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Abstract
Aims/hypothesis Understanding the developmental biology of
beta cell regeneration is critical for developing new diabetes
therapies. Obesity is a potent but poorly understood stimulus
for beta cell expansion. Current models of obesity are compli-
cated by developmental compensation or concurrent diabetes,
limiting their usefulness for identifying the lineage mecha-
nism(s) of beta cell expansion. We aimed to determine whether
acute inducible obesity stimulates beta cell expansion and to
determine the lineage mechanism of beta cell growth in obesity.
Methods We created whole-body tamoxifen-inducible leptin
receptor (LepR)-deficient mice (Ubc-CreERT2LepRloxP/loxP) as
a novel model of acute obesity. Beta cell mass and prolifera-
tion were quantified after short-term LepR deletion. Clonal
analysis of beta cell expansion using the Brainbow2.1 reporter
was performed 6 months post tamoxifen initiation.
Results LepR deficiency induced a doubling of body mass
within 3 weeks, with moderate glucose intolerance (unlike

typical LepRmutant mice [db/db], which have frank diabetes).
Beta cell mass expanded threefold through increased beta cell
proliferation, without evidence for contribution from
specialised progenitors or stem cells (via sequential thymidine
labelling and Brainbow2.1 reporter). Thus, self-renewal is the
primary lineage mechanism in obesity-induced beta cell ex-
pansion. However, even the rapid beta cell proliferation could
not exceed the restrictions of the replication refractory period.
Conclusions/interpretation In summary, we created a novel
model of inducible obesity demonstrating that even extreme
metabolic demand does not alter beta cell lineage.
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Abbreviations
BrdU 5-Bromo-2′-deoxyuridine
CFP Cyano-fluorescent protein
EdU 5-Ethynyl-2′-deoxyuridine
ER Endoplasmic reticulum
GFP Green fluorescent protein
HFD High-fat diet
ITT Insulin tolerance test
KO Knockout
LepR Leptin receptor
PPx Partial pancreatectomy
RFP Red fluorescent protein
YFP Yellow fluorescent protein

Introduction

Absolute or relative deficiency of beta cell mass underlies
diabetes. Endogenous beta cell regeneration represents a
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promising approach to restore functional beta cell mass.
However, adult beta cell turnover is minimal, with very low
rates of beta cell proliferation and apoptosis [1–4]. Current
efforts to stimulate human beta cell regeneration have proven
futile [5–9], although obese individuals have profound beta
cell expansion compared with lean individuals [4, 10]. Thus,
obesity represents an exceptional model with which to study
the mechanisms of beta cell regeneration.

Very little is known about the lineage mechanism of beta
cell expansion in obesity. Butler et al observed an increase in
insulin-positive cells associated with exocrine ducts [10].
Given the low rates of beta cell turnover observed in obese
humans, they proposed that obesity-induced beta cell growth
occurred by neogenesis through duct cell differentiation.
However, the inherent limitations of post-mortem human sam-
ples prevent lineage tracing.

Various rodent models have demonstrated that adult beta
cell growth and regeneration occur primarily by self-
duplication [11–16]. However, metabolic demand is one of
the most powerful stimuli for beta cell mass expansion [10,
17, 18] and thus obesity might alter beta cell fate through
recruitment of specialised progenitors.

Several shortcomings limit current rodent models for the
study of obesity-induced beta cell expansion. Long-term ad-
ministration of a high-fat diet (HFD) can produce highly var-
iable results [19] and beta cell expansion can take several
weeks to occur [20]. Constitutive leptin receptor (LepR) sig-
nalling mutant models (db/db and ob/ob mice, fa/fa rats) de-
velop obesity through germ line loss of leptin signalling.
Reduced leptin signalling throughout embryonic development
may provoke compensatory changes that limit the study of
postnatal beta cells. These mutant rodents develop frank dia-
betes early in life, further complicating the study of beta cell
turnover. An acute model of obesity is necessary to overcome
these potential limitations. We developed a novel model of
acute obesity to definitively clarify the lineage mechanism
of beta cell mass expansion in obesity.

Methods

Mice Experiments were performed at Baylor College of
Medicine and Children’s Hospital of Philadelphia accord-
ing to Institutional Animal Care and Use Committee pro-
tocols. Rosa26(CAG-Brainbow2.1) (JAX no. 013731),
Rosa26(loxP-stop-loxP-EYFP) (JAX no. 006148) and LepRloxP/loxP

(JAX no. 008327) [21] mice were obtained from Jackson (Bar
Harbor, ME, USA). Ubc-CreERT2 mice were from E. Brown at
the University of Pennsylvania [22]. Crosses yielded Ubc-
CreERT2Rosa26EYFPLepRloxP/ loxP and Ubc-CreERT2

Rosa26(CAG-Brainbow2.1)LepRloxP/loxP mice on a B6.129 F1 hy-
brid background, genotyped with REDExtract-N-Amp (Sigma-
Aldrich, St Louis, MO, USA) (ESM Table 1). Male and

female mice (5–6 weeks of age) were gavaged with tamoxifen
(0.1 mg/g; MP, Santa Ana, CA, USA) for 5 days. Mice were
labelled via drinking water with 5-bromo-2′-deoxyuridine
(BrdU; 1 g/l; Sigma-Aldrich) or 5-ethynyl-2′-deoxyuridine
(EdU; 0.5 g/l; Life Technologies, Grand Island, NY, USA),
as described previously [23]. Intraperitoneal GTTs were per-
formed as described previously [16]. Insulin tolerance tests
(ITTs) were performed after 4 h fasting, using human regular
insulin (1 U/kg; Eli Lilly, Indianapolis, IN, USA). Serum in-
sulin was measured using a Mouse Ultrasensitive Insulin
ELISA (Alpco Diagnostics, Salem, NH, USA). Mice were
fed an HFD (60% of energy from fat; D12492; Research
Diets, New Brunswick, NJ, USA) or chow diet (22% of ener-
gy from fat; No. 2919; Harlan, Houston, TX, USA).
Randomisation of groups was not possible given the overt
phenotype.

Gene deletion gDNA was extracted using Quick-gDNA
MiniPrep (Zymo Research, Irvine, CA, USA). LepR gene de-
letion was assessed via Sybr Green (Sigma-Aldrich) qPCR
(for primers see ESM Table 1).

In vitro islet function Islets isolated from individual mice at
1 week were cultured in RPMI 1640 medium with 10 mmol/l
glucose and 10% fetal bovine serum for 2 days. Islet function
was evaluated by perifusion as previously [24], with 3 mmol/l
basal glucose (ramp of 0.625 mmol l−1 min−1), followed by
30 mmol/l KCl stimulation at completion. Insulin secretion
was measured by HTRF assay (Cisbio, Bedford, MA, USA).
Cytosolic calcium was measured as described previously [24].
Fura-2AM (Life Technologies) was used as a calcium indica-
tor and was measured with a Zeiss AxioVision microscope
(Carl Zeiss, Thornwood, NY, USA).

Immunohistochemistry andmorphometry Paraffin sections
were prepared as described previously [23]. Primary antisera
included guinea pig anti-insulin (Dako, Carpinteria, CA, USA)
and rat anti-BrdU (Accurate Chemical, Westbury, NY, USA),
followed by secondary antisera conjugated to Cy2/Cy3
(Jackson ImmunoResearch, West Grove, PA, USA) and
DAPI (Molecular Probes, Eugene, OR, USA). EdUwas detect-
ed using Click-iT EdU Alexa Fluor 647 (Life Technologies)
according to the manufacturer’s protocol. Slides were imaged
to quantify beta cell morphometry as described previously [25],
using Volocity 6.1.1 (PerkinElmer, Waltham, MA, USA).
BrdU-positive, EdU-positive and BrdU/EdU co-positive beta
cell ratios to total beta cells were calculated, and the percentage
of predicted co-positive cells was obtained by dividing the per-
centage of actual co-positive cells by the percentage of predict-
ed co-positive cells, multiplied by 100%. At least 3,000 beta
cells were counted per mouse. Blinding of samples was not
possible given the overt phenotype.
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Clonal analysis Brainbow2.1 (Rosa26(CAG-Brainbow2.1)) ex-
presses one of four colours (cyano-fluorescent protein [CFP],
red fluorescent protein [RFP], yellow fluorescent protein [YFP]
or green fluorescent protein [GFP]) from each allele [26, 27].We
were unable to reliably separate the spectral overlap for YFP and
GFP, thus these were grouped together and represented as green
in all images. Contiguous clones were identified as insulin-
positive cells expressing a fluorescent protein(s) with a common
border. Cells/clone were counted, with at least 230 clones count-
ed per sample.

Statistics Results were reported as mean±SEM unless noted
otherwise, and compared with independent Student’s t tests
(unpaired). No samples have been excluded from analysis.

Results

Acute LepR deficiency results in massive, progressive
weight gain with moderate changes in glucose homeostasis
We created a unique model of obesity by deriving whole-body
LepR-deficient (Ubc-CreERT2LepRloxP/loxP; LepR-knockout
[KO]) mice on a B6.129 F1 hybrid background, resulting in
tamoxifen-induced LepR gene deletion (ESM Fig. 1). We
characterised the metabolic phenotype of LepR-KO and
LepRloxP/loxP littermate controls (Fig. 1a). Both sexes demon-
strated equivalent phenotypical characteristics following LepR
deletion (ESMTables 2, 3). LepR-KOmice displayed extreme
weight gain, with their weight having increased by more than
twofold by week 5 (Fig. 1b; control 17.8 g vs LepR-KO
41.7 g; p<0.0001). Random fed blood glucose levels tran-
siently increased in LepR-KO mice, returning to control
values by 5 weeks (Fig. 1c). Glucose tolerance gradually de-
clined in LepR-KO mice, with significantly elevated fasting
blood glucose concentrations (Fig. 1d–f). Insulin resistance
developed in LepR-KO mice within 1 week (Fig. 1g, h).
Thus, acute LepR deletion leads to extreme obesity with mod-
erate changes in glucose homeostasis.

LepR-KO mice do not develop frank diabetes by compen-
sating, in part, through increased beta cell function. Fed and
fasting serum insulin levels were increased in LepR-KO mice
compared with controls (Fig. 1i, j); measurement of basal and
glucose-stimulated insulin secretion suggested that LepR-KO
islets secreted less insulin despite a 41% increase in total in-
sulin content compared with controls (Fig. 1k–n). Glucose
stimulation index was preserved in LepR-KO islets (Fig. 1l),
as was stimulated calcium release (Fig. 1o–q). Importantly,
LepR-KO islets remain responsive to glucose, despite blunted
basal and stimulated insulin release. Thus, islet dysfunction
did not confound our ability to analyse beta cell mass expan-
sion in response to acute obesity.

Acute LepR deficiency results in massive, rapid beta cell
mass expansion We hypothesised that beta cells expand in
response to extreme obesity to meet the increasing insulin
demand. Wemeasured beta cell morphometry at various times
after tamoxifen initiation (Fig. 2a). Beta cell mass increased
by more than twofold in LepR-KO mice compared with con-
trol mice at 3 weeks and was further increased at 5 weeks
(Fig. 2b–d and ESM Table 4). Beta cell size and cross-
sectional beta cell area per islet were greater in LepR-KOmice
and there were more large islets (ESM Table 5). Thus, obesity
associated with acute LepR deficiency induced massive, rapid
beta cell expansion.

Acute LepR deficiency rapidly and massively increases be-
ta cell proliferation To examine the impact of acute obesity
upon beta cell proliferation, we administered thymidine ana-
logues for 2 weeks before mice were euthanised (Fig. 3a).
Two-week thymidine incorporation in beta cells of control
mice was 11% at 3 weeks and declined to 5% at 5 weeks
(Fig. 3b, c and ESM Table 6). Beta cell proliferation dramat-
ically increased to 70% in LepR-KOmice at 3 weeks. Despite
continued metabolic demand at 5 weeks (Fig. 1), beta cell
proliferation declined to 34% (Fig. 3b, c and ESM Table 6).
Notably, acute LepR deficiency represents one of the strongest
known stimuli for beta cell replication.

Beta cells expand by self-renewal in acute LepR-deficient
mice We tested if beta cells expand in obesity via highly
proliferative ‘transit amplifying’ progenitors, as observed in
skin or intestine. To determine the lineage mechanism of beta
cell expansion, we employed sequential administration of two
thymidine analogues (Fig.4a), as described previously [14,
16]. By labelling the first cell division with BrdU (green)
and the second with EdU (red), sequential cell division result-
ed in BrdU/EdU co-labelled cells (Fig. 3b inset, Fig. 4a–c,
[14]). If beta cells expand by specialised progenitors undergo-
ing sequential cell division (transit amplifying population),
then the beta cells would be BrdU/EdU double-positive
(Fig. 4b). Alternatively, if beta cells expand by self-renewal
through random cell division, few double-positive beta cells
would be expected after obesity (Fig. 4c). During week 2 in
control mice, 8% of beta cells incorporated BrdUwhile during
week 3, ∼4% of beta cells were labelled with EdU (Fig. 4d).
BrdU/EdU co-positive beta cells were nearly absent in control
mice (Fig. 4d, e and ESM Table 6), consistent with previous
reports of beta cell expansion [14]. In contrast, acute LepR
deletion resulted in labelling of ∼50% of beta cells in week
2 and 23% in week 3. Despite substantial beta cell prolifera-
tion in LepR-KO mice, only a tiny fraction of beta cells were
BrdU/EdU co-positive (2.3%). Beta cell proliferation declined
during weeks 4 and 5 in LepR-KO mice, but remained signif-
icantly elevated compared with controls, at 15–18% (Fig. 4e).
Accordingly, even fewer BrdU/EdU co-positive beta cells
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Fig. 1 Acute LepR deficiency in mice results in massive, progressive
weight gain with moderate changes in glucose homeostasis. (a) Timing
of LepR gene deletion, washout, ITTs and GTTs. (b, c) Bodymass (b) and
randomly fed blood glucose levels (c) measured twice a week. (d–f)
GTTs performed at day 5 (d), week 3 (e) and week 5 (f). (g, h) ITTs
performed at week 1 (g); corresponding AUC is shown (h). (i, j) Random
fed (i) and fasting (j) serum insulin. White circles and bars, control; black
circles and bars, LepR-KO. Data are means ± SEM, except (b) (means
± SD); 3–7 mice per group. *p < 0.05, **p < 0.01, ***p < 0.001 and

****p< 0.0001 vs control. (k–n) Insulin release from isolated islets with
glucose (G) ramp, followed by KCl stimulation (k), with corresponding
AUC for glucose (normalised to baseline/group) (l) and KCl simulation
(m), and total insulin content (n). (o–q) Cytosolic calcium release from
isolated islets (o) and corresponding AUC for glucose (normalised to
baseline/group) (p) and KCl stimulation (q). Grey traces, control; black
traces, LepR-KO; white bars, basal; black/grey bars, stimulated. Data are
means ± SEM, 3 mice per group. *p< 0.05 vs control
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were observed relative to weeks 2–3. Thus, during 2 weeks of
immense beta cell proliferation following LepR deficiency,
beta cells usually divided once and rarely divided twice.
This strongly supports a lineage mechanism of self-renewal
(Fig. 4c) as the primary source of new beta cells.

Acute LepR deficiency does not bypass the replication re-
fractory period of beta cell turnover Adult beta cell repli-
cation is governed by a ‘replication refractory period’, which
limits beta cell turnover from occurring a second time in a
recently divided beta cell (Fig. 5a) [14, 28]. However, the
replication refractory period of beta cells does not appear to
be permanently set, but might be altered under some condi-
tions [14, 28]. Acute LepR deficiency-induced obesity is one
of the strongest stimuli for beta cell replication, and therefore
might bypass the replication refractory period (Fig. 5b).
Alternatively, obesity-induced beta cell expansion could influ-
ence cell cycle progression at a later stage, without altering the
refractory period (Fig. 5c). If beta cell replication is stochastic,
the proportion of BrdU/EdU co-positive beta cells should be
equal to the predicted fraction of BrdU/EdU co-positive beta
cells (Fig. 5d) [14]. Alternatively, if beta cell replication is not
stochastic, BrdU/EdU co-positive beta cells would be less
frequent than predicted (Fig. 5d). At 3 weeks very few
BrdU/EdU co-positive beta cells were observed in control

mice (Fig. 5e and ESM Table 6). BrdU/EdU co-positive cells
in controls represented ∼23% of the predicted co-positive pop-
ulation, substantially less than 100% (stochastic cell division)
(Fig. 5f), indicating that the beta cell replication refractory
period is not foreshortened [14]. BrdU/EdU co-positive beta
cells were more frequent in LepR-KO mice (2.3%), but
remained considerably less than the predicted value (21%;
Fig. 5e, f). This observation of extremely low numbers of
double-dividing cells relative to numbers predicted persisted
during weeks 4–5 (Fig. 5g, h). These results suggest that acute
LepR deficiency does not shorten the beta cell replication re-
fractory period to less than the 2 week labelling period.
Therefore, the signals associated with obesity-induced beta
cell expansion likely act to stimulate a pool of beta cells ‘li-
censed’ to proliferate rather than recruiting recently divided
beta cells to divide again (Fig. 5c).

Beta cells do not clonally expand in acute LepR deficiency
To further test for specialised progenitor cells in obesity, we
used Cre loxP-based clonal analysis of beta cells. In the
Brainbow2.1 model, tamoxifen induces random expression of
one of four fluorescent proteins (CFP, RFP, GFP or YFP) from
each allele. We crossed Ubc-CreERT2LepRloxP/loxP with confetti
(Rosa(CAG-Brainbow2.1)) to generate homozygous LepR-KO con-
fetti mice (Ubc-CreERT2Rosa(CAG-Brainbow2.1LepRloxP/loxP)),
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which were treated with tamoxifen and then euthanised at var-
ious times (Fig. 6a, b and ESM Table 7). GFP and YFP were
considered one distinct population represented in green (due to
spectral overlap), resulting in six potential outcomes for cell
labelling (CFP, RFP, GFP/YFP, CFP+RFP, CFP+GFP/YFP
and RFP+GFP/YFP) that provided high-level resolution of
clones within the islet.

We hypothesised that clonal expansion by a beta cell pro-
genitor would lead to a single dominant monochromatic clone
within islets (Fig. 6b). Alternatively, beta cell expansion by
self-duplication would produce islets comprised of multiple
small clones of different colours. Intestinal crypts were initial-
ly multicoloured but demonstrated clonal expansion after

6 months giving rise to monochromatic villi (Fig. 6c–e)
[27], indicating the contribution of a stem cell population to
intestinal epithelia, as previously reported [27]. In contrast,
pancreatic islets did not demonstrate clonal expansion, even
after a 6 month washout (Fig. 6f, g and ESM Fig. 2). Labelled
cells within islets were mainly found in isolation, with a few
contiguous clones of between two and seven cells observed at
lower frequencies than single cell clones (ESM Table 8). We
then attempted to push the limits of beta cell expansion by
placing LepR-KO mice on an HFD to maximise obesity-
induced recruitment of new beta cells (Fig. 6h and ESM
Fig. 2). These mice exhibited massive weight gain (+41.3 g).
However, even HFD-fed LepR-KO mice did not exhibit ex-
pansion of a single dominant beta cell clone in any islet. We
found no evidence of islet neogenesis in any cohort examined,
as all islets surveyed were multicoloured (ESM Table 8). We
conclude that acute LepR deficiency does not induce clonal
expansion from a beta cell progenitor.

Discussion

Using a novel model of inducible obesity and state-of-the-art
lineage tracing tools, we find that extreme metabolic demand
does not alter beta cell fate. Previous attempts to induce acute
LepR deletion using Rosa-CreERT2;LepRflox/flox mice did not
result in obesity due to inadequate floxing of LepR in the brain
[29]. In contrast, LepR-KOmice, viaUbc-CreERT2LepRloxP/loxP,
doubled their body mass in 3 weeks. LepR-KOmice developed
impaired glucose tolerance and insulin resistance in the absence
of frank diabetes, with restoration of blood glucose through
increased beta cell function andmass. Beta cell mass expansion
resulted from significant beta cell proliferation without the con-
tribution of a highly replicative progenitor cell or clonally
expanding beta cells. Additionally, BrdU/EdU co-positive cells
were observed in lower frequencies than predicted by chance,
indicating that even during increased metabolic demand, beta
cells are still restricted by the replication refractory period.

Acute LepR deficiency dramatically increased beta cell mass
in response to obesity, by 3.7-fold at 5 weeks. In comparison,
HFD feeding in young mice required several months to reach
the magnitude of beta cell mass expansion observed in our
model [19, 30, 31]. Constitutive leptin- or LepR-deficient mice
(ob/ob and db/db) have equivalent beta cell mass to our induc-
ible LepR-KO mice [17, 18, 32, 33]. These observations rein-
force the impact of our inducible model to expand beta cells,
with the ability to specifically test postnatal beta cell expansion
without development of frank diabetes. Euglycaemia was
maintained in LepR-KO mice for at least 6 months (ESM
Table 7). Importantly, nondiabetic obese people exhibit com-
pensatory beta cell expansion [4, 10]. Therefore, inducible
obese mice represent a compelling model with which to inter-
rogate the signals governing mammalian beta cell expansion.
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BrdU/EdU co-positive (BrdU+ EdU+) beta cell. Scale bar, 100 μm. (c)
Cumulative beta cell proliferation, measured by deoxyuridine-positive
(BrdU and EdU) insulin-positive cells as a percentage of total beta cells,
from control (white bars) and LepR-KO (black bars) mice. Data are
means ± SEM from ≥3,000 beta cells per pancreas, 6–9 mice per group.
**p< 0.01, ***p< 0.001 vs control
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Acute LepR deficiency stimulated massive beta cell prolif-
eration, which was greatest in weeks 2 and 3, with thymidine
incorporation rates of 50% (7.1% per day) and 23% (3.3% per
day), respectively. These observations far exceed previous
results employing mitogenic stimuli such as partial pancrea-
tectomy (PPx), streptozotocin, exendin-4, pregnancy, HFD
and glucose [14, 28, 34–36]. Adult beta cell replication is
strictly regulated by a replication refractory period that limits
beta cell turnover from one round of the cell cycle to the next
[14, 28]. In our previous models (PPx, exendin-4, pregnancy)
very few beta cells incorporated dual thymidine labels over
short periods, suggesting that the refractory period is absolute
and cannot be overcome by regenerative stimuli [14].
However, these studies did not include obesity, one of the
most powerful stimuli for beta cell expansion. Thus, we were
unable to address whether the beta cell replication refractory
period is absolute or relative. Therefore, we employed the
strongest tool for beta cell proliferation, using acute massive
obesity to definitively test the limits of the beta cell replication
refractory period. The remarkable magnitude and rapid occur-
rence of beta cell proliferation in LepR-KOmice was far great-
er than observed in previous models, hinting that obesity-
induced beta cell proliferation might exceed the limitations
of the refractory period. But, despite highly elevated beta cell
proliferation in LepR-KO mice, acute inducible obesity did

not shorten the beta cell replication refractory period. This
sharply contrasts with other studies on glucose and connective
tissue growth factor, which advance potential beta cell mito-
gens capable of shortening the beta cell replication refractory
per iod [28 , 37] . Al though LepR-KO mice were
hyperglycaemic during thymidine labelling, the length of the
refractory period did not decrease. A greater understanding of
the mechanisms that govern the beta cell replication refractory
period is important for identifying potential therapeutic targets
to expand beta cells for patients with diabetes.

Acute LepR deficiency adds to the weight of evidence that
beta cells expand by self-renewal. Previous studies revealed
that adult beta cell regeneration largely occurs by self-
duplication of pre-existing beta cells [11, 14–16]. Extensive
studies have attempted to identify a stimulus that might recruit
stem/progenitor cell differentiation in beta cell regeneration.
Metabolic demand potently expands beta cell mass but the
lineage mechanism of beta cell growth in obesity remained
unknown. Researchers have speculated that stem cells poten-
tially contribute to beta cell expansion in obesity [10, 38]. Islet
‘stem cells’ would presumably involve a transit amplifying
population and undergo multiple rounds of cell division incor-
porating both BrdU and EdU in beta cells. However, in our
studies such double-labelled BrdU/EdU insulin-positive beta
cells were very rare, even in response to massive obesity-

Control LepR-KO
0

10

20

30

40

50

60

Weeks 2−3

D
eo

xy
ur

id
in

e+
 in

su
lin

+

ce
lls

 (
%

 to
ta

l)

***

***

***
very few

Control LepR-KO
0

10

20

30

40

50

60

Weeks 4−5

D
eo

xy
ur

id
in

e+
 in

su
lin

+

ce
lls

 (
%

 to
ta

l)
*** *

*

very few

a

d e

b c
Specialised progenitors Self-renewing

BrdU EdU

Stem cells

Transit-amplifying
Post-mitotic

OR

EdUBrdU
BrdU

EdU

Fig. 4 Beta cells expand by self-renewal in acute LepR-deficient mice.
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associated beta cell expansion. Although our results from
short-term thymidine analogue labelling do not completely
rule out contribution by a specialised progenitor to beta cell
expansion, this seems highly unlikely. Taken together, our
results further support the hypothesis that self-renewal of beta
cells is the primary mechanism of beta cell expansion.

Elegant tools have been developed to study the clonal ori-
gins of mature differentiated cells. Brainbow2.1 has been used
to examine clonal expansion of intestinal stem cells [27, 39],
neuronal fate [26, 40], salivary glands [41] and cardiac growth
[42]. We employed Brainbow2.1 for clonal analysis of beta

cell expansion in obesity. We did not find any monochromatic
islets in LepR-deficient mice, indicating that islets do not arise
entirely from a common single cell at the time of labelling.
Furthermore, we did not detect the presence of a single dom-
inant clone within any islets. In contrast, we frequently found
multiple small clones within individual islets. We found sim-
ilar trends in LepR-KO mice challenged with an HFD.
Previous reports have used low-frequency labelling of beta
cells with the mosaic analysis with double markers
(MADM) reporter to examine beta cell fate within rare cells
[43, 44]. These studies demonstrated that beta cell clones were
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small and of similar size in normal adult beta cell growth. Our
studies extend this work, showing that obesity-induced beta
cell growth does not occur through clonal expansion.

The signalling mechanism(s) of beta cell expansion remain
uncertain, although recent studies suggest that endoplasmic
reticulum (ER) stress may regulate beta cell proliferation
[45, 46]. The increased insulin demand and subsequent
hyperinsulinaemia following acute LepR deletion may

stimulate ER-stress-induced beta cell proliferation [45].
Further investigation is necessary to discern the relationship
between insulin demand, ER-stress and beta cell proliferation
in LepR-KO mice.

In summary, we developed a unique model of inducible
obesity with which to determine the developmental mecha-
nisms of obesity-associated beta cell mass expansion. Acute
LepR deficiency represents the strongest stimulus for studying
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the lineage mechanisms of beta cell growth, but no evidence
of a highly replicative progenitor cell or clonal expansion was
found. Efforts to expand beta cells should continue to focus on
identifying the signals that stimulate and regulate cell cycle
progression. Moreover, acute LepR deficiency is an excellent
model for future studies to interrogate the signals regulating
beta cell growth for the development of potential diabetes
therapies.
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