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ABSTRACT

We present gene prioritization system (GPSy), a
cross-species gene prioritization system that facili-
tates the arduous but critical task of prioritizing
genes for follow-up functional analyses. GPSy’s
modular design with regard to species, data sets
and scoring strategies enables users to formulate
queries in a highly flexible manner. Currently, the
system encompasses 20 topics related to conserved
biological processes including male gamete de-
velopment discussed in this article. The web
server-based tool is freely available at http://gpsy.
genouest.org.

INTRODUCTION

High-throughput technologies have generated a vast
amount of biological information. However, it remains a
difficult task for biologists and clinical researchers to
identify genes potentially important for a given biological
process or disorders related to it based on these data. When
various sources of information are weighted and prioritized
by investigators based on their subjective perception of
how important they are, a bias may be introduced. To
tackle this critical problem, the bioinformatics field has de-
veloped a number of solutions for gene prioritization (1);
these methods are typically based on the idea that genes
whose expression patterns, subcellular localization, struc-
tural domains, molecular functions or physical interactions
are similar to those known to be important for a given
biological process or a pathology, are likely to play
critical roles as well. Alternatively, genes can be prioritized
on the basis of domain-specific knowledge for specific
diseases and biological processes (2,3). The tools available
are either standalone applications (4–6) or solutions imple-
mented on web servers (1). These systems exploit several

data sources and many of them require known (‘training’)
genes as a control (positive) reference set for prioritization
(1,7–12). A number of these solutions bring together infor-
mation from diverse sources both within and across species
and are often too vast to be integrated manually. The
existing solutions, while very useful, are limited in the
choice of species, query options and coverage of data
types. Moreover, none of them fully exploit multiple
sources of information across species.

The majority of existing approaches (Supplementary
Table S1) are centered on human, some include several
species (13–16), and others utilize data from one organism
to drive prioritization in another species (4,11–13,17–22).
Chen et al. (11) demonstrated that the inclusion of a single
data type (phenotype) from an alternate organism (mouse)
significantly improved prioritization of human disease
candidates. Protein–protein interaction data from multiple
organisms has also been shown to aid gene prioritization
(12,21,22). This cross-species capability, however, is
restricted to a single data type in each case.

Our lab has been developing and maintaining solutions
for genome biological data management, data analysis
and data dissemination (23–25) during the last decade.
Here, we present the first release of the gene prioritization
system (GPSy), which currently covers 20 topics related to
conserved biological processes including cellular develop-
ment and differentiation (3 topics), organ/tissue develop-
ment (15 topics) and disorders/diseases (2 topics;
Supplementary Table S2 for a complete list). Users can
query the system with genes from a list of 45 eukaryotic
species including all major model organisms; it is possible
to upload lists of genes identified via expression profiling,
proteomics, genome wide association (GWA) studies or
even complete genomes. The submitted lists of genes
are analysed using biological data falling into four broad
categories (Sequence, Expression, Annotation and
Association) each in combination with a specific ranking
method (Figure 1A and Supplementary Table S3).
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Importantly, the ranking parameters are flexible which
enables users to attribute different weights and to select
species of interest for each data type (Figure 1B). We
provide an optimized weight scheme for each topic
based on an evaluation of different weight combinations
ranging from 1 to 10 for each data type. Taken together,
these features allow for complex queries pertaining to very
specific questions for each topic. We have successfully
tested GPSy using worm homologs of mammalian candi-
date genes followed by validation using phenotypic data
from high-throughput RNA interference (RNAi) studies
in Caenorhabditis elegans (26) and our own manual RNAi
experiments.

GPSy is thus the first system that integrates a large
variety of data across a wide range of organisms.
GPSy’s approach to gene prioritization makes it a tool
that is applicable to many different fields, in particular,
those focussing on conserved biological processes and
their related disorders.

RESULTS

User interface: data input/data output

GPSy has a simple and intuitive interface including a
Query tab which enables users to first select one of 20
topics that are currently available from a dropdown
menu and then to define the query species. A text field is
available to enter the list of candidates; alternatively, the
user can request prioritization of 1000 random selected
genes or the entire genome for the chosen species.
Additionally, for human, a set of positive reference
genes can be uploaded for each topic. Currently, GPSy
only accepts Entrez Gene identifiers (IDs) because
reliable and consistent gene ID conversion is a complex
problem; users are referred to two up-to-date resources for
gene ID unification over a wide range or organisms
(27,28). It is possible to select individual species and
data modules and to modify their weights (from 0 to 10)
using the Advanced options tab (Figure 1B). By default,
all data sets are selected for all available species (n=45)
and the preset parameters from the optimal weight scheme
are applied.

The output page displays the top 50 genes by default
but users can change this setting as they deem appropriate.
The result is displayed in the form of a table containing
one gene per line with columns for Gene IDs (hyperlinked
to the NCBI), Priority ranking, individual module
ranks and other relevant information. The weight used
in each module to compute the overall score is indicated
in brackets. The output list is ordered (prioritized) acc-
ording to the overall score; it can be reordered based on
the ranks of individual modules. Information regarding
the intra-module ranks is accessible through the magnify-
ing glass icon. The table in the html output displays the
top 1000 genes; the entire gene list and corresponding
ranking information can be exported as an archive file
(.tar) via the ‘Export results’ link at the bottom of the
page. The welcome page includes a link to a brief
tutorial for GPSy.

Species and homology

We assembled a map of conserved genes across the 45
eukaryotic species for which complete genome sequence
information was available (Supplementary Table S3).
Related homolog clusters from NCBI’s HomoloGene
(29) and the OMA (Orthologous MAtrix) (30) projects
were merged using verified homolog pairs (BLAST recip-
rocal best hits) as suggested by Roth et al. (31)
Supplementary Figure S2A).

Modules and ranking

Thirteen different types of genomic data common to the
included topics were assembled from various sources
(Supplementary Table S1). These were organized into
four data categories: Sequence, Expression, Annotation
and Association each associated with a unique scoring
strategy. The integration of genome data sets with
distinct scoring strategies forms the basis of GPSy’s
modular architecture allowing for maximum query flexi-
bility (Figure 1A). The choice of data sources and scoring
strategies is explained in detail in Supplementary
Methods. In contrast to methods used in generic gene pri-
oritization tools, the process-specific approach imple-
mented in GPSy enables the pre-computation of
module- and species-wise ranks; a feature that greatly
accelerates the process of prioritization.
When the system is queried, candidate genes in the input

list are mapped onto the pre-computed ranked lists for the
corresponding species. An intra-module weighted average
rank is computed for each gene in the input list by
combining the relative ranks for the input species accord-
ing to every other selected species.

Positive and negative reference gene sets

Positive reference sets (PRSs) of genes known to be
relevant for each topic were assembled for the 45 species
and used for scoring genes in the Annotation and
Association categories (Supplementary Table S5). For
this purpose, information was gathered from the Gene
Ontology and phenotype projects in various organisms.
The ontological structure of these data allowed us
to identify the ensemble of relevant annotation terms for
each topic. This included ‘biological process’ terms from
the Gene Ontology project (e.g. gamete generation)
and species-specific phenotype terms (e.g. azoospermia;
listed in Supplementary Table S4). Negative reference
sets (NRSs) of 1000 randomly chosen genes not annotated
with the selected terms were generated as controls. Note
that the human PRS and NRS were employed in the
Weightage optimization procedure.

Weightage optimization and overall prioritization

To assess the contributions of each module to overall pri-
oritization, we decided to test the effectiveness of different
weight combinations. We employed an approach similar
to Sun et al. (2), to test different weight vectors (ranging
from 1 to 10) in the 13 different modules for each topic
(Supplementary Table S2). To evaluate the performance
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of each weight combination, a discrimination analysis
method was employed. Sensitivity and specificity values
were computed and a receiver operating characteristic
(ROC) curve was plotted (1-Specificity versus Sensi-
tivity). The area under this curve (AUC) corresponds
to the probability that a random positive instance
will score higher than a random negative instance (32).
An AUC of 1 indicates that all PRS genes ranked
above NRS genes; 0.5 indicates that the genes ranked
randomly. As an exhaustive test of all weight combin-
ations (2) is impractical (1013 weight schemes), we
employed a heuristic approach to achieve a satisfactory
discrimination of true positives (PRS) from true negative
(NRS) candidates (Supplementary Methods). The overall
rank of a given gene is an inter-module weighted average
of the individual module ranks. The final output is a
reordered list based on the overall ranking of each gene.
A more detailed description of the pre-processing steps
and overall prioritization can be found in Supplementary
Methods.

Caenorhabditis elegans as a model for spermatogenesis

The worm is a key model organism for the high-
throughput analysis of genes involved in meiotic develop-
ment; these functional studies typically involve small
interfering RNA (siRNA) which down-regulates mRNA
expression (33). High-throughput RNAi studies are in-
formative; however, they are often limited to detecting
specific defects and are biased by a number of experimen-
tal artefacts such as wrongly annotated RNAi clones and
false-positive or false-negative phenotype scores. Finally,
the penetrance of a phenotype depends upon the technique
used: RNAi feeding where worms are bred on a layer of
bacteria containing a plasmid expressing the siRNA is less
efficient than direct RNAi injection or the use of a bona
fide gene deletion strain. To corroborate GPSy’s ranking
output, we therefore decided to test the ability of a
selected group of genes to induce a sterility or germ
line defect phenotype in a strain background particularly
sensitive to RNAi by the feeding method (Supplementary
File S5).

Figure 1. Framework for the prioritization of candidate genes. (A) and (B) describe the steps involved in pre-processing and querying respectively.
Lane 1 (Data categories and modules) lists a non-exhaustive list of modules falling into the four categories (Sequence, Expression, Annotation and
Association) that were collected and curated from different species to drive gene prioritization. Lane 2 outlines the scoring strategies, one for each
module. The species-wise ranking process that follows the scoring of individual genes is depicted in Lane 3. H, M, F, W and Y indicate the ranked
lists for human, mouse, fly, worm and yeast, respectively. (B) The server accepts as input a gene list from any one of the 45 species (human, in the
displayed example). Genes in the input list are mapped onto pre-computed ranked lists for selected species (Lane 4) and an intra-module rank is
generated (Lane 5). Lane 6 (WS; Weight Scheme) highlights the weight applied to each module. Lanes 7 and 8 describe the final step in gene
prioritization, calculation of an inter-module weighted average rank for each gene. The output is the prioritized input list.
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We first selected 56C. elegans orthologues of mamma-
lian genes previously identified in our lab as strongly
induced in the worm and mouse germ line (34). Among
the 56 genes investigated, 23 were associated with a repro-
ductive phenotype (RP corresponding to sterility or a
germ line defect) when the union of results from our
RNAi experiments (11 genes associated with RP;
Supplementary File S4) and those of large-scale and indi-
vidual studies available via Wormbase (18 genes
associated with RP) were taken into consideration.
These additional phenotypes reported but not identified
in our experiments are likely due to different strain back-
grounds and experimental approaches. The remaining 33
genes (non-RP set) showed no clearly detectable RP under
the conditions we and others employed. Next, we
prioritized the worm gene list (56 genes) using GPSy’s
Spermatogenesis topic using default weight settings and
all species and modules with the exception of C. elegans
phenotype data. The output list was integrated with
phenotypic information from our and other experiments
(23 RP and 33 non-RP genes; Figure 2A).

Combining the GPSy ranks with the validated pheno-
typic data suggests a promising pattern, we observe a
tendency for genes associated with reproductive pheno-
types (RP phenotype class) to receive a high rank in com-
parison to genes whose involvement in the gametogenic
process could not be established (bottom of the list,
non-RP classes; Figure 2A). Eight of the top 10 genes
display a reproductive or lethal phenotype. These genes
are discussed in Supplementary File S5. The lower half
of the list has relatively few genes with documented
germ line/sterility phenotypes. The overall trend for
high-ranking genes to result in a sterility/germ line
defect phenotype is also demonstrated by the reliable dis-
crimination of genes associated a reproductive phenotype
(RP, n=23) from a worm negative reference set (NRS,
n=1000) based on GPSy ranking (Figure 2B). Since the
candidate list (n=56) itself is expected to be enriched for
PRS genes, its AUC is non-random (75.2%). This is,
however, significantly lower than the AUC obtained
with RP genes alone (86.2%). The ranking also
demonstrated sufficient discriminability within the candi-
date list (RP versus non-RP; AUC=71.9%). A
chi-square test performed on the same set (RP genes
against all others) revealed a statistically significant
trend (P=0.002).

To illustrate the contribution of cross-species informa-
tion, we subjected the gene list to GPSy prioritization
without considering data from homologs in other
species. The resulting difference in AUC value (0.582
versus 0.722) clearly illustrates the value of the
cross-species approach (Figure 2C).

Comparison to other methods

We wanted to test GPSy’s ability to efficiently prioritize
the worm candidate gene list in comparison to existing
approaches. A comprehensive survey of freely available,
web-based gene prioritization software revealed that for
C. elegans, as with most non-human species, the choices
are limited (Supplementary Table S1). Seven of the

30 tools compared offer multi-species capability. Of
these, only two tools allow the querying of C. elegans
data sets and provide gene ranking based on diverse
data types thus enabling comparison with GPSy’s
results. The performance of these two tools, Génie and
Endeavour (13,16), was compared to that of GPSy using
the discrimination analysis method described. We sub-
jected the C. elegans shortlist (n=56) to GPSy and to
Endeavour using default parameters. We used the worm
PRS for spermatogenesis as the training set for
Endeavour. For Génie, we used ‘spermatogenesis’ as
topic of interest, a P-value cutoff of 1.0 for abstracts
and a false discovery rate of 1.0 for gene selection,
while taking into consideration all possible orthologues.
The resulting receiver operating characteristic (ROC)
curves and corresponding AUC values show significant
differences among the tools in favor of GPSy (72.2%)
as compared to Génie (68.9%) and Endeavour (65.2%;
Figure 2C). We also observed a considerable increase
in computation time for the method dependent on a
training set (�10min using Endeavour as against 10 s
for GPSy). The justification of several high- and
low-ranking genes obtained through a fair validation
strategy (exclusion of worm phenotype data during priori-
tization), point to the effectiveness of the cross-species
approach. The correlation of GPSy rank and phenotype
relevance (Figure 2A) and the reliable discrimination of
genes with and without the phenotype of interest (Figure
2B and C), suggest that the use of this system on large
candidate gene lists will enable the focusing of time and
experimental resources on those predictions most likely to
be true.

DISCUSSION

The wide variety of data types included in GPSy, in con-
junction with its modular nature, enables users to address
very specific biological questions. In the Spermatogenesis
topic, maximizing the weight of the Tissue specificity
module may be advantageous for identifying potential
gonad (germ line)-specific marker genes across species.
On the other hand, decreasing the weight of Gene
Ontology and Phenotype annotations for the query
species, improves the ranking of uncharacterized genes,
thus facilitating the discovery of novel genes important
for the selected topic.
In comparison to other prioritization methods, GPSy

covers many more data sources and provides users with
a choice of different species (Supplementary Table S1).
The multi-species capability is important for basic scien-
tists whose research is primarily conducted in model
organisms. This feature is especially valuable for recently
sequenced organisms and others where little or no data
beyond the genomic sequence are available (27 out
of 45 species; Supplementary Table S3). The value of a
cross-species approach is evident also in the case of
established model organisms; for example, very little
phenotype/disease data are available for primates in com-
parison to mouse, fly, worm and yeast.
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Existing approaches using machine learning (35), and
kernel- (16) or network-based (32,36) strategies generally
rely on training gene sets provided during the query.
Systems such as GPSy that use pre-defined criteria and
pre-computed scores have the advantage of being much
faster. GPSy returns priority lists for the mouse and
human genomes in 45 s in comparison to 30min on
average in the case of Endeavour (with a small training
set and all data sets selected). With the majority of tools,
limitations exist for the size of the reference or candidate
gene sets, or both; thus a direct comparison of all perform-
ance aspects is not feasible.
The choice of positive reference genes (PRS) for training

purposes is a critical factor because both the size and the

homogeneity of the reference set affect the reliability of
gene prioritization. There is usually an inverse relationship
between them; for very small training sets, homogeneity
increases but at the cost of statistical validity. It has been
noted that the training set homogeneity is an important
factor for effective ranking (10). Estimating homogeneity
is a non-trivial task and the time required for the process
increases with the size of the reference set. GPSy uses a
comprehensive reference set (PRS) relevant for each topic
that was carefully selected and then reviewed by experts in
the field. Nevertheless, such contrasting features between
GPSy and the other gene prioritization approaches
suggest that the tools may be used in a complementary
fashion (37).

Figure 2. Gene ranking and RNAi phenotypes. (A) The most relevant phenotypes are plotted for each gene in the prioritized candidate list (from the
1st to the 56th, x-axis). On the y-axis, phenotype classes are indicated: RP=reproduction-associated phenotype; LP= lethal phenotype; OP=other
phenotype; None=no observable phenotype. Official gene symbols are displayed for all genes. (B) Displays receiver operating characteristic (ROC)
curves for: (i) the candidate gene set (n=56 genes) versus the C. elegans negative reference set (NRS; n=1000; blue curve); (ii) the RP genes set
(n=23) versus NRS (red); (iii) the RP versus non-RP sets (union of LP, OP and None phenotype; n=33; green). The corresponding area under the
ROC curve (AUC) values are indicated. Note the significant improvement in AUC value between (ii) and (i). The AUC value for (iii) is significantly
non-random. (C) Displays ROC curves for the discrimination of the C. elegans RP (n=23) versus non-RP sets (n=33) using GPSy (default settings,
solid blue line), GPSy (C. elegans data only, dashed blue line), Endeavour (red) and Génie (green).
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The effective prioritization of C. elegans genes through
data available in other species shows that the system is
scientifically sound and stresses the importance of a
cross-species approach. It is obvious, however, that inves-
tigator discretion is important in the inclusion/exclusion
of selected species particularly for widely divergent clades
(e.g. Human–Plant).

CONCLUSION

We report the development and application of GPSy, a
novel multi-dimensional tool which integrates distinct
data types across a wide range of organisms. This tool is
intended for the rapid identification of genes potentially
important for conserved biological processes such as
male gamete development. GPSy is modular and extend-
able which enables us and others to include novel
topics and data sets as the need arises. In the future,
GPSy will include less utilized datasets such as regulation
by non-coding RNAs (38) and others, as they become
available. A future release of our tool will include an
update of GPSy’s ‘Cancer’ topic through the inclusion
of gene expression data in normal versus cancer samples.
We intend to complete GPSy’s repertoire with other topics
of interest related to conserved biological processes in the
near future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–7, Supplementary Figures 1–5,
Supplementary Methods, Supplementary Files 1–5 and
Supplementary References [39–71].
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