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Brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP)
has been widely studied due to the high information transfer rate (ITR), little user training,
and wide subject applicability. However, there are also disadvantages such as visual
discomfort and “BCI illiteracy.” To address these problems, this study proposes to
use low-frequency stimulations (12 classes, 0.8–2.12 Hz with an interval of 0.12 Hz),
which can simultaneously elicit visual evoked potential (VEP) and pupillary response
(PR) to construct a hybrid BCI (h-BCI) system. Classification accuracy was calculated
using supervised and unsupervised methods, respectively, and the hybrid accuracy was
obtained using a decision fusion method to combine the information of VEP and PR.
Online experimental results from 10 subjects showed that the averaged accuracy was
94.90 ± 2.34% (data length 1.5 s) for the supervised method and 91.88 ± 3.68% (data
length 4 s) for the unsupervised method, which correspond to the ITR of 64.35 ± 3.07
bits/min (bpm) and 33.19 ± 2.38 bpm, respectively. Notably, the hybrid method
achieved higher accuracy and ITR than that of VEP and PR for most subjects, especially
for the short data length. Together with the subjects’ feedback on user experience, these
results indicate that the proposed h-BCI with the low-frequency stimulation paradigm is
more comfortable and favorable than the traditional SSVEP-BCI paradigm using the
alpha frequency range.

Keywords: hybrid brain-computer interface, electroencephalogram, visual evoked potential, pupillary response,
BCI illiteracy, task-related component analysis, canonical correlation analysis

INTRODUCTION

Brain-computer interface (BCI) allows people to establish an alternative communication channel
between the user’s intention and output devices which is completely independent of the normal
motor output paths of the nervous system (Gandhi, 2007; Volosyak et al., 2017). BCI is especially
relevant for severely disabled users, such as amyotrophic lateral sclerosis, spinal cord injury, and
stroke victims (Hoffmann et al., 2008; Kuebier et al., 2009), while applications in entertainment,
safety, and security are also emerging (Zhu et al., 2010). Electroencephalography (EEG) is the most
favorable method in non-invasive BCIs (Gao et al., 2014) due to its essential attributes such as low
cost, high time resolution, and easy access to data (Mason et al., 2007; Volosyak, 2011).
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Many laboratories and clinical tests have demonstrated the
convincing robustness of visual evoked potential (VEP)-based
BCI systems (Wang et al., 2008). In the 1970s, Vidal developed
a BCI system that used VEPs to determine the visual fixation
point (Vidal, 1977). Among different types of VEPs, steady-
state visual evoked potential (SSVEP) is a continuous electrical
activity recorded at the occipital and parietal cortex areas, which
is elicited at the same frequency (and/or harmonics) when the
retina is excited by visual stimuli at a specific frequency (Luo
and Sullivan, 2010). The stimulation frequency can be divided
into low (below 12 Hz), medium (12–30 Hz), and high (above
30 Hz) frequency bands (Bouma, 1962; Floriano et al., 2019).
SSVEP has been recognized as a reliable, fast, and easy-to-use
communication paradigm (Allison et al., 2010) due to its high
information transfer rate (ITR), little training cost, and fewer
electrode requirements (Hoffmann et al., 2009; Brunner et al.,
2010).

Nevertheless, SSVEP-BCI also has some disadvantages that
need to be improved, such as fatigue, discomfort, safety, and
user limitation. First of all, durative visual stimulations can cause
dizziness and visual fatigue, even impair the user’s vision, and
the amplitude of SSVEP response will also be reduced (Wu
and Su, 2014). Secondly, the alpha frequency range (8–13 Hz)
used in the traditional SSVEP paradigm offers low level of
comfort (Zhu et al., 2010). Our pre-experiment on the effect
of stimulation frequency on user experience has found that
the flickering stimulations in the low-frequency range (<3 Hz)
can provide a better comfort level to the alpha frequency
range. Stimulation frequency higher than the critical fusion
frequency (CFF, e.g., 60 Hz) makes people feel comfortable with
imperceptible flickers (Hartmann et al., 1978; Williams et al.,
2004). Frequency-modulated (FM) and amplitude-modulated
(AM) methods (Chang et al., 2014; Dreyer and Herrmann,
2015; Dreyer et al., 2017) have been adopted to reduce visual
fatigue and enhance the user experience of the SSVEP-BCI in
the alpha frequency band. Thirdly, the flickering stimulus has
some possibility of causing seizures in photosensitive individuals.
Photosensitivity is an abnormal brain electrical response to light
or pattern stimulation, which occurs in 0.3–3% of the population
(Fisher et al., 2005). Harding investigated the proportion
of photoparoxysmal responses in 170 photosensitive patients
(Harding and Harding, 2010). The results indicated that only 3%
of photosensitive patients were at risk at 3 Hz, compared with a
maximum of 90% at 16 Hz. Finally, “BCI illiteracy” is a common
problem in the BCI field. A non-negligible portion of the subjects
(estimated from 15 to 30%) were unable to achieve control of the
interface because they did not show the expected brain activity
modulated by the mental task (Vidaurre and Blankertz, 2009). Up
to now, there is still no universal BCI applicable to all users. For
example, Brunner asked 14 healthy subjects to complete a visual
attention task to produce SSVEP and an imagined movement
task to produce event-related desynchronization (ERD) (Brunner
et al., 2010). The number of illiterates was 11 in the ERD
condition and was 3 in the SSVEP condition. In order to improve
the accuracy of users with poor performance, they completed an
offline simulation of a hybrid BCI (h-BCI) in which the subjects
performed the two tasks simultaneously, and the number of

illiterates was reduced to one in the hybrid condition. To improve
user experience of VEP-BCIs, this study proposes to design and
implement a hybrid BCI system based on the low-frequency
(<3 Hz) stimuli with high comfort level and safety.

Hybrid BCI can improve the classification accuracy, increase
the number of commands, and shorten the detection time of the
BCI system by combining two or more patterns (at least one
of which is a brain signal) (Hong and Jawad, 2017). Recently,
pupillary responses (PR), such as the pupillary light reflex, have
been used as the second pattern in addition to EEG due to the
low user burden, non-invasiveness, and no need for training
(Muto et al., 2020). Pupil diameter changes steadily with the
illuminance of the observed object to regulate the amount of light
entering the eye (Crawford, 1936; Woodhouse, 1975; Woodhouse
and Campbell, 1975), and the modulation frequency of PR is
synchronized with the luminance-modulation frequency of the
visual stimulus. The amplitude of PR decreases as the stimulation
frequency increases (Muto et al., 2020), and the consistent,
measurable PR can be induced at the flickering frequency up
to 2.3 Hz (Naber et al., 2013). Compared with the detection of
gaze position (Ma et al., 2018; Yao et al., 2018), the measurement
of PR does not require system calibration. There were only
few studies on human-computer interaction (HCI) based on
PR. Sebastiaan presented a human-computer interface based on
decoding of attention through pupillometry (Sebastiaan et al.,
2016). Two sets of items with the same flickering frequency
(0.8 Hz) and opposite phase were presented on the display,
and each participant covertly attended to one set, and the pupil
size reflected the illuminance of the selected items. The binary
classification was realized based on PR, and the mean accuracy
of ten subjects was 88.9%, resulting in an ITR of 2.58 bits/min
(bpm) with a mean selection time of 14.9 s. Ponzio et al. (2019)
proved that the illuminance was the only factor that significantly
affects pupil constriction and found no differences between the
monocular and the binocular vision. They also established a
binary communication based on PR and achieved an accuracy of
100% at 10 bpm and 96% at 15 bpm. Muto et al. (2020) realized
an information input interface with 12 options (from 0.58 to
1.90 Hz, with an interval of 0.12 Hz) based on PR. The averaged
power spectral density (PSD) peak decreased with increasing
luminance-modulation frequency, and the averaged classification
accuracy reached 85.4% with a data length of 7 s. PR and SSVEP
have also been combined to implement an h-BCI. De’Sperati
et al. (2020) reported a frequency tagging approach based on the
evoked oscillatory responses of the pupil and the visual cortex.
Each of the two flickers contained a sum of two sinusoidally
modulated luminance (0.9 and 15 Hz for one stimulus, 1.4 and
20 Hz for another stimulus). By applying a binary linear classifier
to PR and SSVEP signals for 18 subjects, hybrid classification
accuracy was 83% with the data length of 7.5 s, which was
higher than that of PR (75%) and SSVEP (80%). These PR-based
HCI and h-BCI studies showed limitations, such as the small
number of targets and the longer detection time compared with
the existing SSVEP-BCIs (Nakanishi et al., 2018; Mao et al., 2020;
Ming et al., 2021).

This study intends to use low-frequency visual stimulations
that can simultaneously elicit VEP and PR (Jiang et al., 2020) to
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implement a 12-target h-BCI speller. Compared with the existing
HCI and BCI work related to PR, this system aims to achieve
a shorter detection time and higher classification accuracy by
adopting efficient coding and decoding methods. Compared to
other VEP-based BCIs, the proposed system has the advantage of
better comfort and is applicable to more subjects.

MATERIALS AND METHODS

Experimental Environment
Subjects
Ten healthy subjects (2 males and 8 females, ages 23–29 years,
with a mean age of 25.7) participated in the offline and online BCI
experiments. Twelve subjects (6 males and 6 females, ages 23–
28 years, with a mean age of 25) participated in the behavioral test
of user experience without EEG or PR recording, and 5 of them
participated in the BCI experiments. All subjects had normal or
corrected-to-normal vision by wearing contact lenses. Before the
experiment, each subject was asked to read and sign an informed
consent form approved by the Research Ethics Committee of
Tsinghua University.

Data Recording
In the experiment, EEG data were recorded by a SynAmps2
amplifier (Neuroscan Inc.) at a sampling rate of 1,000 Hz.
According to the international 10–20 system, nine electrodes
(Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2) were placed
at the occipital and parietal regions to record VEPs, and two
electrodes located on the forehead (AFz) and vertex (between
Cz and CPz) regions as ground and reference, respectively. The
contact impedance was kept below 10 k�. The binocular PR data
were recorded by an infrared eye tracker (EyeLink 1000 Plus, SR
Research Inc.) with a sampling rate of 1,000 Hz, and the PR data
were preprocessed by an interpolation method (Kret and Sjak-
Shie, 2019). The focal length of the lens was adjusted manually to
observe a clear pupil image and stable corneal reflection point.

Visual Stimulus Design
This study designed a 12-target online h-BCI system to realize a
virtual keypad. A 24.5-inch LCD display (Dell AW2518H) with
a resolution of 1280 × 720 pixels and a refresh rate of 240 Hz
was used to present a 3 × 4 stimulus matrix (Figure 1A). The
size of each stimulus was 75 × 75 pixels (3◦ × 3◦), and the
horizontal and vertical distances between the centers of any two
adjacent stimuli were 225 pixels (9◦). Each target adopted the
style of a grid stimulus (Ming et al., 2021), which consisted of
8 × 8 small flickering squares. The size of each square was
5 × 5 pixels. The 12 stimulus targets correspond to 12 characters
(1, 2, 3, 4, 5, 6, 7, 8, ∗, 9, 0, and #). As shown in Figure 1B,
a red square with a size of 10 × 10 pixels in the center of
each stimulus was used to highlight the characters and serve
as the subject’s fixation point. The stimulation was drawn and
stably presented by the Psychophysics Toolbox Ver. 3 (Brainard,
1997) in MATLAB (MathWorks, Inc), as evidenced by the high
consistency of visual stimulation waveforms in multiple trials
recorded by a photodiode.

All visual stimuli were coded according to the joint frequency-
phase modulation method (Chen et al., 2015b), as shown in
Figure 1C. Twelve frequencies (from 0.8 to 2.12 Hz, with
0.12 Hz interval) were used, and the phase difference between
two adjacent frequencies was set to 0.69π in order to minimize
the correlation of the stimulus signal. Each visual flicker was
presented on the display in accordance with the square wave
signal encoded with the corresponding frequency f and phase ϕ:

s
(
f , ϕ, i

)
=

sign
{

sin
[
2πf (i/240)+ ϕ

]}
+ 1

2

Where sin(·) generates a sine waveform, sign(·) is a sign
function, and f and ϕ are the frequency and phase of the
target, respectively. i represents the index of the frames.
s(·) represents the stimulus sequence, with only two
values, 0 and 1, corresponding to the lowest and highest
illuminance, respectively.

Experimental Platform
This study developed an online experiment platform for the
h-BCI based on EEG and PR, including user interface and
data analysis computer (C1), EEG computer (C2), and PR
computer (C3), as shown in Figure 2A. The visual stimulation
was presented to the subjects by C1. At the beginning of each
trial, the stimulus trigger was sent from the C1’s parallel port to
the EEG amplifier and the eye tracker, which was synchronized
with EEG and PR signals. At the same time, the subject’s EEG and
PR signals were sent from C2 and C3 to C1 in real time. Data
were analyzed by C1, and auditory feedback (i.e., pronunciation
of the target character in Chinese) was provided to the subject.
The experimental scene diagram including electrode locations
and eye tracker settings was shown in Figure 2B. In a room with
normal lighting, the subjects sat comfortably on a chair 60 cm
away from the stimulation monitor to complete all experiments.

Experiment Design
In this study, a 12-target h-BCI system based on cue-guided target
selecting task was designed, which included offline and online
experiments. Data collected in the offline experiment were used
to optimize parameters in data analysis toward high classification
accuracy. The online experiment further demonstrated and
evaluated the system performance using a close-loop paradigm
with online feedback. Figure 3A shows the timing procedure of
the offline experiment. Each subject completed three blocks of
target selections. Each block contained four runs and there was a
rest time about 1 min between any two runs. Each run contained
12 trials, corresponding to 12 targets cued in a random order.
Therefore, there were total 12 trials (four trials per block, three
blocks) for each target in the offline experiment. The subjects
were given several minutes (ranging from 5 to 10) to rest between
the blocks to avoid fatigue. Each trial started with a visual cue
(a red triangle), which appeared below the target stimulus for
6 s, as shown in Figure 3A. Subjects were asked to fixate at
the red square in the middle of the target within 1 s and avoid
eye blinking for the next 5 s when all targets started flickering
together. After that, subjects can blink to reduce visual fatigue
during the 4 s rest time at the end of the trial.
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FIGURE 1 | (A) Stimulation interface of the 12-target BCI. (B) Stimulation pattern (e.g., target 5) with fixation point (a red square), character and visual cue (a red
triangle). (C) Frequency and phase values for all targets.

FIGURE 2 | (A) Online experiment platform for the h-BCI based on EEG and PR. (B) Experimental scene of the h-BCI.

FIGURE 3 | Experimental procedures of the (A) offline and (B) online experiments.

The online experiment included three parts: test with an
unsupervised method, train and test with a supervised method,
as shown in Figure 3B. These methods were mentioned in
section “Classification Algorithm.” Each part contained two
blocks. Different from the offline experiment, the total duration
of each trial was 5.5 s (1 s sight shift, 4 s stimulus, 0.5 s rest, and
0.6 s waiting for feedback) for the unsupervised method and 3 s
(1 s sight shift, 1.5 s stimulus, 0.5 s rest, and 0.6 s waiting for
feedback) for the supervised method. The stimulation duration
was manually selected toward optimal performance by jointly

considering accuracy and ITR in offline data analysis. In addition,
the visual cue of the next trial was presented after the rest time
of the current trial in order to leave enough time for subjects to
shift their eyesight.

In addition, a behavioral test was designed to compare the
subjective perception of the 12-target stimulation interface at
low (0.8–2.12 Hz) and medium (9–10.12 Hz) frequency bands.
Twelve subjects were asked to fill out a questionnaire after
completing 1 block of cue-guided target selecting task for each
frequency band. The questionnaire (Bieger and Molina, 2010)
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included three parts: the comfort level (scores 1–5 correspond
to very uncomfortable, uncomfortable but tolerable, somewhat
uncomfortable, comfortable, very comfortable, respectively), the
perception of flicker (scores 1–5 correspond to very strong flicker,
strong flicker, slight flicker, perceptible flicker, imperceptible
flicker, respectively) and the preference level (score 1 indicates
the worst and 5 indicates the best).

Data Analysis
Latency Delay
The continuous EEG and PR data were divided into multiple
trials according to the event channel, which recorded the stimulus
onsets. The selection of time window used to extract data epochs
requires an estimation of latency, which represents the time delay
between stimulus onset and VEP or PR responses. The latency of
VEP was set to 140 ms (Chen et al., 2015a). The latency of PR
was estimated with experimental data, including the latency of
the pupil constriction lDelay1 and the duration of the response to
the stimulus onset lDelay2 (Muto et al., 2020). First, lDelay1 was
observed according to the clean temporal waveforms obtained by
filtering and averaging the PR signals in the offline experiment
(as shown in Figure 4B). PR began to decrease at 250 ms after
the stimulus onset, so lDelay1 was set to 250 ms. Second, lDelay2
was obtained by calculating the maximum classification accuracy
according to the standard canonical correlation analysis (CCA)
method (Lin et al., 2006), which was often used to extract the
narrow-band frequency component of the signals. PR data in
the offline experiment were extracted in [lDelay2, 5.25 s] (time 0
indicated stimulus onset) to exclude the common response after
the stimulus onset and pre-processed (down-sampled to 250 Hz,
band-pass filtered within 0.75∼50 Hz to reduce DC drift and
power line interference). lDelay2 was set to different values (from
0 to 1.5 s, with an interval of 0.02 s) to calculate the corresponding
CCA classification accuracy. lDelay2 was set to 1.2 s in this study,
which corresponded to the highest accuracy, and the PR data
extracted in [1.2 s, 5.25 s] were modulated by the local target’s
brightness and showed steady-state periodic responses at the
stimulus frequency.

Characteristics of Visual Evoked Potential and
Pupillary Response
The temporal waveform, amplitude spectrum, and signal-to-
noise ratio (SNR) were used to evaluate whether there was a
frequency-locked relationship between stimulation signal and
VEP or PR (Nakanishi et al., 2014). First of all, the VEP and PR
signals were epoched from 0.1 s before the stimulus onset to 0.5 s
after the stimulus offset, down-sampled to 250 Hz, and passed
through a Chebyshev Type I band-pass filter (0.5–10 Hz). In
particular, the baselines of all PR trials were corrected with respect
to the mean value over the 100 ms window preceding stimulus
onset. A total of 120 trials (12 trials × 10 subjects) extracted
in [0 s, 5 s] (time 0 indicated stimulus onset) were averaged
for each target in the offline experiment to draw clean temporal
waveforms of the elicited VEP at the Oz electrode and PR of the
right eye. Secondly, the data epochs in [0 s, 0.5 s] (time 0 indicated
the stimulus signal changes from 0 to 1) were extracted to explore
how the EEG and PR were modulated by illuminance. To remove

the transient response of VEP and PR, the data in the first second
after stimulus onset were excluded. Besides, the down-sampled
signals filtered by a band-pass filter (0.75–50 Hz) were extracted
(PR: [0.25 s, 5.25 s], VEP: [0.14 s, 5.14 s], time 0 indicated stimulus
onset) for fast Fourier transform (FFT). Limited by the frequency
resolution of 0.2 Hz, three frequencies (0.8, 1.4, and 2 Hz) were
selected for amplitude spectrum analysis of VEP and PR. Finally,
SNRs of VEP and PR were calculated as the ratio of the signal
spectrum amplitude at the target to the mean of background
noises:

SNR
(
f
)
=

20× log10

(
n× Y

(
f
)∑n/2

m=1
[
Y
(
f − 0.2×m

)
+ Y

(
f + 0.2×m

)])

Where f denotes the stimulus frequency, Y (·) denotes the
amplitude spectrum, n was set to 4 (i.e., 0.4 Hz on each side of
the target frequency).

Classification Algorithm
Classification accuracy and ITR were often used to evaluate the
performance of the BCI system. Firstly, the classification accuracy
in the offline experiment was calculated using both supervised
and unsupervised methods. Specifically, the supervised method
required calibration data for training, while the unsupervised
method performed classification without calibration data. For
the supervised method, classification accuracy was calculated by
a leave-one-out cross-validation method, which meant that 11
of the 12 runs in the offline experiment were used for training,
and the remaining 1 run was used for testing in each step of
validation. For the EEG, task related component analysis (TRCA)
(Nakanishi et al., 2018), which can extract effective response
information from EEG by maximizing the reproducibility of
task-related components, has been proved highly efficient in the
detection of SSVEP. EEG data extracted in [0.14 s 0.14+ ds] (time
0 indicated stimulus onset, d denoted the data length) were used
for classification. xk, which was denoted as the EEG signals after
down-sampling and band-pass filtering corresponding to the kth

target, could be averaged among trials to obtain the template
Xk. The spatial filters W = [ω1, ω2, · · · , ω12] were calculated
according to the TRCA method. Then, the unlabeled EEG signal
Y and the templates Xk passed through the spatial filters W to
calculate the two-dimensional correlation coefficient rk,1, as:

rk,1 = ρ
(

XT
k W, YTW

)
For the PR, a template matching method was used, and the
latency delay was 250 ms. Similar to EEG, the averaged two-
channel PR signals Pk were used as the kth target’s template. Then,
the correlation coefficient rk,2 between the unlabeled PR data Q
and the template Pk was calculated as:

rk,2 = ρ (Pk, Q)

For the unsupervised method, CCA was used for both VEP
and PR, and the latency delay was different (VEP: 140 ms, PR:
lDelay1 = 250 ms, lDelay2 = 1,200 ms). PR data were extracted
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FIGURE 4 | (A) Elicited PRs and VEPs corresponding to twelve frequencies. The gray dotted line represents the stimulus signals. (B) PR after stimulus onset,
(C) PR, and (D) VEP when stimulus changes from 0 to 1 averaged over twelve frequencies. Each dashed line corresponds to one subject, and the thick black line is
the average across all subjects. The gray areas in (D) represent the point-wise analysis of variance (ANOVA) results with values p < 0.05, to highlight the time periods
with significant differences between the VEP and zeros.

in [lDelay2, lDelay1 + ds] (time 0 indicated stimulus onset, d
denoted the data length).

Secondly, the filter-bank method was used to improve
classification accuracy by making better use of the information on
the fundamental and harmonic frequencies (Chen et al., 2015a).
The EEG and PR data in the offline experiment were used to
optimize the parameters of both supervised and unsupervised
methods. For the supervised method, the optimization of filter
banks was to generate N sub-bands covering multiple harmonic
frequency bands f1,n (n = 1, 2, · · · , N) with a same high cutoff
frequency f2. The low cutoff frequency f1,n of each sub-band was
increased by a certain step size 1f , as f1,n = f1,1 +1f × (n−
1) where f1,1 was set to 0.75 Hz and f1,n was up to 9.75 Hz.
The weight of nth sub-band was defined as w (n) = n−a

+ b.
Therefore, the frequency bands and weights of the sub-bands
were determined by a grid search method simultaneously, where
1f , f2, a, and b were limited to [0.5:0.5:9], [30:2.5:50], [0:0.25:2]

and [0:0.25:1], and N was determined by 1f . The weighted sum
of correlation coefficient values corresponding to all sub-bands
(i.e., r1

k, r2
k, · · · r

n
k ) was calculated as:

r̃k =

N∑
n=1

w (n)
(
rn

k
)2

The correlation coefficient r̃k was calculated with the templates
of each target, and the one with the largest correlation coefficient
was determined as the target label of the test data. Besides, for
the unsupervised method, the number of harmonics Nh of the
sinusoidal signal, which was used as the reference signal in the
standard CCA preprocesses (Lin et al., 2006) required to be
optimized and further used in the filter-bank CCA (FBCCA)
method (Chen et al., 2015a).

Thirdly, the offline experiment data were also used to calculate
the weights of the hybrid data fusion method toward the
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highest accuracy across subjects. A decision fusion method was
developed to combine the information of VEP and PR, which
can further improve the accuracy of target recognition (Ma et al.,
2018). The hybrid method was calculated as:

Rk
hybrid = normalize

(
r̃k,1

)
× ACC2

EEG + normalize
(
r̃k,2

)
×ACC2

PR

Where r̃k,1 and r̃k,2 were the correlation coefficients
corresponding to EEG and PR, respectively. normalize (·)
denoted the values were normalized to [0,1] interval across the
12 targets. ACCPR and ACCEEG were the averaged classification
accuracy across all subjects. The kth character corresponding to
the maximal Rk

hybrid was chosen as the target character for the
decision fusion method.

Finally, the optimized parameters of the filter-bank method
and the weights of the fusion method based on the offline
experiment were transferred to the online experiment. For the
supervised method, the templates of EEG and PR and the
TRCA spatial filters were re-trained in the online experiment.
Besides, for both offline and online experiments, ITR (bpm) was
calculated as follows:

ITR =
(

log2 M + P log2 P + (1− P) log2

(
1− P
M − 1

))
×

(
60
T

)
Where, M is the total number of targets (12 in this study), P is the
averaged classification accuracy across all the targets, and T is the
averaged time to complete the detection of the target, including
the stimulus duration and the interval time of 1.5 s.

Statistical Analysis
Statistical analyses were performed with SPSS software (IBM
SPSS Statistics, IBM Corporation) in this study. Repeated-
measures analysis of variance (RMANOVA) was used to check
the difference of performance (e.g., SNR, accuracy, ITR, and
so on) between different conditions (Chen et al., 2015a, 2019;
Nakanishi et al., 2018; Xu et al., 2020). Greenhouse–Geisser
correction was used if the data violated the sphericity assumption
by Mauchly’s test of sphericity. Bonferroni correction was
applied to post hoc pairwise comparisons. The significance level
was set to 0.05.

RESULTS

Stimulus and Characteristics of Pupillary
Response and Visual Evoked Potential
The waveforms of the right PRs and VEPs at the Oz electrode
averaged across all subjects are illustrated in Figure 4A. PR
decreased at ∼250 ms after stimulus onset (magnified in
Figure 4B) for all frequencies, which was caused by the change
of the overall illuminance in the visual field. Then, PR increased
slightly after falling to the valley value. The clear time-locked
characteristic appeared after ∼1.2 s with a latency delay of
∼300 ms (magnified in Figure 4C), which was modulated by the
local target’s illuminance. For the VEP signals, the frequency and

phase information of the target stimulus were accurately coded,
and a pattern onset VEP (Odom et al., 2004) with negative peaks
(at∼90 ms and∼180 ms) and a positive peak (at∼250 ms) could
be observed (in Figure 4D).

Figure 5 shows the amplitude spectra at three stimulus
frequencies (0.8, 1.4, and 2 Hz) averaged across 10 subjects,
marked with red asterisks at the fundamental and harmonic
frequencies. As shown in Figure 5A, the amplitude spectrum
of PR showed a clear response at the fundamental frequency
and the amplitude decreased with increased frequencies (0.8 Hz:
0.28 a.u., 1.4 Hz: 0.14 a.u., and 2 Hz: 0.09 a.u.). The responses
at the harmonic frequencies were less significant for the higher
stimulus frequencies. Different from the PR, the VEP response at
the Oz electrode showed significant peaks at the fundamental and
harmonic frequencies (see Figure 5B). As the stimulus frequency
increased, the response amplitude increased at the second
harmonic (0.8 Hz: 0.92 µV, 1.4 Hz: 1.29 µV, 2 Hz: 1.77 µV).

Comparison of the Signal-to-Noise Ratio
of Pupillary Response and Visual Evoked
Potential
Figure 6 shows the averaged SNR of PR and VEP across
three stimulus frequencies (0.8 Hz, 1.4 Hz, 2 Hz) and 10
subjects. A two-way RMANOVA shows main effects of harmonic
[F(9,81) = 10.88, p < 0.05] and modality [F(1,9) = 38.35,
p < 0.05], and significant interaction of these two factors
[F(9,81) = 9.77, p < 0.05]. Pairwise comparisons indicate that
PR had a significantly higher SNR at the fundamental frequency
than harmonic frequencies (p < 0.05, fundamental frequency:
10.31 ± 0.79 dB, second harmonic: 5.01 ± 0.67 dB, third
harmonic: 5.79 ± 0.68 dB). Differently, the SNR of VEP had
no significant differences in the fundamental and harmonics
frequencies (p > 0.05) and reached the highest at the second
harmonic (9.37± 1.34 dB). In contrast, the SNR of PR was higher
than VEP at the fundamental frequency and lower at harmonics.
Pairwise comparisons revealed that the difference between PR
and VEP was significant at each harmonic (p < 0.05), except for
the third and fifth harmonics (p > 0.05).

Offline Analysis
Supervised Method
The nine-channel EEG and binocular PR signals with the data
length of 1.5 s after the visual latency were used to optimize
the supervised algorithm. Firstly, Chebyshev Type I band-pass
filter with a low cutoff frequency f1 (from 0.75 to 9.75 Hz, with
an interval of 0.5 Hz) and a high cutoff frequency f2 (from 30
to 50 Hz, with an interval of 2.5 Hz) were adopted to calculate
the classification accuracy using one band-pass filter, as shown in
Figure 7. The highest classification accuracy was 74.03 ± 4.10%
for PR at 1.25∼50 Hz and 90.76 ± 3.64% for VEP at 1.75∼30 Hz
(the gray dots in Figure 7). The optimized results of the filter-
bank method indicated that the maximal classification accuracy
of PR and VEP were 84.10 ± 3.47% and 93.68 ± 2.86%, both of
which were higher than the accuracy of using one band-pass filter
(the asterisk in Figure 8). One-way RMANOVA indicates that
the difference between the accuracy of one band-pass filter and
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FIGURE 5 | Averaged amplitude spectrum of (A) PR and (B) VEP for all subjects. The red asterisk represents the fundamental and harmonic frequencies of the
stimulus frequency.

FIGURE 6 | Averaged SNR of PR and VEP at Oz electrode for three stimulus
frequencies and 10 subjects. The error bars represent standard errors across
the subjects.

the filter-bank method was significant [PR: F(1,9) = 43.75, VEP:
F(1,9) = 8.03, p < 0.05]. The corresponding optimal parameters
were 1f = 0.5, f2 = 50, N = 6, a = 0.5, b = 0.5 for PR and 1f = 0.5,
f2 = 50, N = 12, a = 0.5, b = 0 for VEP.

Figure 8 compared the classification performance for the
filter-bank supervised method at different data lengths (from 0.5 s
to 5 s with a step of 0.5 s). The classification accuracy was the
lowest at 0.5 s (PR: 28.96 ± 2.95%, VEP: 77.57 ± 5.09%, hybrid:
79.03 ± 4.85%) and increased as the data length increased.
In particular, the hybrid accuracy was better than that of PR
or VEP at short data length. Two-way RMANOVA shows
main effects of data length [F(9,81) = 90.68, p < 0.05) and
modality (F(2,18) = 27.51, p < 0.05], and there were significant
interactions of data lengths and modalities [F(18,162) = 44.70,
p < 0.05]. Pairwise comparisons indicate the accuracy of the
hybrid method was significantly higher than that of PR with
data length ≤2.5 s and was significantly higher than that
of VEP with data length ≤0.5 s (p < 0.05). In addition,
as the data length increased, ITR first increased and then
decreased. At the data length of 1.5 s, the hybrid accuracy was
96.81 ± 1.49%, and the hybrid ITR was 66.77 ± 2.17 bpm
(PR: 50.72 ± 3.79 bpm, VEP: 62.91 ± 3.69 bpm). Two-way
RMANOVA reveals main effects of data length [F(9,81) = 27.68,
p < 0.05] and modality [F(2,18) = 29.74, p < 0.05], and significant
interactions [F(18,162) = 39.09, p < 0.05]. Pairwise comparisons
indicate that the difference between the hybrid method and PR
was significant at data length ≤2.5 s (p < 0.05).
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FIGURE 7 | Classification accuracy of (A) PR and (B) VEP data through one band-pass filter using the supervised method at the data length of 1.5 s. The gray dots
correspond to the filter settings with the highest accuracy.

FIGURE 8 | (A) Classification accuracy and (B) ITR using filter-bank supervised method at different data lengths (from 0.5 s to 5 s with a step of 0.5 s). The error
bars represent standard errors across the subjects. The dot corresponds to the optimal classification accuracy using one band-pass filter. The asterisk represents a
significant difference between the single-modal method and the hybrid method (pairwise comparison, p < 0.05).

Figure 9 shows the classification accuracy using different
parameters: the number of sub-bands (N from 1 to 20) and the
number of training trials (Nt from 1 to 11) at the data length
of 1.5 s. Overall, the accuracy of PR was always lower than that
of VEP. As the N value increased, the accuracy of PR increased
first and reached the maximum at N = 6, then decreased and
reached the lowest at N = 20 (73.75± 5.62%). It suggests that only
the first several harmonics of PR contribute to the classification.
For VEP, the accuracy was the lowest at N = 1 (80.83 ± 5.12%),
then increased as the number of sub-bands increased and tended
to be saturated. In addition, one-way RMANOVA reveals that
the accuracy of PR or VEP has a significant difference between
different numbers of training data [PR: F(9,81) = 27.08, VEP:
F(9,81) = 14.40, p < 0.05]. Pairwise comparisons show that the
accuracy will not increase significantly when Nt is greater than 8
(p > 0.05, PR: 82.08 ± 3.97%, VEP: 91.18 ± 3.61% at Nt = 8).
Therefore, this study set the number of training trials Nt = 8 to
reduce the training cost in the online experiment.

Unsupervised Method
For the unsupervised algorithm, the optimization was based on
the VEP and PR data with a length of 4 s starting from the visual
latency. First, the classification accuracies of the standard CCA
method corresponding to different band-pass filters at Nh = 12

were shown in Figures 10A,B. The highest classification accuracy
was 63.61 ± 3.84% for PR at 1.25∼50 Hz and 62.71 ± 9.42%
for VEP at 3.25∼35 Hz (the gray dots in Figures 10A,B).
Then, the classification accuracies using different Nh values (from
1 to 12) in this optimal band-pass filter were compared, as
shown in Figures 10C,D. As the number of Nh increased, the
classification accuracy of PR increased first and then decreased,
and the highest was 65.76 ± 4.13% when Nh = 3. The accuracy
of VEP increased when Nh increased and reached the highest
when Nh = 10 (63.33 ± 8.64%). Therefore, this study used
Nh = 3 for PR and Nh = 10 for VEP in all standard CCA
preprocesses for the FBCCA method. The optimized filter-bank
results indicated that the maximal classification accuracy of PR
and VEP were 86.74 ± 4.28% and 65.83 ± 9.07%, respectively.
The corresponding optimal parameters were 1f = 0.5, f2 = 50,
N = 19, a = 0.25, b = 1 for PR and 1f = 0.5, f2 = 50, N = 10, a = 0,
b = 0 for VEP. Compared with the standard CCA method (the
asterisk in Figure 11), the filter bank related improvement of PR
was greater than that of VEP. One-way RMANOVA indicates that
the improvement of PR was significant [F(1,9) = 68.89, p < 0.05],
while that of VEP was not significant [F(1,9) = 4.38, p > 0.05].

Figure 11 shows the classification performance with the
optimized parameters for the FBCCA method at different data
lengths (from 2 s to 5 s with a step of 0.5 s). The accuracy
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FIGURE 9 | Classification accuracy with different (A) numbers of sub-bands and (B) numbers of training trials using the supervised method at the data length of
1.5 s. The error bars represent standard errors across the subjects.

FIGURE 10 | Classification accuracy of (A) PR and (B) VEP data through one band-pass filter using the standard CCA method with a data length of 4 s. The gray
dots correspond to the filter settings with the highest accuracy. Classification accuracy of (C) PR and (D) VEP with different numbers of harmonics in the standard
CCA method. The error bars represent standard errors across the subjects.
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of PR was lower than VEP at the data length of 2 s (hybrid:
42.36 ± 7.54%, PR: 15.56 ± 1.77%, VEP: 41.53 ± 7.54%). The
accuracy increased with the increase of data length, and the
accuracy of PR was higher than that of VEP with data lengths
≥3 s. The classification accuracy of the hybrid method was
higher than that of PR and VEP and reached 91.04 ± 4.76%
at 4 s. Two-way RMANOVA shows main effects of data length
[F(6,54) = 164.77, p < 0.05] and modality [F(2,18) = 5.72,
p < 0.05], and significant interactions of the two factors
[F(12,108) = 19.39, p < 0.05]. Moreover, ITR increased as
the data length increased and reached 32.85 ± 2.74 bpm at
4 s for the hybrid method (PR: 29.52 ± 2.38 bpm, VEP:
19.49 ± 4.25 bpm). Two-way RMANOVA shows main effects
of data length [F(6,54) = 49.07, p < 0.05] and modality
[F(2,18) = 5.92, p < 0.05], and there were significant interactions
[F(12,108) = 16.35, p < 0.05]. Pairwise comparisons indicate that
the accuracy and ITR of the hybrid method were significantly
higher than that of PR with data length ≤4.5 s and were
significantly higher than that of VEP with data length ≥2.5 s
(p < 0.05).

Figure 12 shows the classification accuracy of the FBCCA
method with different numbers of sub-bands (N from 1 to 15)
at the data length of 4 s. For PR, the classification accuracy was
the lowest at N = 1 (47.71± 3.33%), then increased slightly as the

number of sub-bands increased. The accuracy of VEP increased
first and then decreased after reaching the maximum at N = 10.

Online Hybrid BCI Performance
Table 1 lists the results of the online cue-guided target
selecting task using the supervised method. The averaged
hybrid accuracy across 10 subjects was 94.90 ± 2.34% (PR:
79.90 ± 4.11%, VEP: 89.17 ± 4.20%), and the corresponding
ITR was 64.35 ± 3.07 bpm (PR: 45.92 ± 4.23 bpm, VEP:
57.55 ± 5.04 bpm). Table 2 lists the results of the online
experiment using the unsupervised method. The averaged
hybrid accuracy across 10 subjects was 91.88 ± 3.68% (PR:
84.06 ± 4.52%, VEP: 61.56 ± 7.93%), and the corresponding
ITR was 33.19 ± 2.38 bpm (PR: 27.91 ± 2.66 bpm, VEP:
16.90 ± 4.00 bpm). One-way RMANOVA indicates that the
differences between the offline and online experiment were not
significant (for the supervised method, the accuracy of PR:
F(1,9) = 3.44, the accuracy of VEP: F(1,9) = 3.17, the accuracy
of hybrid: F(1,9) = 3.31, the ITR of PR: F(1,9) = 4.40, the ITR
of VEP: F(1,9) = 3.49, the ITR of hybrid: F(1,9) = 3.09; for
the unsupervised method, the accuracy of PR: F(1,9) = 1.21,
the accuracy of VEP: F(1,9) = 1.18, the accuracy of hybrid:
F(1,9) = 0.22, the ITR of PR: F(1,9) = 0.97, the ITR of VEP:

A B

FIGURE 11 | (A) Classification accuracy and (B) ITR using the FBCCA method at different data lengths (from 2 s to 5 s with a step of 0.5 s). The error bars represent
standard errors across the subjects. The dot corresponds to the optimal classification accuracy using one band-pass filter. The asterisk represents a significant
difference between the single-modal method and the hybrid method (pairwise comparison, p < 0.05).

FIGURE 12 | Classification accuracy with different numbers of sub-bands using the unsupervised method at the data length of 4 s. The error bars represent
standard errors across the subjects.
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F(1,9) = 1.70, the ITR of hybrid: F(1,9) = 0.11; p > 0.05 for
all conditions).

Individual Differences
There were clear individual differences in the system
performance. Figure 13 shows the classification accuracy
for each subject in the offline experiment. For the supervised
method, some subjects had significantly higher accuracy of VEP
than PR with short data lengths. The hybrid accuracy was higher
than that of VEP for Sub4, Sub5, Sub7, and Sub10. For the
unsupervised method, significant differences appeared among
the subjects. For some subjects, EEG accuracy was always higher
than that of PR (Sub1, Sub8, and Sub9), while PR accuracy was
always higher than that of EEG in other subjects (Sub4, Sub5,
Sub7, and Sub10). Besides, several subjects had higher accuracy
of PR than EEG only when the data length was long (Sub2, Sub3,
and Sub6). Notably, the hybrid accuracy was higher than PR
and VEP for most subjects, especially when the data length was
short. Similar conclusions can be obtained from the results of the
online experiment, as shown in Tables 1, 2. For the supervised
method, Sub4 and Sub7 had a higher accuracy of PR than
EEG, while the other 8 subjects showed the opposite condition.

However, the hybrid classification performance was higher than
PR and EEG for all subjects, except for Sub6. In particular, the
accuracy of VEP was 66.67%, and the hybrid accuracy reached
91.67% after combining PR characteristics, with an increase of
25.00% for Sub7. For the unsupervised method, two subjects
(Sub1 and Sub8) had a lower accuracy of PR than VEP. It can
also be observed that the hybrid classification performance
has been improved for all subjects compared to VEP, except
for Sub1. Especially for Sub7, the hybrid accuracy reached
95.83%, which was 54.16% higher than that of VEP. These results
indicate that the proposed hybrid BCI yielded a considerable
benefit for some subjects and thereby alleviated the problem
of BCI illiteracy.

Behavioral Test
One-way RMANOVA shows that the behavioral scores of the
low-frequency band were significantly higher than that of
the medium-frequency band (low vs. medium, comfort level:
3.42 ± 0.31 vs. 1.75 ± 0.22, F(1,11) = 34.38, p < 0.05;
perception of flicker: 2.50 ± 0.23 vs. 1.75 ± 0.18, F(1,11) = 9.00,
p < 0.05; preference level: 3.17 ± 0.34 vs. 1.92 ± 0.23,
F(1,11) = 14.47, p < 0.05), which meant that the low-frequency

TABLE 1 | Results of online cued-guided experiment (supervised method).

Subject Accuracy (%) ITR (bpm)

PR VEP Hybrid PR VEP Hybrid

Sub1 76.04 100.00 100.00 41.21 71.70 71.70

Sub2 94.79 97.92 100.00 62.92 68.19 71.70

Sub3 90.63 96.88 98.96 57.42 66.88 69.94

Sub4 89.58 77.08 91.67 55.92 41.00 58.55

Sub5 55.21 67.71 76.04 21.80 32.63 40.78

Sub6 66.67 95.83 94.79 31.48 64.68 63.37

Sub7 88.54 66.67 91.67 54.17 31.52 58.99

Sub8 87.50 98.96 100.00 53.04 69.94 71.70

Sub9 67.71 96.88 98.96 33.57 66.88 69.94

Sub10 82.29 93.75 96.88 47.62 62.06 66.88

Mean ± ste 79.90 ± 4.11 89.17 ± 4.20 94.90 ± 2.34 45.92 ± 4.23 57.55 ± 5.04 64.35 ± 3.07

TABLE 2 | Results of online cued-guided experiment (unsupervised method).

Subject Accuracy (%) ITR (bpm)

PR VEP Hybrid PR VEP Hybrid

Sub1 69.79 98.96 97.92 18.95 38.15 37.19

Sub2 93.75 73.96 100.00 33.61 21.18 39.11

Sub3 96.88 54.17 98.96 36.24 11.55 38.15

Sub4 84.38 33.33 83.33 27.20 4.54 26.88

Sub5 52.08 33.33 62.50 10.62 5.09 15.09

Sub6 88.54 71.88 97.92 29.89 19.42 37.19

Sub7 96.88 41.67 95.83 36.24 6.97 35.28

Sub8 84.38 97.92 97.92 27.65 37.19 37.44

Sub9 95.83 71.88 96.88 35.52 19.34 36.48

Sub10 78.13 38.54 87.50 23.15 5.53 29.11

Mean ± ste 84.06 ± 4.52 61.56 ± 7.93 91.88 ± 3.68 27.91 ± 2.66 16.90 ± 4.00 33.19 ± 2.38
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FIGURE 13 | Classification accuracy using (A) supervised method and (B) unsupervised method for each subject in the offline experiment.

stimulus used in the proposed h-BCI was a more comfortable
and favorable stimulus than the alpha frequency band used in the
traditional SSVEP-BCI.

DISCUSSION

Compared with other traditional SSVEP-BCI in the alpha
frequency range, the h-BCI system based on the low-frequency
stimulations developed in this study is more comfortable
and applicable for all users. This study performed a pre-
experiment to compare the subjective perception of visual stimuli
(Chien et al., 2017) with different frequencies (from 1 to 60 Hz,
with an interval of 1 Hz). The averaged results with 12 subjects
showed that the subjects’ comfortableness and preference level
at the low-frequency (e.g., 1 Hz) were better than the alpha
frequency range (e.g., 10 Hz). Compared with the high-speed
SSVEP-BCIs (Chen et al., 2015a,b; Nakanishi et al., 2018), the
relatively low classification accuracy and ITR in the proposed
system can be explained in several aspects. First of all, the
poor performance of VEP for the unsupervised method may
be caused by the low response amplitude at the low-frequency
band. Herrmann compared the SSVEP response evoked by the
flicker light at frequencies from 1 Hz to 100 Hz (in 1 Hz
step) and found that the amplitude reached the highest in the
medium frequency band (maximum at ∼15 Hz) (Herrmann,
2001). The response amplitude and SNR decreased significantly
below 10 Hz (Wang et al., 2005), which was related to the
higher level of the spontaneous EEG oscillations (Gao et al.,
2003). Therefore, the frequency detection techniques used in

the unsupervised method were affected by the background
noise, while the TRCA-based spatial filtering techniques used
in the supervised method were effective to remove background
EEG and enhance SNR (Nakanishi et al., 2018). Second, the
narrow frequency range and separable frequency interval of
PR limit the number of targets and affect ITR. For the
frequency range, Naber verified that the PR only responded
to repetitive onsets and offsets of stimuli at 0.3–2.3 Hz, not
at 3.4 Hz (Naber et al., 2013). Regarding to the frequency
interval, Muto classified two visual stimulus targets with a
luminance-modulation frequency between 0.75 and 2.5 Hz
and found that the classification accuracy with the frequency
interval of 0.06 Hz was poor (Muto et al., 2020). Third, data
length also influences ITR. Compared with the alpha frequency
band, which was commonly used in the traditional SSVEP-
BCI, the low-frequency band took more time to complete
the same number of stimulus periods to obtain sufficient
effective information.

Compared with other SSVEP-BCI systems with better user
experience than the system using stimulations in the alpha
frequency range, the proposed h-BCI system offers higher BCI
performance. Chang generated an amplitude-modulated (AM)
stimulus (Chang et al., 2014) as the product of two sine waves,
including a carrier frequency higher than 40 Hz to reduce
eye fatigue and a modulating frequency ranged around the
alpha band (9–12 Hz) to utilize harmonic information. Online
experiments showed that the average accuracy of the six-target
classification task was 91.2%, resulting in an ITR of 30 bpm.
Dreyer adapted a frequency-modulated (FM) stimulation from
the auditory domain (Dreyer and Herrmann, 2015), with a
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modulation frequency of 10 Hz and a carrier frequency ranging
from 20 to 100 Hz. The subjective flicker perception of FM-
SSVEPs with carrier frequencies above 30 Hz was slight or even
imperceptible, while the amplitude of FM-SSVEPs (e.g., carrier
frequency = 30 Hz: 0.36 µV) remained the same as that of SSVEPs
evoked rectangularly (0.44 µV) or sinusoidally (0.42 µV). BCI
performances between FM and sinusoidal (SIN) SSVEPs were
compared using a four-target classification paradigm (Dreyer
et al., 2017). The highest classification accuracy was 86% for
FM (11 s epochs) and 95% for SIN (11 s epochs), and the
highest ITR was 13.91 bpm for FM (2 s epochs) and 24.21 bpm
for SIN (1 s epochs). Jiang developed a four-class phase-
coded SSVEP-BCI by imperceptible flickers at 60 Hz (Jiang
et al., 2019). The system achieved a classification accuracy
of 92.71 ± 7.56% in the online experiment and an ITR of
18.81± 4.74 bpm.

This study proved that the combination of PR and VEP
can facilitate the implementation of visual BCIs with low-
frequency stimulations, and the proposed system achieved high
classification accuracy and short stimulus duration compared
with the other existing h-BCIs based on PR and VEP. There
was an improvement for the hybrid method compared to PR
and VEP for some subjects, especially when the data length
was short, and the accuracy was not saturated. However, there
are ways to improve the system performance and practicability
of the proposed h-BCI. Firstly, other unsupervised algorithms
can be explored to improve the SNR at the low-frequency band
with low response amplitude and facilitate the classification of
VEPs. The hybrid accuracy can be improved by customizing the
weighted coefficient of the hybrid method for each participant
due to the clear individual differences in the system performance.
Secondly, the optimization of the grid stimulus paradigm may
be helpful for increasing ITR and reducing the flickering
sensation of visual stimulation, including the spatial frequency,
the proportion of stimulation area, and illuminance (Ming et al.,
2021). More entrained VEPs can be generated and enhanced
by stimuli containing spatial contrast than the spatially uniform
stimuli (Williams et al., 2004), and the spatial frequency can be
optimized to maximize the ITR and reduce the visual irritation
(Waytowich et al., 2017). The proportion of stimulation area
and stimulation illuminance can be minished to reduce the
perception of flicker and maintain the system performance.
Finally, in order to be convenient to use, the system should
be compact and portable (Gao et al., 2003). This study was
completed in the laboratory using high-precision eye tracker
and EEG amplifier. A wearable hybrid BCI system that can
be used in daily life may be realized with a high-precision
consumer-grade eye tracker and a wearable EEG device in the
future. By addressing these issues, the h-BCI based on VEP
and PR can be further improved and be potential for more
practical applications.

CONCLUSION

This study designed a 12-target h-BCI system with low
stimulation frequencies of 0.8–2.12 Hz, which can simultaneously

induce significant PR and VEP responses. The SNR of PR was
higher than VEP at the fundamental frequency but lower than
VEP at harmonics. PR and VEP data were recorded in the
offline experiments to optimize the algorithm parameters, and
the system performance was verified through online experiments.
The averaged accuracy across 10 subjects was 94.90 ± 2.34%
at the data length of 1.5 s for the supervised method and
91.88± 3.68% at 4 s for the unsupervised method, corresponding
to the ITR of 64.35 ± 3.07 bpm and 33.19 ± 2.38 bpm in the
online experiment. The h-BCI performance was better than PR
or VEP for some subjects, especially for the short data length
and unsaturated accuracy. The proposed h-BCI provides a good
solution to a practical BCI with balanced system performance and
user experience.
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