
(ii) Increasing
accuracy

Complexity

Build a DL-based
detection system
to detect COVID-
19 pneumonia

using DL
algorithms

Accelerate the
diagnosis of

COVID-19 using
the CNN model

Zeraati
et al. [148]

Automatic
classification of
lung diseases

including COVID-
19 with X-ray

images

Use of advanced
convolutional neural

network called
MobileNet, use of 3905
X-ray images of more

than 6 patients

Automatic
diagnosis of
COVID-19 from
medical images
(i) Low cost
(ii) High speed

Limitations

Use DL to extract
large-sized

features from
medical images

Low-cost, fast, and
automatic
diagnosis of
COVID-19.
Different

infections may be
differentiated by
computer and
detection using
features extracted

by DL

Li et al.
[149]

Provide a fast and
reliable way to

diagnose COVID-
19

Use 1020 CT images of
108 patients with

COVID-19, use of ten
confidential neural

networks to diagnose
COVID-19

Rapid diagnosis of
COVID-19, being

valid
High expenses

Use of CAD
system based on
DL to classify
COVID-19
against other
pneumonia

Using the textual
CAD method on
CT images to
differentiate

COVID-19 from
other

pneumococcal
diseases. ResNet-
101 can be used to
diagnose COVID-

19

Arora
et al. [26]

Predict the number
of new

coronaviruses

Use LSTM-based RNN
for forecasting

High accuracy of
forecasting

High complexity
and volume of

data

Use the LSTM DL
model

Two-way LSTM
gives the best
result and
confidential

LSTM gives the
worst result.

biLSTM gives very
accurate results
for short-term

forecasts, such as 1
to 3 days, with less
than 3% error

Huang
et al. [150]

Quantitative
evaluation of

changes in lung
tolerance in
patients with

COVID-19 using
CT scan with an
automated DL

method

CT images show the
entire lung and are

measured and compared
by commercial DL

software

Classification of
different groups

and better
detection

Loss of initial
findings

Chest CT image
evaluation using

DL

'e lung failure
rate in COVID-19
was measured
using a DL

instrument based
on a chest CT
image and there
was a significant

difference
between different

groups
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term memory (LSTM) cells. In 32 states/union states,
LSTM types such as deep LSTM, circular LSTM, and
bidirectional LSTM models have been tested, and the
model is chosen with maximum accuracy based on ab-
solute error. Based on estimation errors, the best outcome
is the two-way LSTM, and the worst result is the hanging
LSTM [26]. Ardakani et al. [149] suggested a DL-based
CAD method to classify COVID-19 versus other pneu-
monic and abnormal pneumonia in research. 'ey pro-
posed that the DL method will assist radiologists to
diagnose the disease associated with COVID-19, and they
used ten convolutional neural networks (CNNs) to
identify COVID-19-related diseases. Ten well-known
CNNs were used in this analysis to provide a detailed view
of the role of artificial intelligence in COVID-19 diag-
nosis. Data have shown that DL can distinguish COVID-
19 with high accuracy from other pneumonia and viral
diseases. For the ResNet-101 and Xeption networks, the
best findings have been found. In the classification of
COVID-19 and non-COVID-19 diseases, however, the
Xeption network was most successful, but it did not have
the highest sensitivity. In comparison, ResNet-101 was
able to detect COVID-19 infection with the highest
sensitivity and present fewer features compared to the
Xeption network. In diagnosing patients with COVID-19,
the trend is to incorporate a system with the greatest
sensitivity. 'e advancement of DL programs helps re-
searchers to do fast and deep X-ray scan analysis. DL is a
mixture of methods of machine learning that focuses
primarily on the automated extraction and classification
of image characteristics, while its applications are com-
monly employed in medical work, medical detection, and
classification. Machine learning and DL in the application
of artificial intelligence for mining, pattern analysis from
data, have been created as a discipline. To further evaluate
the deep cognition method, Apostolopoulos et al. per-
formed an experiment using six common lung diseases,
including COVID-19. In this method, its capabilities in
differentiating between different diseases are evaluated.
Fine-tuning a deep network, in the context of DL, is a
common approach for both learning the properties of
depth and maintaining the method for extracting global
properties, which exist in each image as different shapes.

Specific research to detect potential trademarks focuses on
X-ray images, and these biomarkers can be substantially
correlated with COVID-19 disease. However, DL derives
from images a large range of high-dimensional features,
and some of these features may be known as real image
markers. Li et al. studied the effect of self-assembly on
fluorescent in magnetic fluid flow and its use for a new
COVID-19 detection [149]. Recently, many studies have
been done on various subjects about COVID-19, such as
scheduling problems [153], climate change [154], sunspot
assessment [155], disease severity and industry [156],
energy after COVID-19 pandemic, travel-related risks
among pandemics [157], and predictive modeling [148].

9. Limitations

'e limitations of this research are mentioned in several
aspects. First, the CT validation dataset is collected at one
center, which may not represent all COVID-19 patients in
other geographic areas. 'e generalization of the DL system
must be approved in several centers. Second, the system is
designed to determine the outbreak of the disease and may
not be effective in measuring other pneumonia, such as
bacterial pneumonia. Finally, in the next work, the authors
will develop a system for quantifying the total intensity of
pneumonia using transfer learning. Not ready for produc-
tion, the researchers hope that the results obtained by
COVID-Net in the COVIDX test dataset will be available as
open source with descriptions of the open-source dataset.
CXR images were used to accelerate the development of
high-precision DL solutions for the diagnosis of COVID-19
patients. 'e future work will continue to include increasing
accuracy and PPV for COVID-19 with the collection of new
data, as well as the development of COVID-Net for risk
classification for survival analysis, patient status prediction,
and length of hospital stay.

10. Conclusion

In this study, the potential of deep learning methods in
COVID-19 diagnosis is investigated.'is study has reviewed
the classification systems based on DL to assess the extent of
the disease. 'is system not only automatically contours the

Table 4: Continued.

Author Purpose Method Advantages Disadvantages DL architecture Results

Oh et al.
[151]

Use of the neural
network to

diagnose COVID-
19

Inspired by CXR
radiographic imaging

'e usefulness of
this method for
the diagnosis of
COVID-19 and
patient triage

Difficulty in
training deep

neural network,
difficulty in
collecting big

data

Use of X-ray chest
images to classify

COVID-19

Use artificial
intelligence to
improve CXR

performance for
detection

Liang
et al. [152]

Use of a DL model
to predict disease

Inclusion of 1590
patients from 575

medical centers, Use of
DL models

Early detection Complexity of
calculations

Use of an
integrated Cox
model called

Survival Cox DL

At least 60% of the
data were used for
prediction. A DL
model was used to
predict which was

efficient
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infected areas but also measures their shape, volume, and
percentage of infection on a CT scan of patients with
COVID-19. 'e methods involve radiologists to intervene
effectively in the results of DL segmentation and repeatedly
addmore tutorials to update the model, thus accelerating the
algorithm’s development cycle. CT imaging has become an
effective tool for screening patients with COVID-19 and for
assessing COVID-19 levels. However, radiologists do not
thave a computer tool to accurately determine the severity of
COVID-19, for example, the percentage of infection in the
lungs. DL has become a common method in medical image
analysis and has been used in the analysis of lung diseases.
Using this deep learning automated segmentation, many
studies on imaging quantification and its association with
syndromes, epidemiology, and therapeutic responses can
provide further information on improving the diagnosis and
treatment of COVID-19. An AI algorithm can be created
quickly from one or more algorithms that do the same
thing. 'is is in contrast to the standard method for
generating a DL algorithm, which requires several steps.
In order to review the data, expert annotations are needed
at the data collection point at which a large number of
samples need to be taken. 'e second is the process of
training in which the data obtained is used to train
network models. Every category should be well repre-
sented so that the training can be generalized during the
test process to the new objects found by the network. A
great number of network parameters (typically in the
order of millions) are created automatically in this
learning process. 'e third step is the experiment in which
the network is presented with another collection of objects
not included in the testing and the network performance
is statistically evaluated to determine its classification.
'ere is no solution that fits all; we hope that the positive
results obtained by COVID-Net will be present in the
COVIDX test dataset. Images are used to boost the ad-
vancement of highly accurate DL solutions for the di-
agnosis of COVID-19 patients and accelerate the
treatment of patients. Future pathways including con-
tinuing to enhance sensitivity and PPV to COVID-19
disease by collecting new data as well as extending the
suggested COVID-Net to risk classification for analysis,
patient status prediction, and length of hospital stay will
be useful. [158–164]
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