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Abstract

Most excitatory synaptic terminals in the brain impinge on dendritic spines. We and others have recently shown that
dynamic microtubules (MTs) enter spines from the dendritic shaft. However, a direct role for MTs in long-lasting spine
plasticity has yet to be demonstrated and it remains unclear whether MT-spine invasions are directly influenced by synaptic
activity. Lasting changes in spine morphology and synaptic strength can be triggered by activation of synaptic NMDA
receptors (NMDARs) and are associated with learning and memory processes. To determine whether MTs are involved in
NMDAR-dependent spine plasticity, we imaged MT dynamics and spine morphology in live mouse hippocampal pyramidal
neurons before and after acute activation of synaptic NMDARs. Synaptic NMDAR activation promoted MT-spine invasions
and lasting increases in spine size, with invaded spines exhibiting significantly faster and more growth than non-invaded
spines. Even individual MT invasions triggered rapid increases in spine size that persisted longer following NMDAR
activation. Inhibition of either NMDARs or dynamic MTs blocked NMDAR-dependent spine growth. Together these results
demonstrate for the first time that MT-spine invasions are positively regulated by signaling through synaptic NMDARs, and
contribute to long-lasting structural changes in targeted spines.
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Introduction

Dendritic spines of excitatory central nervous system (CNS)

neurons have been studied extensively because of their importance

in synaptic plasticity, learning and memory. Elegant studies in

living mice have demonstrated that many spines are stable

throughout the life of an animal, while others change shape and

size [1,2]. Subsequent experiments using similar paradigms have

shown that even in adulthood structural plasticity of spines can

occur and is important for encoding sensory and motor memories

[3,4,5]. Although not imaged directly in a living brain, other

studies have demonstrated that much of this structural plasticity in

dendritic spines occurs through the dynamic reorganization of

actin filaments [6,7,8]. However, recent studies from our lab and

others indicate that microtubules (MTs) are also capable of

transiently entering dendritic spines [9,10,11,12] and interacting

with the actin cytoskeleton [11].

MT invasions of spines are associated with neuronal depolar-

ization [10], but it is unclear whether these invasions occur

downstream of local signaling through synaptic glutamate

receptors. It is also unclear whether MTs contribute to long-term

structural or functional changes in the spines they enter.

Furthermore, it is not known whether MTs contribute directly

to long-lasting structural changes in spines [13].

Here we report that acute activation of synaptic NMDARs,

a crucial determinant of long-term synaptic potentiation [14],

triggers an increase in the frequency of MT-spine invasions. We

also show that NMDAR-dependent increases in spine size are

substantially larger in spines targeted by MTs, and that individual

MT invasions are associated with rapid spine enlargement.

Together these data demonstrate conclusively that MTs are

playing a major, and heretofore unknown, role in NMDAR-

dependent spine plasticity.

Results

Increased frequency of MT-spine invasions following
acute synaptic NMDAR activation

Previous studies have shown that dynamic microtubule (MT)

entry into dendritic spines can be promoted with neuronal dep-

olarization [10] and that pharmacological inhibition of MT

dynamics blocks long-term potentiation (LTP) in hippocampal slices

[11]. Based on these results, we hypothesized that MT entry into

spines may directly contribute to NMDAR-dependent plasticity at

the level of individual spines. To test this, we used two-color total

internal reflection fluorescence microscopy (TIRFM) to image 20–

27DIV mouse hippocampal neurons co-transfected with EGFP-a-

tubulin (to label MTs) and DsRed2 (to label cell volume) at 10 second

intervals for 60–70 minutes (Fig. 1). To rapidly activate synaptic

NMDARs [15,16,17] we pre-incubated cultured neurons with the

NMDAR antagonist D,L-APV (200 mM) starting 16–24 hours prior

to imaging and imaged cells in APV for 10 minutes before replacing
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it with 200 mM glycine in a 0 mM MgCl2 solution for 10 minutes,

followed by washout (Fig. 1D).

Following synaptic NMDAR activation, the frequency of MT-

spine invasions increased by 75%, from 0.4460.09 to 0.7660.16

(mean 6 SEM) invasions/spine/hour (n = 9 cells, 1115 spines, 5

preparations) (Fig. 1D,G and 2A). Synaptic NMDAR activation

also increased the average percent of spines that were occupied by

MTs in each imaging frame after the treatment (Fig. 2B). Overall,

the average percent of spines occupied by MTs in each frame

tripled from 0.6560.16 before NMDAR activation to 1.9960.33

(mean 6 SEM) after activation (Fig. 2B). The total % of spines

invaded across all cells treated with Gly-0Mg2+ was 21%. We also

examined the effects of NMDAR activation on the amount of time

each invading MT spent in a spine after entering (invasion

lifetime). Invasion lifetimes after synaptic NMDAR activation were

not significantly different from baseline levels (Fig. 2C). Thus,

synaptic NMDAR activation specifically affects MT invasion

frequency, resulting in a higher percentage of spines occupied by

MTs following activation.

To confirm that this increase in MT invasions was dependent

on NMDARs, we maintained some cells in APV throughout the

experiment. No changes in MT-invasion frequency or lifetime, or

the percent of spines occupied, were observed when cells were

maintained in APV (n = 9 cells, 1310 spines, 4 preparations)

(Fig. 1B,E and 2A-C). The total % of spines invaded across all cells

treated with Gly-0Mg2+ in the presence of APV was 11%. Thus,

the increases in MT-spine invasions we observed were NMDAR-

dependent. To determine whether APV withdrawal alone is

sufficient to increase MT-spine invasions, we pre-incubated other

cells in APV and imaged them during washout with normal ECS.

No changes in MT-invasion frequency or lifetime were observed

when cells underwent APV withdrawal alone (data not shown).

To determine if MT dynamic instability, the stochastic

elongation and shrinkage of MT plus ends, is required for MT

spine invasions, we suppressed MT dynamics before, during and

after synaptic NMDAR activation by pretreating neurons with a

low dose (200 nM) of the MT-destabilizing drug nocodazole 10

minutes before synaptic NMDAR activation. At this dose

nocodazole treatment did not trigger MT depolymerization [11],

but did inhibit basal MT-spine invasions and also abolished

NMDAR-dependent increases in MT-spine invasions (n = 6 cells,

881 spines, 4 preparations) (Fig. 1C,F and 2A-C). The total % of

spines invaded across all cells treated with Gly-0Mg2+ in the

presence of nocodazole was 4%. Cells treated with nocodazole

alone (no NMDAR activation) showed an equivalent loss of basal

MT-spine invasions (data not shown). These results demonstrate

that MT dynamics (polymerization and depolymerization) play a

key role in basal and NMDAR-dependent spine invasions, and

that synaptic NMDARs regulate MT entry into dendritic spines.

MTs promote NMDAR-dependent structural change in
targeted spines

Acute chemical activation of synaptic NMDARs has been

shown to induce spine enlargement, AMPA receptor trafficking,

and post-synaptic LTP [15,16,17]. To determine whether MT

invasions might contribute to NMDAR-dependent spine enlarge-

ment, we measured changes in DsRed2 fluorescence intensity to

track changes in size (relative to baseline) of both MT-invaded

spines and adjacent non-invaded spines over the course of each

experiment [18]. Synaptic NMDAR activation produced lasting

enlargement in spines invaded by MTs, beginning in the first 10

minutes following NMDAR activation and persisting to the end of

the time-lapse 40 minutes later (n = 211 invaded spines, 9 cells, 5

preparations) (Fig. 3A, 4A,B). MT-invaded spines showed

Figure 1. Acute activation of synaptic NMDARs promotes MT-spine invasions. (A - C) Total internal reflection fluorescence microscopy
(TIRFM) images of dendrites from cultured hippocampal neurons transfected with DsRed2 (red) and EGFP-a-tubulin (green) and treated with glycine
in 0Mg2+ solution (A) with additional APV (B) or nocodazole (C). Spine labeled with ‘‘*’’ in (A) is depicted in the top kymograph of (D) and again in (G).
Scale bar, 3 mm. (D - F) Kymographs depicting transient entry of microtubules (MTs) into individual dendritic spines from the cells shown in A - C
(respectively). Experimental paradigm of each experimental group is shown above the top kymograph. Top kymograph in (D) corresponds to labeled
spine in (A). The invasion shown in the boxed region of (D) is depicted in (G). (G) Sequential frames show a MT entering the labeled spine from (A) and
(D). The MT enters at t = 38:50 (28 min and 50 sec after treatment with Gly-0Mg2+), and remains in the spine for 2 minutes before exiting. Scale bar,
1 mm.
doi:10.1371/journal.pone.0027688.g001

Microtubules in NMDA Receptor-Dependent Plasticity
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significant enlargement starting at t = 10–20 minutes (immediately

after NMDA activation) and spine size increased throughout the

imaging period, with a maximum increase of 15.8360.08% (mean

6 SEM) at t = 40–50 minutes (Fig. 4A,B). In contrast, non-

invaded spines only showed significant enlargement at t = 30–50

minutes following synaptic NMDAR activation, with a maximum

increase of 5.2560.07% (mean 6 SEM) at t = 40–50 minutes

(n = 211 non-invaded spines, 9 cells, 5 preparations) (Fig. 3A,

4A,B). Thus, spines invaded by MTs after synaptic NMDAR

activation enlarge on average ,20 minutes faster and three times

more than non-invaded spines.

Spines maintained in APV showed no significant change in size

during the experiment (n = 140 invaded spines, 9 cells, 4 separate

cultures) (Fig. 3B, 4C,E,F), indicating NMDAR activation is

necessary for spine enlargement. Importantly, spines pretreated

with nocodazole to block MT dynamics did not show changes in

basal spine size, but failed to exhibit NMDAR-dependent enlarge-

ment (n = 32 spines, 6 cells, 4 preparations) (Fig. 3C, 4D-F),

suggesting that dynamic MTs are required for NMDAR-

dependent spine enlargement but not for maintenance of basal

spine structure during the 1 hour treatment period. Treat-

ment with nocodazole alone (no NMDAR activation) or APV

withdrawal alone (no Gly-0Mg2+) also produced no significant

changes in spine size (data not shown). Across-groups analysis of

invaded (Fig. 4E) and non-invaded (Fig. 4F) spines confirmed

that spine enlargement following Gly-0Mg2+ depends on both

NMDAR activation and MT dynamics. Together, these results de-

monstrate that MT-spine invasions promote NMDAR-dependent

spine enlargement.

In many cases MT invasions were accompanied by rapid spine

enlargement (see examples in Fig. 3). To quantify these transient

enlargement events, we used a ‘‘MT invasion-triggered averaging’’

approach to examine the short-term changes occurring in spines

immediately before and after MT invasions. In this approach, the

relative change in spine size occurring before, during and after

each MT invasion was averaged over all invasions, with all pre-

invasion spine intensities renormalized to a baseline of 100% (see

Materials and Methods for details). On average, each invasion

triggered a rapid increase in the size of spines treated with Gly-

0Mg2+ alone (1.8660.01% increase, n = 566 invasions; Fig. 5A)

and in spines maintained in APV during Gly-0Mg2+ treatment

(2.2360.02% increase, n = 355 invasions; Fig. 5B). Peak increases

did not differ between MT invaded spines treated with Gly-

0Mg2+ alone versus Gly-0Mg2++APV (two-way ANOVA), and no

increase was detected in spines that were not targeted by MTs

(Fig. 5A,B). These changes in intensity were not a product of

spectral leakage from green to red channels upon entry of MTs

because neurons transfected with EGFP-a-tubulin alone showed

no increase in the red channel intensity upon MT invasion (data

not shown). Importantly, the duration of the increase in spine size

Figure 2. MT-spine invasions occur more frequently and
occupy a larger percentage of spines after synaptic NMDAR
activation. (A) Effect of NMDAR activation on MT-spine invasion
frequencies. Data are binned into 10-minute intervals to assess changes
in invasion frequencies over time within each experimental group. Light
grey region indicates the timing of Gly-0Mg2+ treatment. Effects of time
and treatment condition were assessed with a two-way ANOVA with

repeated measures and Bonferonni post-test to compare time columns
(* p,0.05, *** p,0.001). Effect of nocodazole treatment on MT invasion
frequency (independent of NMDAR activation) was assessed with a one-
way ANOVA with repeated measures and Dunnett’s post-test
(# p,0.05, ## p,0.01, ### p,0.001). (B) Effects of Gly-0Mg2+

treatment on the average percent of spines occupied by MTs at each
time frame. Data binned and analyzed as in (A). (C) MT-spine invasion
lifetimes before, during, and after NMDAR activation. Data are binned
into 10-minute intervals. Invasion lifetimes did not change significantly
over time in any of the experimental conditions and did not differ
between conditions (two-way ANOVA). Of the few invasions that
occurred in the presence of 200 nM nocodazole, some persisted in
spines for a long duration (.5 min), but this effect was not significant.
All graphs show mean 6 SEM.
doi:10.1371/journal.pone.0027688.g002

Microtubules in NMDA Receptor-Dependent Plasticity
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differed between the two groups, with spines maintained in APV

returning to basal intensity ,2.7 times faster than spines treated

with Gly-0Mg2+ alone (Fig. 5A,B), even though the invasion

lifetimes of MTs in the two conditions were indistinguishable from

one another (Fig. 5C). Thus, MTs that enter spines following

NMDAR activation produce longer lasting spine enlargement

than invasions occurring in the absence of NMDAR signaling,

irrespective of MT invasion lifetimes.

Figure 3. Enlargement of MT-invaded spines following acute
activation of synaptic NMDARs. (A - C) Representative invaded and
non-invaded spines from cells treated with Gly-0Mg2+ alone (A), or
with Gly-0Mg2+ in the presence of APV (B) or nocodazole (C). Top,
pseudocolored images of the DsRed2 signal intensity averaged over 10
minute time intervals spanning the time-lapse (i.e. before, during and
after treatment with Gly-0Mg2+). In the left-most panel the dendrite and
spines are outlined in white and are labeled (1 = invaded spine, 2 = non-
invaded spine, D = dendrite shaft). Scale bars, 2 mm. Middle, kymographs
for the invaded spines from the panels above show the timing of MT
invasions during the time-lapse (EGFP-a-tubulin in green, DsRed2 in
red). Bottom, normalized DsRed2 fluorescence intensities of the spines
shown above at each frame in the time-lapse (10sec intervals; grey
circles = invaded spines, filled black circles = non-invaded spines).
Experimental paradigms are shown above the plot, as in Figure 1. Light
grey region from 0–10 minutes indicates the timing of the Gly-0Mg2+

Figure 4. MTs are important for lasting NMDAR-dependent
spine enlargement. (A) Normalized DsRed2 fluorescence intensities
at each frame, averaged across all invaded (grey) and non-invaded
control (black) spines from cells treated with Gly-0Mg2+ (mean 6 SEM).
Boxes represent 10-minute time averages of the respective traces
(mean 695%CI). Effects of time and spine-type (invaded vs. non-
invaded) were assessed with a two-way ANOVA with repeated
measures and a Bonferonni post-test to compare time columns.
Experimental paradigms are shown above the plot, as in Figures 1
and 3. (B) Comparison of invaded (grey) and non-invaded (black) spine
intensities in each time column after treatment with Gly-0Mg2+ (two-
way ANOVA from (A) with Bonferonni post-test to compare invaded
and non-invaded spines at each time-point) (mean 6 SEM). (C - D)
Normalized DsRed2 fluorescence intensities averaged across all invaded
and non-invaded spines from cells treated with Gly-0Mg2+ in the
presence of APV (C) or nocodazole (D). No significant differences were
detected (two-way ANOVA with repeated measures). (E - F) Between-
groups comparison of changes in DsRed2 intensity observed in invaded
(E) and non-invaded (F) spines. Two-way ANOVA with repeated
measures and Bonferroni post-test to compare cells treated with Gly-
0Mg2+ alone, Gly-0Mg2++APV, and Gly-0Mg2++nocodazole at each
time column (mean 6 SEM). For all graphs, *p,0.05, **p,0.01, and
*** p,0.001.
doi:10.1371/journal.pone.0027688.g004

treatment. Green-filled circles indicate the frames in which the spine
was invaded by a MT (also shown in the kymographs above).
doi:10.1371/journal.pone.0027688.g003

Microtubules in NMDA Receptor-Dependent Plasticity
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Discussion

Over several decades the lack of evidence for MTs in spines led

to an assumption that MTs, although highly concentrated in the

dendritic shaft, do not extend into actin-rich spines. However,

recent studies using high-resolution fluorescence time-lapse

microscopy have found that MTs enter spines in every type of

neuron examined to date, including hippocampal [9,10,11],

cortical [10] and Purkinje [12] neurons. Here we document for

the first time that the frequency of MT polymerization into spines

increases after activation of synaptic NMDARs and that

NMDAR-dependent spine enlargement is dramatically enhanced

in spines targeted by MTs. This enlargement of MT-targeted

spines precedes the more modest enlargement of neighboring,

non-targeted spines by 20 minutes. We also demonstrate that spine

enlargement events triggered by individual MT invasions after

NMDAR activation persist almost three times longer than those

observed during pharmacological blockade of NMDARs. Taken

together, these data suggest that after NMDAR activation, an

increase both in MT invasion frequency and in the persistence of

spine enlargement associated with each invasion have a cumula-

tive effect on spine size which is absent from non-invaded spines.

Activation of synaptic NMDARs with glycine and 0 mM Mg2+

is an established method for triggering ‘‘chemical’’ long-term

synaptic potentiation (LTP), resulting in spine enlargement,

increased AMPA receptor trafficking into the synaptic cleft and

a lasting increase in excitatory post-synaptic currents [15,16].

During induction of LTP, synaptic NMDARs open, resulting in

synaptic calcium influx and activation of calcium-dependent signal

transduction cascades that activate transcription, translation, and

transport of synaptic molecules into spines, as well as actin poly-

merization and subsequent spine enlargement [19,20]. Increases in

spine size usually correlate with increases in synaptic strength

following LTP ([21], but see [22]). Since increases in spine size are

known to depend on actin polymerization [8], and MT and actin

dynamics are intertwined in many, if not all, cell types [23], it is

perhaps not surprising that MT invasions of spines contribute to

spine enlargement, and plausible that they might be directly

involved in LTP.

Importantly, inhibition of MT dynamics with a low concentra-

tion of nocodazole, which markedly inhibits MT invasion of spines

without depolymerizing MTs, abolished the increase in spine size

that otherwise reliably followed synaptic NMDAR activation. One

caveat of this experiment is that MT dynamics were inhibited not

only in spines but throughout both the pre- and postsynaptic

neurons. However, at this concentration nocodazole did not cause

changes in spine or dendrite morphology during the experiments,

suggesting that it disrupted NMDAR-dependent spine enlarge-

ment without having more general deleterious effects on spines or

dendrites. Moreover, 50 times higher concentrations of nocoda-

zole do not affect presynaptic release from cultured hippocampal

neurons [24].

Careful analysis of our data revealed that MT invasions

occurring after synaptic NMDAR activation resulted in more

persistent spine enlargement compared to stochastic invasions that

occurred in cells maintained in APV. Thus, NMDAR-triggered

MT invasions produce quantitatively distinct changes in spine

morphology that may reflect fundamental differences in the

functions MTs carry out in spines undergoing plasticity. This

could reflect differences in the cargo that are transported by MTs

following induction of plasticity. For example, the RhoGEF

protein GEF-H1/Lfc, which is normally inactive when it is bound

to MTs, is activated when it is released from depolymerizing MTs

[25], and enters spines in response to depolarization [26].

Furthermore, GEF-H1 has been shown to form a complex with

AMPA receptors [27], which are also transported into the spine

during LTP. Another recent study suggested that the NMDA

receptor subunit NR2B is transported along dendritic MTs and

enters spines in response to calcium-dependent activation of

CaMKII and subsequent phosphorylation of the kinesin motor

KIF17 [28]. Thus, MTs entering spines undergoing NMDAR-

dependent plasticity could transport select cargo to reinforce spine

enlargement, resulting in the long-lasting spine enlargement that

we document here.

Figure 5. MT invasions trigger rapid spine enlargement that is
more persistent following NMDAR activation. (A) MT-triggered
average of normalized DsRed2 fluorescence intensities across all
invaded spines (grey lines and symbols, n = 566 invasions) and non-
invaded control spines (black lines and symbols, n = 566 invasions)
from cells treated with Gly-0Mg2+. MT invasion onsets are aligned at t = 0.
*** p,0.001; t-test comparing spine size one frame before (t = 210 sec)
with one frame after (t = 10 sec) invasion onset. Return to basal size was
fit with a mono-exponential decay function from t = 10 sec to
t = 10 min. (B) MT-triggered average of normalized DsRed2 fluorescence
intensities across all invaded (n = 355) and non-invaded (n = 355) spines
treated with Gly-0Mg2+ in the presence of APV. Symbols and analysis as
in (A). (C) Population distribution of all MT lifetimes following treatment
with Gly-0Mg2+ alone (grey open circles) or Gly-0Mg2++APV (black filled
circles). Best-fitting mono-exponential decay functions of invasion
lifetimes for the two conditions are overlaid (grey and black lines).
doi:10.1371/journal.pone.0027688.g005
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In a previous study we found that a less specific treatment—

transient neuronal depolarization with KCl—increased the

frequency of MT invasions roughly two-fold [10]. Here we find

that the percent of spines invaded by MTs increases roughly three-

fold following synaptic NMDAR activation, from 0.65% (in the

absence of NMDAR signaling) to 1.99%. However, KCl treatment

also increased MT invasion lifetimes 2.5 fold [10], whereas

synaptic NMDAR activation did not significantly alter invasion

lifetimes. At present, it is unclear what information is encoded in

the frequency and lifetimes of MT invasions of spines. If MTs are

transporting cargo required for synaptic plasticity, then increased

frequency of invasions may allow delivery of more cargo to an

individual spine [13]. Intriguingly, a recent study showed that

inducing chemical LTD resulted in dynein-mediated transport of

Neuroligin 1/PSD-95 complexes out of spines [29]. It is likely that

these proteins are being transported along microtubules, but this

has yet to be shown directly. Thus, LTP may increase invasion

frequency of MTs into spines, while LTD may decrease MT

invasion frequency and/or increase MT lifetimes.

Recently a study was published showing that chemical long-

term depression (cLTD) decreases MT dynamics in the dendrite

shaft and the frequency of MT-spine invasions [30]. These results

are consistent with those presented here insofar as they show bath

application of NMDA, causing cLTD [31,32], decreases MT

invasion frequency, while we show activation of synaptic NMDA

receptors, using a protocol similar to published reports that induce

cLTP, increases MT invasion frequency of dendritic spines.

However, it is still unclear whether MT invasion lifetimes change

with LTD, as Kapitein et al. primarily imaged labeled EB3 puncta,

which disappear once MTs stop polymerizing, making it

impossible to know whether a MT has depolymerized or simply

paused in the spine.

In summary, here we demonstrate that activation of synaptic

NMDARs promotes MT polymerization into dendritic spines in

hippocampal neurons, that MT invasions trigger rapid spine

enlargement, and that MT-targeted spines show enhanced

NMDAR-dependent enlargement. These findings suggest that

dynamic MT entry into spines may play a role in synaptic

plasticity, learning and memory.

Materials and Methods

Cell Culture and Transfection
All mouse procedures were approved by the University of

Wisconsin Committee on Animal Care and were in accordance

with NIH guidelines (university assurance number A3368–01;

animal care protocol number M02130). E15.5 hippocampal neuron

cultures were prepared from Swiss Webster mice of either sex

(Taconic) essentially as described [33]. Dissociated neurons were

resuspended in Nucleofector solution (Mouse Neuron Kit, Lonza)

and transfected with human EGFP-a-tubulin and DsRed2

(Clontech) in pCAX vectors [34]. Transfected neurons were plated

at low density (56103 neurons/cm2) on 1.0 mg/ml poly-D-lysine

(Sigma)-coated glass coverslips adhered to the bottom of 35 mm

plastic culture dishes that had a 15 mm hole drilled through the

bottom of the chamber. Astroglial cultures from P1–3 Swiss

Webster mice were plated on a separate coverslip and placed

directly over the neuronal culture in an inverted ‘sandwich’

configuration to maintain robust low density neuronal cultures [35].

Live-cell TIRF Imaging
Imaging was performed under TIRF illumination essentially as

described in [10] except an Evolve EMCCD camera (Photometrics)

was used instead of a Coolsnap HQ2 camera (Photometrics).

Experimental Activation of Synaptic NMDARs
Experiments were performed on 20–27DIV hippocampal

cultures. 16–24 hours before imaging, 200 mM D,L-APV was

added to dishes to block NMDARs. ,30 min before imaging, cells

were transferred from SFM to extracellular solution (ECS):

200 mM D,L-APV in 140 mM NaCl, 5 mM KCl, 2 mM CaCl2,

2 mM MgCl2, 5 mM HEPES, and 20 mM glucose (315 mOsm).

ECS was perfused through Teflon tubing at a constant rate

(0.5 ml/min) by syringe pumps (New Era Pump Systems, Inc.,

Kent Scientific Corp.). A custom silicone insert with inlet and

outlet holes was placed in the culture dish to reduce volume and

control flow through the dish. Activation of synaptic NMDARs

was achieved by switching the perfusion input from ECS+APV to

modified ECS containing 200 mM glycine, 1 mM strychnine,

0 mM MgCl2, and 4 mM CaCl2 (Gly-0Mg2+ ECS) [15,16,17].

Following a 10 minute exposure to Gly-0Mg2+ ECS, the perfusion

input was switched to normal ECS without any drug. When

appropriate, cells were maintained in APV (200 mM) or nocoda-

zole (200 nM) (see Results).

Analysis of Microtubule Dynamics
Time-lapse images were acquired at 10 sec intervals for 60–70

minutes, resulting in image stacks of 361–421 frames each. Drift

artifacts were corrected using the Image Stabilizer macro for

ImageJ (Kang Li, http://www.cs.cmu.edu/̃kangli/code/Image_S-

tabilizer.html). Throughout this study, spines are defined as

dendritic protrusions having length #5 mm, and head-width

.neck-width for protrusions with length .2 mm. MT-spine

invasions were identified in Metamorph (Molecular Devices) by

visual inspection of EGFP-a-tubulin time-lapse sequences. Kymo-

graphs were created from lines drawn along the length of invaded

spines, and used to manually log the exact timing and duration of

all MT-spine invasions. From these data we computed invasion

frequencies, invasion lifetimes, and the percent of spines occupied

in MATLAB (The Mathworks). Invasion frequency, defined as the

number of MT invasions per spine per hour, was computed for

each cell by counting the total number of MT-spine invasions

during a time window of interest (e.g. from 10 to 20 minutes after

Gly-0Mg2+ treatment), and dividing this total by the number of

spines in the field of view (FOV) and by the amount of time

considered. Invasion lifetimes, defined as the amount of time that

MTs remain in spines after they have entered, were compared

between experimental groups and time-points by pooling all

invasions from each group at each time-point and computing their

mean, standard deviation, and n values. Percent of spines

occupied, defined as the percent of spines in the FOV occupied

by a MT at any given time, was computed for every frame of each

cell’s time-lapse and time-averaged to compare appropriate time-

windows within and across experimental groups.

Analysis of Spine Morphological Plasticity
Spine morphology analysis was performed in Metamorph. To

quantify changes in spine size during the course of each

experiment, a region of interest (ROI) was drawn around each

spine that was invaded by a MT during the experiment and a

second ROI was drawn around a neighboring, non-invaded spine.

Non-invaded spines were ,20 mm from invaded spines and were

of comparable size and shape to invaded spines. To adjust for

background fluorescence, another ROI was drawn around a

region of background near each spine-pair. DsRed2 fluorescence

intensity was recorded and logged for each ROI at every time-

point, and imported into MATLAB for subsequent analysis. In

MATLAB, local background fluorescence was subtracted from the

fluorescence intensity of each spine’s ROI at every frame, after
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which each spine’s fluorescence intensity was normalized to its

own baseline value (defined as the average value over the 10

minutes prior to treatment with Gly-0Mg2+ ECS).

To characterize changes in spine morphology occurring

immediately before and after MT invasions, ‘‘MT-triggered

averages’’ of fluorescence intensity were generated for all invasions

in a given experimental condition in MATLAB. In this analysis,

for every MT-spine invasion that occurred, the time of initial MT

entry into the spine was set to t = 0, and changes in the spine’s

fluorescence intensity occurring before and after t = 0 were

recorded, so that a population summary of morphological changes

associated with MT invasions could be obtained by pooling the

data from all invasions of all spines in the condition. MT-triggered

averages were renormalized so that the average intensity was

100% over the 5 minutes immediately preceding invasion onset

and linear trends preceding invasion onset were removed by

subtracting the slope of the pre-invasion average (least-squares fit).

Statistics and Graphing
All statistical tests and graphing were performed with GraphPad

Prism. Statistical tests used and test results are indicated in figures

and figure legends (see Results).
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