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Abstract
Background: Radiofrequency Ablation (RFA) is rarely performed in veterinary medi-
cine. A rationale exists for its use in selected cases of canine liver tumours. RFA in-
duces ablation zones of variable size and geometry depending on the technique used 
and on the impedance of the targeted organ.
Objectives: (a) to describe the geometry and reproducibility of the ablation zones 
produced by three commercially available systems from a single company, using iso-
lated swine liver parenchyma as a model for future veterinary applications in vivo; (b) 
to study the effects of local saline perfusion into the ablated parenchyma through 
the electrode tip and of single versus double passage of the electrode on size, geom-
etry and reproducibility of the ablation zones produced.
Methods: Size, and geometry of ablation zones reproduced in six livers with one 
cooled and perfused (saline) and two cooled and non-perfused systems, after single 
or double passage (n = 6/condition), were assessed macroscopically on digitalized 
images by a blinded operator. Longitudinal and transverse diameters, equivalent di-
ameter, estimated volume and roundness index were measured. Reproducibility was 
assessed as coefficient of variation.
Results and Conclusions: Ablation zone reproducibility was higher when expressed in 
terms of ablation zone diameters than estimated volume. Local saline perfusion of the 
parenchyma through the electrode tip during RFA increased the ablation zone longitudinal 
diameter. Ablation zone estimated volume increased with saline perfusion only when dou-
ble passage was performed. These data may provide useful information for those clinicians 
who intend to include RFA as an additive tool in veterinary interventional radiology.
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1  | INTRODUC TION

Radiofrequency ablation (RFA) consists in the local application of 
thermal energy by means of one or more applicators (electrodes), 
which produces coagulative necrosis of the adjacent tissues. 
Monopolar RFA systems employ a single ‘active’ or ‘interstitial’ elec-
trode, with current dissipated at one or more return grounding pads. 
On the other hand, bipolar devices have two ‘active’ electrodes, 
usually placed in close proximity to achieve contiguous coagulation 
between them (Ahmed et al., 2014). The probe(s) emits alternative 
current with frequencies ranging from 450 to 500 KHz, inducing 
ionic agitation and producing heat. At temperatures above 60°C, cell 
death occurs due to protein coagulation and dehydration (Denys, De 
Baere, & Kuoch, 2003). Percutaneous monopolar RFA was introduced 
as a surgical tool in 1993 for the treatment of liver neoplasia and 
metastasis in human patients (Rossi et al. 1995) and it is now widely 
used in oncology, especially for the local treatment of hepatocellu-
lar carcinoma and hepatic metastases of colorectal cancers (Gazelle, 
Goldberg, and Solbiati 2000). Also, its use has been described for 
treating thyroid masses in human beings (Garberoglio, Aliberti, and 
Appetecchia 2015). A further widespread application of RFA in 
human medicine is for the treatment of varicose veins, for which 
pre-clinical swine models have been used (Badham, Dos Santos, & 
Whiteley, 2017; Badham, Strong, & Whiteley, 2015; Marsden, Perry, 
& Kelley, 2013). Therapeutic applications in veterinary medicine are 
limited to a few conditions described in canine patients, such as the 
treatment of primary hyperparathyroidism (Bucy, Pollard, and Nelson 
2017), tumour masses (Martel et al., 2008) and cardiac arrhythmias 
(Santilli, Mateos Panero, & Porteiro Vazquez, 2018). Occasional use 
of RFA has been reported also for surgical procedures such as resec-
tion of the soft palate in dogs (Palierne et al. 2018). Recent studies 
report the evaluation of RFA ablation zones by different imaging 
techniques in experimental settings in healthy dogs (Lee et al. 2018; 
Moon et al., 2017).

Primary liver tumours in dogs account for 2% of all canine ma-
lignancies, the most frequent being hepatocellular carcinoma, which 
may occur as a massive, nodular and diffuse form. The latter forms 
usually present as multiple nodules in different liver lobes, and are 
not treatable with surgery. On the other hand, the massive form is 
often resected surgically, but the limitation may be the location on a 
hilar position, especially when the central or right divisions of the liver 
are involved. In these cases, the risk for severe haemorrhage and/or 
incomplete tumour resection may be relevant (Linden et al., 2019) 
and alternative approaches could reduce this risk. Metastatic lesions 
in the canine liver from non-hepatic tumours (spleen, pancreas and 
gastrointestinal tract) occur 2.5 times more frequently than primary 
tumours, but usually their surgical resection is not performed, and 
palliative treatment is proposed. Radiofrequency ablation could 
provide a suitable alternative to surgery in these scenarios. In this 
perspective, knowing the exact size, geometry and reproducibility of 
ablation zones induced by the available systems could allow a better 
planning of the intervention, with minimal damage to healthy tissues 
and reduced complications.

Radiofrequency ablation applications are usually performed 
under ultrasound or computer tomography guidance (Ahmed 
et al., 2014; Bucy et al., 2017; Oliveira Leal, Frau Pascual, & 
Hernandez, 2018; Padma, Martinie, & Iannitti, 2009). Ultrasound 
would be the most easily applicable tool for imaging-guided RFA in 
veterinary medicine. Ultrasound allows to determine the size of the 
tumour and to monitor the size of the induced ablation zone during 
the procedure itself. A recent report highlights that ultrasonographic 
imaging measurements of RFA-induced ablation zones underesti-
mate their size however (Moon et al., 2017). Moreover, it is difficult 
to assess the 3 dimensional (3D) geometry of the ablation zone in 
real-time using ultrasound, as it provides 2 dimensional (2D) images.

Our work aimed at characterizing the size, geometry and repro-
ducibility of the ablation zones induced by means of three different 
systems (generator + electrode) produced by the same company in 
isolated swine livers as a pre-clinical model for the dog. We investi-
gated the effects of cold saline infusion into the liver tissue in our ex-
periments, as it has been reported to produce larger ablation zones 
(Lee et al., 2004). Lastly, the effect of a single versus double passage 
into the parenchyma was assessed.

2  | MATERIAL AND METHODS

2.1 | Study design

The ablation zones produced using the following described five RFA 
conditions were tested in six isolated swine livers, namely: single 
passage of the internally cooled non-perfused electrode, double 
passage of the internally cooled non-perfused electrode, single pas-
sage of the internally cooled and perfused electrode, double passage 
of the internally cooled and perfused electrode, and single passage 
of the internally cooled electrode with a tip with adjustable exposure 
(from 0 to 3 cm in length), set at 1 cm.

2.2 | Livers

Six swine livers were harvested from the local abattoir and stored at 
4°C until the experimental procedures were started (within 24 hr). 
They were left at room temperature for 2 hr before the RFA took 
place. Core temperature of the livers at the beginning of the RFA 
session was not determined.

2.3 | Radiofrequency ablation

The monopolar RF ablation systems tested consisted of a 300–
500 kHz generator (RF Generator M-3004, RF Medical Co.) pro-
ducing a maximum power of 200 W and one of three electrodes. 
A 17-gauge internally cooled, adjustable RF electrode with an ex-
posed tip 0–30 mm (VCT-10XXB, RF Medical Co., exposed tip used 
at 10 mm), an 18-gauge internally cooled electrode with an exposed 
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tip of 10 mm (RFT-0710N, RF Medical Co.), and an 18-gauge inter-
nally cooled and perfused electrode with an exposed tip of 10 mm 
(RFTS1010N, RF Medical Co.) were used. Of note, the two 18-gauge 
electrodes differ only for their ability to infuse liquid into the tissue 
during the ablation procedure. Out of the three electrodes studied, 
two are commercialized for the treatment of thyroid nodules and 
one for hepatocellular carcinoma in humans (Table 1). We chose to 
test these specific electrodes as different dog breeds are character-
ized by very different sizes. While liver size in a large dog breed and 
in a human patient can reasonably be compared, this is not the case 
for the smallest canine breeds. We thus opted to study the systems 
used for the treatment of thyroid masses in humans, which induce 
ablation zones of reduced dimensions, in order to assess their po-
tential application in the smallest canine breeds. Perfused systems 
allowed continuous saline infusion into the liver parenchyma during 
the ablation procedure. More details are provided in Table 1. Two 
separate circuits are present within the tip of the internally cooled 
and perfused electrodes. The closed circuit has the function of cool-
ing the electrode tip. The open circuit, characterized by small ap-
ertures at the active tip of the electrode, allows infusing the tissue 
with fluids (i.e. isotonic or hypertonic saline) during the procedure. In 
our experiments, cold sterile saline solution was pumped within both 
circuits during RFA by means of a peristaltic pump.

Five anatomical regions were identified in the isolated livers 
(right lateral lobe, right medial lobe, left medial lobe, and two sites 
within the left lateral lobe), and the five RFA conditions described 
above were created once in each liver. Our experimental protocol 
was set to guarantee that the same RFA condition was performed 
only once for each anatomical region considered, with the exception 
of the sixth liver, where the conditions used in the first liver were 
repeated. This study design was thought to reduce to a minimum any 
effect or bias related to the liver region tested.

The procedures of RFA were performed under ultrasound (US) 
guidance (Figures 1 and 2a). Adhesive dispersive electrodes were 
used as grounding pad to close the electrical circuit and positioned 
under the organs tested. Maximum power was set at 80 and 120 W 
for 17-gauge and 18-gauge electrodes, respectively. The actual 
power applied was based on a negative feedback, regulated by tis-
sue impedance. The machine was set to apply energy until the tissue 
conductivity dropped (due to loss of water during tissue necrosis). 
Tissue impedance during the procedure was measured by means 
of a thermocouple present on the tip of the electrode. Tissue tem-
perature during the procedure was estimated by the system based 

on an algorithm, and not measured directly. Maximum power at 
the moment when tissue conductivity dropped and duration of 
energy application were recorded. Care was taken to avoid large 
vessels and bile ducts. When double passage (or double insertion) 
was performed, the electrode was withdrawn after the first RFA 
was performed and then replaced at a different angle as shown in 
Figure 1, maintaining the same entry site into the liver parenchyma. 
Specifically, the electrode was re-inserted at approximately a 30° 
angle on the plan of the ultrasound image where the ablation zone of 
the previous RFA could be seen.

2.4 | Morphometry

Two 21-gauge needles were then inserted parallel to the electrode 
tip (along the plan of the ultrasound image) and kept in place until 
tissue sampling was completed, in order to localize the ablated area. 
Using an N. 21 scalpel blade, the liver parenchyma was cut along 
the line connecting the needles in the attempt to divide the ablation 
zone into two halves along its longitudinal axis (Figure 2b). Digital 
photographs of the longitudinal sections of the ablation zones were 
acquired (Figure 2c) and morphometrical analysis was performed 
using Image Pro Plus (Media Cybernetics, Rockville, MD, USA). All 
measures were performed by the same operator, blinded to the 
experimental conditions. Longitudinal area (A = r2 π), maximal lon-
gitudinal diameter (Dmax), minimal longitudinal diameter (Dmin) and 
perimeter (Pi) of the ablation zones were measured, while their 
volume was estimated (V = 1/6 π Dmax Dmin

2). Roundness (R, ratio 
between two circles that lay inside and outside each ablation zone 
and are tangential to it) and equivalent diameter (Deq, that is the di-
ameter of a sphere of equivalent volume) of the ablation zones were 
calculated. The coefficients of variation of the measures taken were 
calculated for all the listed parameters, grouped by ablation system, 
to assess the reproducibility of such system to produce similar abla-
tion zones in different livers/liver regions. The measurements did 
not include biliary ducts or the reddish rim surrounding ablation.

2.5 | Statistical analysis

Statistical analyses were performed using Prism 6.0 (GraphPad 
Software, San Diego, CA, USA). Repeated measure two-way 
ANOVA with Sidak's post-test was used to assess the effect of saline 

Commercial ID
Internally 
cooled Perfuseda 

Length of the 
active component Diameter

Perfusion 
flow

RFT−0710N yes No 10 mm 18 G —

RFTS1010N yes yes 10 mm 18 G 1 ml/min

VCT−10XXB yes no 0–30 mm (used at 
10 mm)

17 G —

aPerfused electrodes are those allowing for continuous saline instillation into the liver parenchyma 
during the RFA procedure. 

TA B L E  1   Technical details of the 
electrodes used
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perfusion (by comparing internally cooled and non-perfused versus 
internally cooled and perfused electrodes) and of the number of pas-
sages performed on the parameters tested. Statistical comparisons 
concerning the ablation zone size and geometry were performed 
only to compare the systems using the 18-gauge internally cooled 
electrode with an exposed tip of 10 mm and the 18-gauge inter-
nally cooled and perfused electrode with an exposed tip of 10 mm. 
The size and geometry of the ablation zones produced with the 17-
gauge internally cooled, adjustable RF electrode with an exposed 
tip 0–30 mm used at 10 mm were only reported descriptively. The 
reproducibility of size and geometry of the ablation zones obtained 
with each system were expressed by means of the coefficient of 
variation of the data. Reproducibility was assessed only in ablation 
zones ablated with a single passage. Two-way ANOVA with Tukey's 
post-test was used to assess the effect of the system tested and of 
the parameter measured on reproducibility. p-values < .05 were con-
sidered as statistically significant.

3  | RESULTS

All the RFA protocols applied produced macroscopically appre-
ciable ablation zones in the liver parenchyma, identified as pale 
oval-shaped areas consisting of friable tissue (Figure 2c). Maximal 
power reached during RFA application was 45 W with the 17-gauge 
electrode system (range: 40–45 W), and 80 W for both 18-gauge 
electrode systems (range: 45–80 W). A drop in tissue conductivity 

was reached after a maximum time of 12 min with the 17-gauge 
electrode system (range: 10–12 min), and after a maximum of 30 s 
with both 18-gauge electrode systems (ranges: 9–30 s for the in-
ternally cooled and perfused system and 25–30 s for the internally 
cooled and non-perfused system). A darker zone was identifiable 
in the centre of the ablation zones (‘charring’), where the needle 
was positioned. Also, a reddish rim was present around the abla-
tion zones.

3.1 | Effect of saline perfusion and single versus. 
double passage

The effects of continuous saline perfusion (internally cooled and 
non-perfused versus internally cooled and perfused system) and 
of double versus single passage on size and geometry of the ab-
lated zones produced by the systems using the 18-gauge internally 
cooled electrode with an exposed tip of 10 mm and the 18-gauge 
internally cooled and perfused electrode with an exposed tip of 
10 mm are reported in Figure 3. Briefly, we observed a significant 
effect of the number of passages performed (p = .005) on the es-
timated volume of the ablation zone. A significant interaction was 
also observed between the number of passages performed and 
saline perfusion (p = .04). At the conditions tested, the estimated 
volume of the ablation zone was significantly increased with saline 
perfusion only when double passage was performed (p = .01). A 
similar trend was also observed for minimal longitudinal diameter, 
where a significant effect of the number of passages performed 
was observed (p = .002) but the interaction with saline perfusion 
was not significant (p = .06). Maximal longitudinal diameter was 
significantly affected only by saline perfusion (p = .008), while 
equivalent diameter only by the number of passages (p = .04). No 
effect of saline or number of passages was noticed on estimated 
roundness index.

3.2 | Reproducibility of the ablated zones

The size and geometry of the ablated zones induced by a single pas-
sage within the liver parenchyma of the three systems tested are 
reported in Table 2, together with the coefficients of variation for F I G U R E  1   Double passage ablation

F I G U R E  2   Application of RFA on isolated livers. (a) The procedure is performed under US guidance. (b) Liver tissue is cut along the 
longitudinal axis of the ablation zone, where the electrode was inserted during the RFA procedure (arrows). (c) The ablation zone within the 
liver parenchyma is identifiable as a discoloured and friable portion of liver parenchyma
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each parameter, which is the index we used to describe reproduc-
ibility. Overall, statistical analysis revealed a significant effect of the 
parameters measured (p = .005) but not of the electrodes tested 
(p = .3) on reproducibility. The reproducibility was lower for esti-
mated volume measures compared with all other parameters tested 
(significantly higher coefficients of variation; p < .05).

The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

4  | DISCUSSION

RFA is a minimally invasive technique widely used in human inter-
ventional radiology, especially for the treatment of local tumour or 
metastasis (Gazelle et al., 2000). Different RFA systems are commer-
cially available and frequently employed in clinical practice, although 
product-specific, standardized data on achievable ablation dimen-
sions in different tissues are often missing from the manufacturers. 

F I G U R E  3   Effect of saline perfusion and of double versus. single passage on ablation zone size and geometry. (a) Transversal diameter. (b) 
Longitudinal diameter. (c) Equivalent diameter. (d) Estimated volume. (e) Estimated roundness index. *p < .05 (post-test). **p < .01 (post-test)
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Interventional radiology is an emerging discipline in veterinary med-
icine, with few reports of RFA applications in companion animals. 
The non-invasiveness and rapidity of execution associated with this 
technique make it a possible choice for the ablation of canine liver 
masses located in regions difficult to reach, possibly reducing the 
morbidity and post-operative hospitalization time associated with 
these interventions (Linden et al., 2019). Using isolated swine livers 
as a pre-clinical model, our study has described the size, geometry 
and reproducibility of the ablation zones induced by three commer-
cially available systems commonly employed in the treatment of 
thyroid nodules (RFT-0710N and RFTS1010N, RF Medical Co.) or 
hepatocellular carcinoma (VCT-10XXB, RF Medical Co.) in humans. 
The dielectric properties of freshly isolated swine liver resem-
ble those commonly encountered in liver tumours, justifying their 
choice for this type of experimental approach (Stauffer, Rossetto, 
& Prakash, 2003). The data obtained may reveal helpful in the fu-
ture for veterinary oncologists and/or interventional radiologists in 
order to plan and propose RFA treatment for selected cases of liver 
tumours.

Overall, our data indicate that internally cooled and perfused 
systems produce larger ablation zones compared with internally 
cooled and non-perfused systems. This is in line with previous re-
ports (Lee, Kim, & Han, 2005; Livraghi et al., 1997). Continuous 
perfusion of saline into the tissue through holes at the extremity 
of the electrode increases the electrical conductivity of the tissue 
adjacent to the electrode tip, thus increasing RF ablation zone size 
(Denys et al., 2003). The conductivity of 0.9% saline solution is 
12–15 times higher than that of the soft tissues, and conductivity 
increases with increasing saline concentration (Miao et al., 2001). 
Of note, isotonic saline was used as a perfusion fluid in our study, 
which could have reduced the effects of the internally cooled and 
perfused systems in terms of ablation zone size compared with 
studies using hypertonic saline (Lee et al., 2005). In spite of the 
significant effect of saline infusion on the estimated volume of 
the ablation zones produced by perfused versus non-perfused 
systems, statistically significant differences were observed only 
when double passage was performed. This also could be due to 
the fact that isotonic saline was employed, joined to the short time 

required to the system to make tissue conductivity drop. With sa-
line being pumped at 1 ml/min, ablation times as short as 9 s as 
those observed for cooled and perfused systems resulted in vol-
umes as small as 0.2 ml being infused.

The reproducibility of the ablation zones induced with the 
systems tested was considered as acceptable in our study. We 
observed CVs ranging from 0.09 to 0.37 (mean 0.20) for lineal 
measurements as diameters, which is in line with previous reports 
(Song et al., 2015). It also has to be acknowledged that this vari-
ation was likely caused by other factors that summed up to the 
specific performance variability of the systems tested. Indeed, the 
ablation zones were intentionally induced in different liver zones 
in our study, which very likely contributed to the variability ob-
served. We believe this approach more closely resembles what oc-
curs in real clinical life. The CVs of volume measures were higher, 
ranging from 0.35 to 0.57 (mean: 0.49). This might be due to the 
fact that bidimensional measures do not allow an accurate esti-
mation of volumes, for which different approaches will have to be 
used in future studies.

Our data were obtained ex vivo, using macroscopically healthy 
livers. We are aware that in vivo and in the presence of neoplastic 
tissue these results could be altered (Denys et al., 2003). Previous 
studies have reported larger ablation zones in patients with hepatic 
tumors compared with healthy livers, which is likely attributable to 
the difference between hepatic and tumor perfusion (Montgomery, 
Rahal, & Dodd, 2004). The passive centrifugal diffusion of heat 
from the active radiofrequency energy heating zone accounts, by 
far, for most of the final ablation volume. Such passive heat diffu-
sion is extremely sensitive to the cooling effect generated by tissue 
microvascularization (commonly known as the ‘heat sink effect’)(Lu 
et al., 2002) and macrovessel blood flow at the tumor and non-tu-
mour interface (Seror, 2014). Further in vivo studies on veterinary 
patients are warranted to confirm our findings. Moreover, we es-
timated ablation volumes by analysing macroscopic photographs 
taken only from a single slice. While evidence exists in support of 
the use of gross pathological examination as a reliable indicator 
of lethally damaged tissue in RFA (Gemeinhardt et al., 2016; Song 
et al., 2017), a real 3D ablation analysis (either performed by multi 

TA B L E  2   Reproducibility of the ablation zones ablated with a single passage

Electrode Area [cm2] Dmax [cm] Dmin [cm] Deq [cm] Pi [cm] R [-] Vol [cm3]

RFT−0710N 0.19
(1.05 ± 0.2)

0.22 
(1.79 ± 0.39)

0.19 
(0.69 ± 0.13)

0.09 (0.83 ± 0.07) 0.19 
(5.10 ± 0.96)

0.20 (2.01 ± 0.40) 0.35 
(0.45 ± 0.16)

RFTS1010N 0.12 
(1.21 ± 0.14)

0.15 
(2.02 ± 0.31)

0.37 
(0.68 ± 0.25)

0.17 (0.89 ± 0.15) 0.17 
(5.52 ± 0.93)

0.31 (2.07 ± 0.65) 0.57 
(0.51 ± 0.29)

VCT−10XXB 0.35 
(5.60 ± 1.98)

0.22 
(3.52 ± 0.76)

0.18 
(1.85 ± 0.34)

0.19 (2.19 ± 0.42) 0.19 
(10.06 ± 1.93)

0.19 (1.49 ± 0.29) 0.55 
(6.84 ± 3.78)

Mean CV 0.22a  0.20a  0.25a  0.15b  0.18b  0.23a  0.49

Note: Results are expressed as CV (mean ± S.D).
Abbreviations: CV, coefficient of variation; Dmax, longitudinal diameter; Dmin, transversal diameter; Deq, equivalent diameter; Pi, perimeter; R, 
estimated roundness; Vol, estimated volume.
aSignificantly different from the CV of estimated volume data (p < .05). 
bSignificantly different from the CV of estimated volume data (p < .01). 
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slice histology, macroscopy or CT) might have improved the accu-
racy of our results and should be preferred for the assessment of in 
vivo ablated zones.

In conclusion, we have characterized the size, geometry and re-
producibility of the ablation zones obtained using three commercially 
available systems, which could be helpful for veterinary oncologists 
and interventional radiologists for an optimal planning of their inter-
ventions. Our data support the use of internally cooled and isotonic 
saline-perfused rather than internally cooled systems to induce larger 
RFA ablation zones when the same power is applied to the tissues.
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