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a b s t r a c t

Microbial communities that metabolise pentose and hexose sugars are useful in producing high-value
chemicals, resulting in the effective conversion of raw materials to the product, a reduction in the pro-
duction cost, and increased yield. Here, we present a computational analysis approach called CAMP
(Co-culture/Community Analyses for Metabolite Production) that simulates and identifies appropriate
communities to produce a metabolite of interest. To demonstrate this approach, we focus on the optimal
production of lactate from various Lactic Acid Bacteria. We used genome-scale metabolic models
(GSMMs) belonging to Lactobacillus, Leuconostoc, and Pediococcus species from the Virtual Metabolic
Human (VMH; https://vmh.life/) resource and well-curated GSMMs of L. plantarum WCSF1 and L. reuteri
JCM 1112. We analysed 1176 two-species communities using a constraint-based modelling method for
steady-state flux-balance analysis of communities. Flux variability analysis was used to detect the max-
imum lactate flux in the communities. Using glucose or xylose as substrates separately or in combination
resulted in either parasitism, amensalism, or mutualism being the dominant interaction behaviour in the
communities. Interaction behaviour between members of the community was deduced based on varia-
tions in the predicted growth rates of monocultures and co-cultures. Acetaldehyde, ethanol, acetate,
among other metabolites, were found to be cross-fed between community members. L. plantarum
WCSF1 was found to be a member of communities with high lactate yields. In silico community optimi-
sation strategies to predict reaction knock-outs for improving lactate flux were implemented. Reaction
knock-outs of acetate kinase, phosphate acetyltransferase, and fumarate reductase in the communities
were found to enhance lactate production.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The recent years have witnessed the rising use of co-cultures or
microbial communities for the production of various chemicals [1–
3]. In nature, microbes exist in communities, and the use of natural
or engineered consortia has many advantages over single strains.
One of the critical features of a consortium is the ‘division of
labour’ or sharing of metabolic burden between the species. The
product of one engineered strain may be transported to another
microbe, where it can be further metabolised to the final desired
molecule. Co-cultures allow a symbiotic relationship between
strains for the utilization of multiple substrates and removal of
inhibitory by-products. Some challenges in co-culture studies
include compatibility between the strains concerning their growth
conditions, such as temperature, pH, and media [4].

Computational modelling of co-cultures is feasible with the use
of genome-scale metabolic models (GSMMs). GSMMs of micro-
organisms computationally describe the metabolism of an organ-
ism through the gene-protein-reaction associations. Progress in
the reconstructions of GSMMs has allowed a wide variety of meta-
bolic studies by generating model-driven hypotheses and context-
specific simulations by the integration of various omics and kinetic
data [5]. GSMMs have been used to predict targets for gene manip-
ulation either through knock-outs or up-and down-regulation,
which have resulted in improved production of industrially rele-
vant chemicals from micro-organisms [6,7]. In an E. coli strain
(XB201T) producing 0.55 g/L of D-phenyl lactate, knock-outs of
tyrB and aspC genes that were identified as potential knock-out

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2021.11.009&domain=pdf
https://vmh.life/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2021.11.009
http://creativecommons.org/licenses/by/4.0/
mailto:kraman@iitm.ac.in
https://doi.org/10.1016/j.csbj.2021.11.009
http://www.elsevier.com/locate/csbj


M. Ibrahim and K. Raman Computational and Structural Biotechnology Journal 19 (2021) 6039–6049
candidates from in silico analysis enhanced the production to
1.62 g/L [6].

A number of modelling approaches have been used to study
microbial interactions in communities [1,8–10]. In particular,
constraint-based modelling approaches are very useful to study
metabolic interactions between species in a community [54].
Methods to design division of labor in microbial communities have
also been developed using GSMMs [11]. In the current study, we
present a constraint-based modelling analysis approach called
CAMP (Co-culture/Community Analyses for Metabolite Produc-
tion), which evaluates a set of GSMMs to identify suitable two-
species communities that can produce a given metabolite. We
demonstrate this approach by analysing GSMMs of selected Lactic
Acid Bacteria (LAB) to construct two-species communities and
examine their potential for optimal production of lactate.

Lactate is an a-hydroxy carboxylic acid that is chemically reac-
tive and is synthesised to various intermediates such as acrylic
acid, 1,2-propanediol, and lactide. Lactide is the building block
for producing polylactic acid (PLA) [12]. PLA is a biodegradable
biopolymer that finds applications in the biomedical industry to
manufacture stents, surgical sutures, soft-tissue implants, etc.
[13]. Lactate is also used in the food industry as an acidulant, a
preservative, and an emulsifier [12]. The D-isomer is considered
harmful to humans in high doses. It can cause acidosis or de-
calcification; hence, the L-isomer of lactate is preferred in the food
and pharmaceutical industry [14].

Microbial fermentation is an effective route to produce lactate,
as optically pure D- or L-lactate can be produced based on the
selection of appropriate micro-organisms. LAB can be classified
as either homofermentative or heterofermentative, depending on
the metabolism of hexoses and pentoses and the production of
end products. In homofermentative cases, the sugars are metabo-
lised via the Embden-Meyerhof-Parnas (EMP) pathway, whereas
in the heterofermentative case, the phosphoketolase pathway is
active [15].

In Lactobacillus co-cultures of L. brevis and L. plantarum with
glucose and xylose as substrates and NaOH treated corn stover,
high lactate yields of 0.8 g/g was obtained, which is more signifi-
cant than in monocultures of the same species [16]. L. rhamnosus
and L. brevis were also used in co-culture, and lactate productivity
of 0.7 gL-1h�1 was obtained [17]. Co-culture of L. pentosus and
genetically engineered Enterococcus faecalis produced 3.68 gL-
1h�1 of lactate [18]. A consortium of cellulolytic fungus Tricho-
derma reesei and L. pentosus fermented on whole-slurry pre-
treated beech wood led to the production of 19.8 g L-1 of lactate.
L. pentosus consumed cellobiose, avoiding inhibition of T. reesei cel-
lulase activity, and acetic acid produced from L. pentosus was uti-
lised as a carbon source by the fungus [19]. GSMMs of various
LAB such as Lactobacillus reuteri, Leuconostoc mesenteroides, Lacto-
bacillus plantarum, Lactobacillus casei, Lactococcus lactis, and Strep-
tococcus thermophilus have been published [20].

We used the CAMP (Co-culture/Community Analyses for
Metabolite Production) approach to predict growth rates of LAB
species in monoculture and co-culture. We categorised the interac-
tions in LAB communities based on the changes in predicted
growth rates, either unidirectional such as commensalism, amen-
salism, and neutralism, or bi-directional such as mutualism and
competition. We analysed the effects of single and multiple nutri-
ent substrates on interaction types between communities. We
examined the metabolites that are exchanged between the species
of a community. We predicted reaction knock-outs in LAB commu-
nities that would improve lactate flux. Overall, our strategy is gen-
eric, and it can be applied to identify communities to produce
specific metabolites of interest. We postulate that this analysis
strategy will benefit metabolic engineering applications that
involve microbial communities.
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2. Results

In this study, we present our workflow for co-culture/
community analyses for metabolite production (CAMP). We intend
to provide these collective analyses as a clear strategy for the selec-
tion of suitable microbial communities for target metabolite pro-
duction. In this section, we present a brief overview of our
approach, followed by its application to identify the most promis-
ing co-cultures for producing lactate.
2.1. Overview of CAMP (Co-culture/Community Analyses for
metabolite Production)

Fig. 1 gives an outline of the CAMP workflow. The steps include:

1) Retrieval of microbial GSMMs from databases such as VMH.
Each of these GSMMs is simulated in three different nutrient
conditions (See Methods). Predicted growth rates and pro-
duct flux are obtained using flux balance analysis (FBA)
and flux variability analysis (FVA). The product yield is com-
puted as the maximum product flux obtained per unit flux of
substrate uptake.

2) Two-species communities are created using SteadyCom [10].
Community models are simulated in three nutrient condi-
tions. FBA and FVA are used to predict community growth
rates and product yield in the community. Monoculture
and co-culture growth rates are compared to identify an
increase or decrease in growth when an organism is simu-
lated in the presence of another.

3) Expected product yield in a community is compared to the
observed product yield. Details on the calculation of product
yield can be found in Methods section. Communities with a
10-fold increase in product yield are regarded as candidate
communities for optimal production of the target metabo-
lite. Communities are assessed for their relative abundances,
type of interaction behaviour observed, and the cross-fed
metabolites.

4) In silico community optimisation is performed using FSEOF
[21], which enables to shortlist potential reaction knock-
outs that will increase product flux in the community. Reac-
tion knock-outs can be from either species in the
community.
2.2. Growth phenotypes of LAB in monoculture

For all 49 GSMMs, their predicted growth rates in monoculture
with glucose and xylose as major carbon sources were computed
for the three different nutrient conditions — minimal-nutrient,
excess-nutrient, and community-specific nutrient condition (see
Methods). The maximal lactate fluxes of each model in all three
conditions were also computed. The growth rates of each LAB spe-
cies in the different nutrient conditions are detailed in S1 Table. It
was observed that for all models, the active reactions that had a
non-zero flux belonged to the central carbon metabolism, such as
Embden-Meyerhof-Parnas (EMP) pathway, pentose phosphate
pathway (PPP), and the pentose phosphoketolase (PPK) pathway
[22] as seen in Fig. 2. A histogram of predicted monoculture growth
rates (S1 Fig) under the three nutrient conditions shows that many
species have similar growth rates in all conditions within the range
of 0.01 to 0.1 (h�1). The highest growth rates (greater than0.3 h�1)
are observed in the community-specific and excess nutrient
conditions.



Fig. 1. Outline of CAMP (Co-culture/Community Analyses for Metabolite Production) Monoculture and two-species microbial community analyses using FBA and FVA.
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2.3. A significant change in monoculture vs. co-culture growth rates
helps segregate communities into six categories

A difference of 10% in predicted growth rates of the microbes in
monoculture versus co-culture has been previously established to
be significant [23]. Based on these comparisons, viable LAB com-
munities from each nutrient condition were put into categories
as follows: Amensal communities, i.e., one microbe grows slower
in the community simulation while the other microbe’s growth
rate is unaffected. Competitive communities, i.e., both microbes’
growth, is slower than their monoculture rates. Parasitic communi-
ties, i.e., one microbe grows faster in the community simulation
while the other microbe grows slower. Neutral communities, i.e.,
neither microbes’ growth rate was affected upon being paired with
the other. Commensal communities, i.e., one microbe, has an
increase in growth rate while the other remains unaffected. Lastly,
mutualistic communities where both microbes in the pair show an
increase in the growth rates compared to their monoculture rates.
Fig. 3 depicts the interaction behaviour in communities when each
microbe influences the growth of the other, either positively or
negatively.

In community-specific nutrient conditions, 354 viable pairs out
of 1176 were identified, as seen in Fig. 4. Parasitism was the
‘favoured’ interaction type, with 235 pairs out of 354 displaying
parasitic behaviour. In minimal nutrient conditions, there were
492 viable pairs. Again, parasitism was dominant in this group,
with 224 out of 492 pairs exhibiting parasitism. In contrast, in
the excess nutrient condition, from among 338 viable pairs, 215
pairs had amensal behaviour. Parasitism, mutualism, and commen-
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sal pairs were not identified in this group. Heatmaps for the mini-
mal and excess nutrient conditions are provided as S2 & S3
Figs. S4-S6 Figs contain heatmaps that depict the absolute values
of the predicted growth rates of each species grown in the presence
of 48 other species.
2.4. Occurrences and relative abundance profiles of the LAB species

The frequency of occurrence of each microbe among the viable
communities in each nutrient condition was calculated. L. oris and
L. animalis had the highest occurrences among all Lactobacillus spe-
cies. Leuconostoc species were also found to rank higher in the
number of occurrences among the viable set, irrespective of the
nutrient condition. Each of these microbes was found in at least
20 pairs or more. Pediococcus species formed the least number of
pairs in the community-specific nutrient condition. L. pentosus
KCA1 was found to constitute the least number of viable pairs (less
than 10) in all nutrient conditions.

The distribution of predicted relative abundances of each
microbe when co-cultured under different nutrient conditions
are shown in Fig. 5. The abundances were found to vary depending
upon the number of viable communities associated with each
microbe. Differences were also seen among the nutrient condi-
tions, with most LAB species having a mean abundance of lesser
than 0.5 in the excess nutrient condition. L. oris, present in many
viable communities, had an average abundance of less than 0.25
in the minimal and excess nutrient conditions. In contrast, it had
an abundance higher than 0.5 in the community-specific condition.
Relative abundances greater than 0.75 were seen among Leuconos-



Fig. 2. Active pathway reactions with non-zero fluxes in the LAB models when grown in monoculture and co-culture. Glucose and xylose (shaded red) are the primary
substrates that are metabolised to the end-products lactate, acetate, and ethanol (shaded green). Metabolite and reaction notations and reaction directionalities are denoted
as seen in the LAB GSMMs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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toc species and some Lactobacilli species in the community-specific
nutrient condition. This variation in abundance profiles highlights
the role of nutrient constraints in driving community behaviour.

2.5. Dominant interaction behaviour differs in communities grown
with single and multiple substrates

Symbiotic interactions in microbial communities are found to
arise more readily though pertubations in the enviroment than
genetic alterations, thereby highlighting the role of environments
in inducing microbial ecosystems [24].

To examine if the type of interaction detected in a community is
dependent on the number of carbon sources utilised, we simulated
the community models for growth on glucose and xylose indepen-
dently. We compared these findings to when both glucose and
xylose are provided as substrates to the communities for growth.
Fig. 6 highlights the interaction types observed when glucose or
xylose is used as a substrate under different nutrient conditions.

Among the 49 LAB models, only 11 models can metabolise
xylose as a sole nutrient source. Mutualistic pairs constituted an
average of 40% of viable pairs in the minimal and community-
specific conditions with xylose as substrate. The number of mutu-
alistic pairs in xylose-only conditions indicates the rise of an emer-
gent property in the community. Viable pairs with amensalism
behaviour are found to be higher in excess nutrient conditions. Par-
asitism prevailed in both minimal and community-specific nutri-
ent conditions irrespective of the presence of a single or multi-
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substrate. As all 49 organisms are capable of metabolising glucose,
some competitive behaviour is observed primarily in glucose-only
excess conditions. Whereas, in xylose-only conditions, competition
is almost absent, with only a maximum of three viable pairs
exhibiting competition.

2.6. Cross-fed metabolites in the LAB communities

Cross-feeding is an emergent property in the assembly of
microbial communities, such cross-feeding networks may stabilise
competition within related species for the carbon source provided
[25]. Metabolic cooperation aided by metabolic exchanges or
cross-feeding of amino acids and sugars have been identified as a
key driver of co-occurrence in microbial communities of diverse
habitats [26]. Cooperative communities which are metabolically
dissimilar are found to have higher cross-feeding potential [27].
Metabolic secretions that do not alter the fitness of the species
are termed as costless secretions. Such secretions are found to pro-
mote interspecies interactions in microbial ecosystems [28].

In CAMP, a metabolite was considered cross-fed if it was
secreted (i.e., the flux of the exchange reaction for the particular
metabolite was positive) into the community compartment (u)
by one organism and taken up (i.e., the flux of the exchange reac-
tion of the metabolite was negative) by the other organism in the
community. A threshold of 2 mmol/gDW/h was used to determine
all such cross-fed metabolites for the viable communities in each
nutrient condition. Fourteen metabolites were cross-fed between



Fig. 3. Different interaction types possible between the two-species communities.
A positive or negative effect on the growth of the species defines each interaction
type.

M. Ibrahim and K. Raman Computational and Structural Biotechnology Journal 19 (2021) 6039–6049
the LAB communities. The most widely cross-fed metabolites
across all viable communities were acetaldehyde, ethanol, acetate,
and formate. Lactate was also found to be cross-fed between 35% of
communities across different nutrient conditions. Metabolites such
as amino acids and inorganic compounds that were provided as a
part of the growth nutrient media were not considered as cross-
fed. Each community model exchanged varied sets of metabolites
depending on the nutrient condition it was simulated in. We
checked whether the cross-fed metabolites are specific to any
interaction type and found that the metabolites are common to
all interaction types. The fraction of metabolites cross-fed in coop-
erative communities with mutualistic, commensal, and neutral
interactions is higher than in communities that exhibit parasitic
and competitive behaviour. S2 Table has the list of cross-fed
metabolites in each interaction type.
2.7. Evaluating the performance of communities based on growth and
lactate yield

We evaluated the performance (see Methods) of the community
models in two scenarios. In the first set of simulations, lactate was
not allowed to be cross-fed between the community members. In
the second case, one organism in the pair is designated as the pri-
mary consumer of the substrates glucose and xylose, thereby cre-
ating a dependence of the second organism on the first for
growth and vice-versa. Community pairs that retained their viabil-
ity in the two test scenarios were deemed fit for further commu-
nity strain optimisation strategies. This performance test was
carried out in all three nutrient conditions. Forty community pairs
were common in two nutrient conditions, community-specific
nutrient uptake and minimal nutrient uptake. Seven LAB commu-
nities were unique to the excess nutrient condition. Each of these
pairs had an observed lactate yield 10-fold higher than the
expected lactate yield of the community (S3 Table).
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2.8. Glucose fermenters have a higher lactate yield than communities
where both xylose and glucose is utilised

For grading the community pairs based on both their growth
rate and product yield, the biomass, and lactate flux values were
normalised (min–max normalization). Upon normalisation, the
best pairs were identified. A detailed list of all communities is
found in S3 Table. Each of the top six pairs shared an organism,
namely, L. plantarum WCFS1, which is coupled with two strains
of L. casei, L. rhamnosus LMS2, L. animalis KCTC 3501, Leuconostoc
argentinum, and Leuconostoc lactis.

To determine why specific communities fare better in lactate
production, we examined the changes in the reaction fluxes of
these communities as well as the cross-fed metabolites. We found
no significant association between the cross-fed metabolites and
lactate yields. However, by comparing reaction fluxes from a ran-
dom set of four communities between the two groups, i.e., high-
lactate producers and low-lactate producers, we find some reac-
tions have a five-fold increase in fluxes in the high-lactate group
(S4 Table). These reactions include glyceraldehyde 3-phosphate
dehydrogenase, triose-phosphate isomerase, fructose bisphos-
phate aldolase, fumarate reductase, transaldolase, and phospho-
enolpyruvate carboxylase. The reactions belong to pathways
associated with carbohydrate metabolism and hence may be
instrumental in regulating the lactate flux.

Contrary to expectations, in the best-performing pairs, both the
organisms are not capable of utilising glucose and xylose together.
Only the Leuconostoc species can metabolise both glucose and
xylose, while the remaining organisms are glucose fermenters.
The metabolic distances (Jaccard distances) between the GSMMs
in the best-performing pairs were calculated (see Methods) using
reaction lists from each model. The top-ranked pairs had a Jaccard
distance greater than 0.7, indicating that they had less than 30% of
their reactions in common, and therefore, distinct metabolic capa-
bilities. Besides, all the high-lactate-producing communities dis-
played either commensal, mutualistic, or neutral interaction
behaviours in the three different nutrient conditions. This suggests
that metabolic complementarity and compatibility between the
organisms are necessary for the stability of a community.

2.9. Elimination of reactions from competing pathways provide an
enhanced lactate flux in the LAB community

Due to the paucity of methods that are designed to predict gene
or reaction knockouts in microbial communities, we adapted exist-
ing strategies such as FSEOF (Flux Scanning based on Enforced
Objective Flux), which were designed for single-species microbial
models, to predict reaction knock-outs in the LAB communities.
Based on the FSEOF approach (see Methods), we could predict suit-
able reaction knock-outs in six LAB community models that
improved lactate flux compared to the flux obtained in the wild-
type community. These communities each had one organism from
the Leuconostoc genus, capable of fermenting both glucose and
xylose. These community species are heterofermentative, i.e., they
are capable of the production of mixed organic acids such as etha-
nol, formate, and acetate in addition to lactate. Among the pre-
dicted knock-out targets, the reactions with a maximum increase
of lactate flux are tabulated in Table 1.

As evident from these reactions, routes towards the production
of other acids, such as acetate, formate, and succinate, are impeded
to allow higher flux towards reactions leading to the biosynthesis
of lactate. The details of predicted reaction knock-outs in each
community model and the equivalent lactate flux observed in that
community upon deletion are provided in the S5 Table.

Our findings using this approach for microbial communities
concur with experiments observed in literature where deletion of



Fig. 4. Monoculture vs. co-culture growth rates. The heatmap depicts the change in the growth rate of an organism’s predicted monoculture growth compared to when it is
co-cultured with another species under community-specific nutrient conditions. Growth outcomes of 1176 pairwise communities are shown here. A difference greater than
10% of monoculture growth is considered an increase (denoted in blue), whereas lesser than 10% of monoculture growth is regarded as a decrease (denoted in red). 822 non-
viable pairs and the diagonal, which represents 49 monocultures, are depicted as white squares. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

M. Ibrahim and K. Raman Computational and Structural Biotechnology Journal 19 (2021) 6039–6049
the genes counterpart to these reactions has increased the lactate
yield from monocultures of various micro-organisms. An engi-
neered strain of Enterobacter aerogenes ATCC 29,007 with the phos-
phate acetyltransferase (pta) gene deletion was found to have a
higher L-lactate yield by utilization of mannitol [29]. Escherichia
coli K12 strain MG1655 has been engineered by the inactivation
of the pyruvate-formate lyase (pflB) and fumarate reductase (frdA)
gene to increase the yield of D-lactate from glycerol [30]. A single-
gene knock-out of the pflA gene in the E. coli BW25113 strain has
proven to improve D-lactate production from glucose [31]. In Sac-
charomyces cerevisiae, the deletion of D-ribulose-5-phosphate 3-
epimerase (RPE1) induces the simultaneous utilization of xylose
and glucose [32]. Gene knock-outs are an essential metabolic engi-
neering strategy employed for overcoming barriers of carbon
catabolite repression for the co-utilization of carbon sources by
microbes [33,34]. Therefore, we hypothesise that to design efficient
microbial communities, appropriate gene knock-outs from either
one or both the organisms in a co-culture will enhance the co-
utilization of mixed carbon substrates and improve product yield.
In this regard, in silico approaches as described above will aid in
making informed decisions for knock-out experiments.
6044
3. Discussion

Lactate synthesis through bacterial fermentation methods is of
great importance for improving the compound’s availability and
aiding the production of lactate derivatives with high industrial
value. While several computational approaches to study microbial
communities have emerged in recent years [8,10,35,36], there is
still no rigorous methodology to systematically choose a co-
culture for optimal production of industrially relevant metabolites,
such as the production of lactate. In this study, we report CAMP
(Co-culture/Community Analyses for Metabolite Production), an
analysis approach to systematically screen multiple candidate
communities on multiple substrates under different growth condi-
tions and rank the best-performing communities that will most
likely succeed in laboratory experiments. Our approach utilises
emerging computational methods with GSMMs in the context of
microbial communities of LAB. In pursuit of an ideal two-species
community for lactate production, we established a framework
where community growth is the objective. The community model
is tested for growth on two primary carbon sources, glucose and
xylose. Screening of viable communities based on predicted



Fig. 5. Relative abundance profiles of LAB species in co-culture under different nutrient conditions (A) minimal nutrient condition (B) community-specific condition (C)
excess nutrient condition.

Fig. 6. Distribution of the various interaction types between viable pairs in nine different nutrient conditions. The plot shows the fraction of communities with a particular
interaction type in each nutrient condition.
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growth and lactate yield further enabled comparison between
monoculture and co-culture states. Communities were labelled
with specific interaction behaviours because of the changes
observed in growth rates. The results obtained elucidated the role
of single or multi-substrates for the prevalence of a particular
interaction type in the communities. A change in nutrient condi-
tion revealed differences in the interaction behaviours of the com-
munities, but this did not influence the results of the top-ranked
communities based on lactate yield.
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In our analysis, the community model of L. delbrueckii subsp.
delbrueckii bulgaricus and L. paracasei subsp. paracasei was shown
to have a 58% higher observed lactate yield than the expected yield.
This community was previously observed in experiments to have a
lactate yield of 38 g/L from cassava bagasse hydrolysate [37]. Our
analysis also showed communities of L. brevis ATCC 367 with L.
plantarum and L. pentosus to be viable. In experimental work by
Zhang et. al, L. brevis ATCC 367 and a related L. plantarum ATCC
21,028 species was found to produce greater lactate in coculture



Table 1
List of reaction knock-outs that lead to an increased lactate flux in different LAB communities.

Reaction ID Reaction Name Reaction Formula

ACKr acetate kinase acetate + ATP , acetyl-phosphate + ADP
PTAr phosphotransacetylase acetyl-CoA + phosphate , acetyl-phosphate + CoA
PFL pyruvate formate lyase pyruvate + CoA , acetyl-CoA + formate
FRD fumarate reductase fumarate + ubiquinol-8 , succinate + ubiquinone-8
RPE ribulose 5-phosphate 3-epimerase ribulose 5-phosphate , xylulose 5-phosphate
XU5PG3PL D-xylulose 5-phosphate

D-glyceraldehyde-3-phosphate-lyase
xylulose 5-phosphate + phosphate ? acetyl-phosphate +
glyceraldehyde 3-phosphate + H2O
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than in monoculture, with a yield of 0.8 g/g from poplar hydroly-
sate [16]. Garde et. al, have co-inoculated L. brevis and L. pentosus
with hemicellulose hydrolysate and have observed a lactate yield
of 0.6 g/g sugar and complete substrate utilisation [38]. The com-
munity comprising of L. casei ATCC 334 and L. plantarum WCFS1
was considered as the best-performing pair. These species have
been used independently in industrial applications as starter cul-
tures. L. plantarum is found in many ecological niches and is one
of the model organisms in LAB research [39]. The GSMM of L. plan-
tarum was one of the first reported GSMMs from the LAB species
[40]. The presence of L. plantarum in the top-ranked pairs in our
study reiterates the compatibility of this microbe with other LAB
species and its utility for lactate production. Other L. plantarum
and Leuconostoc species are used as co-cultures for the fermenta-
tion of Chinese sauerkraut [41]. L. rhamnosus strains have been
co-cultured with Saccharomyces cerevisiae for enhanced
exopolysaccharide production [42]. Pediococcus acidilactici species
have been co-cultured with L. delbrueckii species for pediocin pro-
duction in milk [43].

Highly efficient micro-organisms are required to meet the
industrial standards for lactate production. This can be achieved
through perturbation, i.e., the addition or deletion of genes that
enhance the community’s capability to produce lactate. To address
this aspect, we undertook an in silico strain optimisation approach
using FSEOF to predict reactions that can be deleted to improve
product flux. The results we observed were encouraging as they
were in accordance with previously published experiments where
gene deletion was utilised to enhance lactate yield in monocul-
tures of different micro-organisms. These results also allude that
gene knock-outs identified in monoculture can be extended to
microbial communities as well. The gene knock-outs can be from
one or both organisms in a co-culture. Such insights can be used
for developing strain optimisation algorithms specifically for
microbial communities. Co-cultures and communities of LAB can
provide a significant advantage over the engineering of monocul-
tures. With our framework, we have predicted LAB communities,
which are useful candidates to produce lactate. These predictions
form a ready shortlist for experimental validation. Our workflow
can be extended to communities of larger sizes as well, although
the increase in combinatorial complexity will also demand an
increase in computational cost. The algorithm, SteadyCom has
been originally designed to predict species abundance in densely
populated microbial communities such as the human gut. In CAMP,
SteadyCom has been applied to simulate two-member synthetic
communities that are assumed to coexist in an experimental setup
for biotechnological uses. Static FBA based algorithms such as Stea-
dyCom have some limitations that may impose ‘forced altruism’ on
individual species to produce metabolites for other community
members before optimisation of its fitness objective if this can, in
turn, maximise the community-level objective function value [44].

Another caveat of this study is the dependence on the quality of
the GSMMs used. The biochemical pathways to produce the
metabolite of interest should also be well defined in the GSMMs.
Nevertheless, as newer, more accurate reconstructions emerge,
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they can be used in our approach to present more accurate insights
into the compatibility and interactions between organisms to
choose the best possible community for a given application. Our
approach provides a ready framework for integrating additional
experimental data arising from transcriptomics studies or 13C
metabolic flux analyses to constrain the models better and
improve the accuracy of the predictions.

In sum, we have presented a systematic workflow for the care-
ful screening and analysis of many microbial co-cultures to pro-
duce the desired metabolite. Our method examines these co-
cultures across growth conditions and across multiple substrates
to identify the most promising candidates for experimental valida-
tion. Computational approaches, as presented in this study, can
provide additional flexibility and valuable insights towards
informing the selection of microbial co-cultures for metabolic
engineering.
4. Methods

4.1. GSMMs

The Virtual Metabolic Human (www.vmh.life) repository was
used for retrieving 47 Lactic Acid Bacteria GSMMs. Models (AGORA
version 1.03) of Lactobacillus, Leuconostoc, and Pediococcus species
were obtained [45]. Previously curated and published GSMMs of
L. plantarum WCSF1 and L. reuteri JCM 1112 were also used to con-
struct the synthetic communities of LAB [20,40]. A list of all 49
GSMMs used in this study is tabulated in the S1 Table. Three mod-
els from VMH, namely, L. amylolyticus, L. crispatus, and L. delbrueckii
subsp. bulgaricus ATCC BAA 365 did not have the necessary
exchange and transport reactions for glucose. We added glucose
exchange and transport reactions to these models based on evi-
dence from literature suggesting their capability to metabolise glu-
cose [46].
4.2. Creation and growth simulations of two-species communities

We generated all possible pairwise combinations of the 49 spe-
cies to yield 1176 synthetic LAB communities and simulated them
using SteadyCom [10], a constraint-based modelling method for
the creation and steady-state flux-balance analysis (FBA) of micro-
bial communities. SteadyCom performs a community FBA by com-
puting the relative abundance of each species with the objective
function of maximisation of community growth.

LAB is cultured in laboratories with MRS (deMan, Rogosa, and
Sharpe) nutrient media. Analogous growth conditions were simu-
lated in silico using nutrient uptake components for LAB models
obtained from the KOMODO (Known Media Database) at Model-
SEED [47]. All known 20 amino acids were included in this nutrient
media. Lignocellulose hydrolysate contains glucose and xylose as
significant components. Hence, to mimic this substrate composi-
tion, we constrained the lower bounds of glucose and xylose
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exchange reactions in the community compartment (u) of the
models.

Due to a lack of species-specific data for glucose and xylose
uptakes, we considered three nutrient conditions: a) a minimal
nutrient condition with �1 mmol/gDW/h of glucose and xylose
each, b) an excess nutrient condition with constraints of �30 and
�10 mmol/gDW/h for glucose and xylose, respectively, and c)
finally a community-specific nutrient condition, where we identi-
fied the glucose and xylose uptake fluxes at half-maximal growth
rates of each model. The lower bounds of the amino acid exchange
reactions and other essential components required for model
growth were considered as �1 and �1000 mmol/gDW/h, respec-
tively [48]. ATP maintenance constraints for all the LAB models
were fixed at 0.36 mmol/gDW/h, as observed in the curated L. plan-
tarum WCFS1 and L. reuteri JCM 1112 GSMMs. The growth simula-
tions were performed in an anoxic environment, as LAB are
anaerobic micro-organisms. Steady-state community growth rates,
as well as species abundances, were computed. The goal of this
study was to identify LAB communities that are stable and viable;
hence the objective function of maximisation of community bio-
mass was deemed suitable to select such communities. All simula-
tions were performed in MATLAB R2018a (MathWorks Inc., USA)
using the COBRA Toolbox v3.0 [49] and IBM ILOG CPLEX 12.8 as
the linear programming solver.

4.3. Categorising communities based on interaction type

Communities were categorised into six interaction types,
namely, parasitism, amensalism, commensalism, mutualism, neu-
tralism, and competitive, based on a 10% difference in growth rates
of the microbe when grown in co-culture compared to when the
bacterium is grown separately [23]. Mutualism and commensalism
have a positive effect on community partners, whereas parasitism,
competition, and amensalism evoke a negative response on the
growth of either partner.

4.4. Studying variation in lactate fluxes in a community using FVA

We calculated the maximum lactate produced by a community
using FVA on viable communities. FVA computes the flux range of
every reaction by minimising and maximising the flux through the
reactions [50]. We considered a community viable if each organism
in the community had a minimum growth rate of 0.01 h�1 or
higher [51]. While performing FVA, the biomass reaction in each
community was constrained to the maximum community growth
rate obtained. SteadyComFVA was used to calculate the maximum
flux through the lactate exchange reaction in the community com-
partment (‘‘EX_lac_D(u)”).

4.5. Computing expected vs. Observed lactate yield in each community

The ConYEmodel proposed by Medlock et al. [52] for identifying
metabolic mechanisms of interactions within gut microbiota was
adapted to our study to calculate and compare the expected and
observed lactate yield from each LAB community. The ConYE
model identifies metabolites for which the consumption or pro-
duction behaviour is altered in co-culture. Each strain is assumed
to produce or consume a fixed quantity of each metabolite. This
assumption is tested by comparing the expected behaviour to the
observed co-culture data. The null hypothesis states that the
metabolite in co-culture is equal to the predicted amount. Reject-
ing the null hypothesis implies that the co-culture has caused at
least one species to alter the metabolism of the metabolite [46].

With the lactate fluxes identified in monoculture conditions, an
estimate of the lactate flux produced in co-culture can be made,
considering the substrate utilisation by each species in co-
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culture. This computed expected lactate yield is compared with
the maximum lactate fluxes observed in the community compart-
ment (u) in co-culture.

MOi
observed metabolite yield

MOi
¼ maximum metabolite flux in coculture

Total substrate uptake

MEi ¼ ðs1 � y1i Þ þ ðs2 � y2i Þ
MEi expected metabolite yield
s1 total substrate uptake of species 1 in co-culture
s2 total substrate uptake of species 2 in co-culture
y1i the maximum yield of metabolite i in species 1 in

monoculture

y1i ¼
maximum metabolite flux of species 1

substrate uptake of species 1

y2i the maximum yield of metabolite i in species 2 in
monoculture

y2i ¼
maximum metabolite flux of species 2

substrate uptake of species 2

If the observed lactate yield of a community is 10-fold higher
than the expected yield, i.e. MOi

� 10 �MEi
, the community is con-

sidered as a candidate pair for lactate production.

4.6. Selection of product and growth-efficient communities

Product and growth-efficient communities are defined as com-
munities where a perturbation to the availability of substrates does
not affect the viability of the community and the capability to pro-
duce lactate. To identify such product and growth-efficient com-
munities, a set of simulations were performed. In the first
simulation, the D-Lactate exchange reaction of one organism in
the pair was blocked, which prevented cross-feeding of D-Lactate
between the community members. Secondly, one organism in
the pair was considered as the primary consumer of the substrates,
while substrate consumption was blocked in the other organism.
Community pairs that retained viability in all simulations were
ranked after normalisation (min–max normalisation using the
‘rescale’ function in MATLAB R2018a) of lactate yields and growth
rates.

4.7. Metabolic distances of LAB communities

We computed metabolic distances of all LAB models in each
community, as described in Magnúsdóttir et al. [53]. The distance
is calculated using the Jaccard distance. Metabolic Distance =
1� Ri\Rjj j

RiRjj j , where Ri is the reaction list from the model i and Rj is

the reaction list of model j. A metabolic distance of 1 indicates that
the two models do not share any reactions, whereas a metabolic
distance of zero indicates that the models have identical reactions.
Among the 1176 LAB communities, 641 had a metabolic distance
greater than 0.4 (S6 Table).

4.8. Community optimisation and prediction of reaction knock-outs
using FSEOF

We performed strain optimisation methods such as the identi-
fication of knockout targets in each LAB community that would
positively impact lactate production. To this end, we used the
FSEOF (Flux Scanning based on Enforced Objective Flux) approach
[21]. Using FSEOF, potential reactions to be knocked out were
selected based on metabolic flux scanning, which selects fluxes
towards product formation. Other constraints used to predict reac-
tion knock-outs included an increase in lactate flux of the mutant
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community model compared to wild-type and viability (i.e., a
growth rate of 0.01 h�1 or higher) of both organisms in the com-
munity. When the number of reactions obtained from FSEOF was
less than or equal to an arbitrary threshold of 30, double deletions
were carried out to test all possible knock-out combinations (i.e., a
maximum of 435 double deletions) of these reactions. The thresh-
old of 30 reactions was chosen for ease of computation. A suitable
strategy was selected depending upon the contribution of each
deletion towards an increase in lactate flux compared to the
wild-type lactate flux. On the other hand, if the reaction list had
greater than 30 reactions, only single reaction deletions were per-
formed to identify potential knock-outs that improved lactate flux.
For this in silico strain optimisation task, the COBRA Toolbox v3.0
functions ‘removeRxns’ and ‘optimizeCbModel’ were used for reac-
tion deletions and FBA with optimisation of community biomass,
respectively.

5. Data availability

All models used in this work and the codes used for our analysis
are available at https://github.com/RamanLab/CAMP
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