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Abstract: Angelica sinensis, a perennial herb that produces ferulic acid and phthalides for the treatment
of cardio-cerebrovascular diseases, prefers growing at an altitude of 1800–3000 m. Geographical
models have predicted that high altitude, cool temperature and sunshade play determining roles
in geo-authentic formation. Although the roles of altitude and light in yield and quality have
been investigated, the role of temperature in regulating growth, metabolites biosynthesis and gene
expression is still unclear. In this study, growth characteristics, metabolites contents and related
genes expression were investigated by exposing A. sinensis to cooler (15 ◦C) and normal temperatures
(22 ◦C). The results showed that plant biomass, the contents of ferulic acid and flavonoids and
the expression levels of genes related to the biosynthesis of ferulic acid (PAL1, 4CLL4, 4CLL9, C3H,
HCT, CCOAMT and CCR) and flavonoids (CHS and CHI) were enhanced at 15 ◦C compared to
22 ◦C. The contents of ligustilide and volatile oils exhibited slight increases, while polysaccharide
contents decreased in response to cooler temperature. Based on gene expression levels, ferulic acid
biosynthesis probably depends on the CCOAMT pathway and not the COMT pathway. It can be
concluded that cool temperature enhances plant growth, ferulic acid and flavonoid accumulation but
inhibits polysaccharide biosynthesis in A. sinensis. These findings authenticate that cool temperature
plays a determining role in the formation of geo-authentic and also provide a strong foundation for
regulating metabolites production of A. sinensis.

Keywords: Angelica sinensis; cool temperature; growth; ferulic acid biosynthesis; flavonoid biosyn-
thesis; gene expression

1. Introduction

Angelica sinensis (Oliv.) Diels, commonly named as Dang gui, Dong quai and Tang
kuei, is a perennial herb that grows at an altitude of 1800–3000 m with cool, moist and
partial shade conditions [1,2]. The roots of A. sinensis, one of the most important herbal
drugs in traditional Chinese medicine, are used for nourishing blood, regulating female
menstrual disorders and relieving pains and relaxing bowels [1,3,4]. More recently, interest
has focused on its potential cardio-cerebrovascular, hepatoprotective, antioxidant, anti-
spasmodic and immunomodulatory effects [1]. Currently, over 140 constituents that have
been identified from the roots mainly include the following: organic acids (e.g., ferulic acid,
coniferyl ferulate and succinic acid), phthalides (e.g., ligustilide, butylidenephthalide and
butylphthalide), polysaccharides (e.g., fucose, galactose and glucose) and flavonoids [4].
The main actives compounds in the roots are considered to be the following: organic acids,
phthalides and polysaccharides [5].
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A. sinensis is originally native to China with a population center in Gansu province as
well as cultivated in western regions, including the following: Qinghai, Sichuan and Yunnan
provinces [1,2,6]. Minxian county and surrounding counties (e.g., Tanchang, Zhangxian,
Weiyuan, Zhuoni and Lintan) of Gansu province are known as the geo-authentic areas due
to roots containing more bioactive compounds [2,7,8]. Analyses on geo-authentic A. sinensis
grown in Gansu region have deduced that altitude, temperature, sunshine and rainfall
are the most influential ecological factors for the accumulation of bioactive compounds
(ferulic acid, ligustilide, chlorogenic acid, coniferyl ferulate, senkyunolide A, senkyunolide
H, senkyunolide I, butenyl phthalide and levistilide A) [9,10]. Investigations into the role of
altitude (ca. 2000–2900 m) have found that there is a positive correlation of altitude with the
contents of ferulic acid, volatile oils (i.e., ligustilide and butenyl phthalide), polysaccharides,
flavonoids and phenolics, while moderate altitude (ca. 2500–2600 m) is favorable for root
biomass [11–18].

Generally, altitude affects climate by decreasing temperatures and increasing light
intensity and rainfall. Previous studies have demonstrated that reducing light intensity
with 50–75% of sunshade can increase root yield and ferulic acid accumulation, meanwhile
indirectly decreasing temperature and increasing moisture of air and soil [19,20]; on the
other hand, UV-B radiation can increase phthalide accumulation [21]. Although A. sinensis
plants prefer moist conditions, the excessive soil water can induce fleshy roots to rot, and
soil drought will result in a significant decrease in root yield as well as ferulic acid and
volatile oils contents [1,22].

For the biosynthesis pathways of ferulic acid, flavonoids and phthalides, previous liter-
ature has reported that the biosynthesis of ferulic acid and flavonoids belongs to the phenyl-
propanoid pathway (Figure 1). Specifically, ferulic acid biosynthesis is synthesized via
two sub-pathways, including the following: (1) caffeic acid 3-O-methyltransferase (COMT)
pathway involved in enzymes such as cinnamate 4-hydroxylase (C4H), p-coumarate 3-
hydroxylase (C3H) and COMT; and (2) caffeoyl-CoA 3-O-methyltransferase (CCOAMT)
pathway involved in enzymes such as 4-coumarate-CoA ligase (4CL), hydroxycinnamoyl
shikimate transferase (HCT) and CCOAMT. Flavonoid biosynthesis was catalyzed by en-
zymes such as chalcone synthase (CHS) and chalcone isomerase (CHI) [23,24]. On the other
hand, the biosynthesis pathway of phthalides, especially in ligustilide, and the genes that
participate in regulating the biosynthesis are still limited [9,25,26].

To date, plant growth, bioactive metabolites accumulation and related genes expres-
sion in A. sinensis in response to temperatures have not been examined. In this study, we
probe the role of temperatures in growth, metabolites biosynthesis and genes expression
related to ferulic acid, flavonoids, volatile oils and polysaccharides to identify links be-
tween cooler growing temperatures and the formation mechanism of geo-authentic medical
materials of A. sinensis.
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Figure 1. Schematic representation of biosynthetic pathways leading from shikimic acid pathway 
to phenylpropanoid pathway. Solid arrow indicates known steps, whereas multiple arrows indi-
cate multiple reaction steps. Enzyme abbreviations are as follows: EMB3004, Bifunctional 
3-dehydroquinate dehydratase/shikimate dehydrogenase, chloroplastic; CM, chorismate mutase; 
PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; 
HCT, hydroxycinnamoyl shikimate transferase; C3H, p-coumarate 3-hydroxylase; CCOAMT, 
caffeoyl-CoA 3-O-methyltransferase; CCR, cinnamoyl CoA oxidoreductases; COMT, caffeic acid 
3-O-methyltransferase; CHS, chalcone synthase; CHI, chalcone isomerase. ① Showing the ferulic 
acid biosynthesis via CCOAMT sub-pathway; ② Showing the ferulic acid biosynthesis via COMT 
sub-pathway; ③ Showing the flavonoid biosynthetic sub-pathway. 

To date, plant growth, bioactive metabolites accumulation and related genes ex-
pression in A. sinensis in response to temperatures have not been examined. In this study, 
we probe the role of temperatures in growth, metabolites biosynthesis and genes ex-
pression related to ferulic acid, flavonoids, volatile oils and polysaccharides to identify 
links between cooler growing temperatures and the formation mechanism of 
geo-authentic medical materials of A. sinensis. 

2. Results 
2.1. Effect of Temperatures on Growth Characteristics 

Fresh and dry weights (FW and DW) of whole plants were 1.19-fold and 1.51-fold 
greater at 15 °C than 22 °C, which largely relied on a 1.41-fold and 1.47-fold increase in 
FW and DW of roots (Figure 2A,B). Additionally, there was a 1.58-fold and 1.10-fold in-
crease in stem and root diameters (Figure 2C,D), while no significant difference in shoot 
height and root length was observed between 15 °C and 22 °C (Figure 2E,F). 

Figure 1. Schematic representation of biosynthetic pathways leading from shikimic acid path-
way to phenylpropanoid pathway. Solid arrow indicates known steps, whereas multiple arrows
indicate multiple reaction steps. Enzyme abbreviations are as follows: EMB3004, Bifunctional
3-dehydroquinate dehydratase/shikimate dehydrogenase, chloroplastic; CM, chorismate mutase;
PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA lig-
ase; HCT, hydroxycinnamoyl shikimate transferase; C3H, p-coumarate 3-hydroxylase; CCOAMT,
caffeoyl-CoA 3-O-methyltransferase; CCR, cinnamoyl CoA oxidoreductases; COMT, caffeic acid
3-O-methyltransferase; CHS, chalcone synthase; CHI, chalcone isomerase. 1© Showing the ferulic
acid biosynthesis via CCOAMT sub-pathway; 2© Showing the ferulic acid biosynthesis via COMT
sub-pathway; 3© Showing the flavonoid biosynthetic sub-pathway.

2. Results
2.1. Effect of Temperatures on Growth Characteristics

Fresh and dry weights (FW and DW) of whole plants were 1.19-fold and 1.51-fold
greater at 15 ◦C than 22 ◦C, which largely relied on a 1.41-fold and 1.47-fold increase in FW
and DW of roots (Figure 2A,B). Additionally, there was a 1.58-fold and 1.10-fold increase in
stem and root diameters (Figure 2C,D), while no significant difference in shoot height and
root length was observed between 15 ◦C and 22 ◦C (Figure 2E,F).

2.2. Effect of Temperatures on Contents of Ferulic Acid, Flavonoids, Ligustilide, Volatile Oils and
Polysaccharides

Ferulic acid and flavonoids contents in roots were 1.90-fold and 1.42-fold greater at
15 ◦C than 22 ◦C (Figure 3A,B). Ligustilide and volatile oils contents exhibited a 1.01-fold
and 1.15-fold increase at 15 ◦C, while there was no significant difference compared to 22 ◦C
(Figure 3C,D). Polysaccharides content significantly decreased with a reduction of 0.86-fold
at 15 ◦C compared to 22 ◦C (Figure 3E).
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Figure 2. Growth characteristics in A. sinensis treated with cool temperature (mean ± SD, n = 20). 
Images (A,B) represent the FW and DW of the entire plant, (C,D) represent the stem and root di-
ameters and (E,F) represent the shoot height and root length. “*” represents a significant difference 
(p < 0.05) at different stages. The same below. 
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Ferulic acid and flavonoids contents in roots were 1.90-fold and 1.42-fold greater at 
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Figure 2. Growth characteristics in A. sinensis treated with cool temperature (mean ± SD, n = 20).
Images (A,B) represent the FW and DW of the entire plant, (C,D) represent the stem and root
diameters and (E,F) represent the shoot height and root length. “*” represents a significant difference
(p < 0.05) at different stages. The same below.
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Images (A,B) represent the ferulic acid and flavonoids contents, (C,D) represent the ligustilide and 
volatile oils contents and (E) represents the polysaccharides content, respectively. “*” represents a 
significant difference (p < 0.05) at different stages. 
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other three genes, 4CLL5, 4CLL7 and COMT1, exhibited a downregulation of 0.65-fold, 
0.35-fold and 0.18-fold, respectively, at 15 °C compared to 22 °C (Figure 4). For flavonoid 
biosynthesis, the RELs of the two genes CHS and CHI exhibited an upregulation of 
4.16-fold and 3.65-fold, while the other two genes GT6 (UDP-glucose flavonoid 
3-O-glucosyltransferase 6) and I3′H (isoflavone 3′-hydroxylase) exhibited a downregula-
tion of 0.95-fold and 0.40-fold, respectively, at 15 °C compared to 22 °C (Figure 5). 

Figure 3. Metabolites contents in A. sinensis treated with cool temperature (mean ± SD, n = 20).
Images (A,B) represent the ferulic acid and flavonoids contents, (C,D) represent the ligustilide and
volatile oils contents and (E) represents the polysaccharides content, respectively. “*” represents a
significant difference (p < 0.05) at different stages.
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2.3. Effect of Temperatures on Gene Expression Related to Ferulic Acid and Flavonoid Biosynthesis

The mRNA expression levels of 10 genes related to ferulic acid biosynthesis (PAL1,
4CLL4, 4CLL5, 4CLL7, 4CLL9, HCT, C3H, CCOAMT, CCR1 and COMT1) and four genes
related to flavonoid biosynthesis (CHS, CHI, GT6 and I3′H) in roots at 15 and 22 ◦C were
quantified. For ferulic acid biosynthesis, the relative expression levels (RELs) of seven genes,
PAL1, 4CLL4, 4CLL9, HCT, C3H, CCOAMT and CCR1, exhibited an upregulation of 8.05-fold,
3.65-fold, 2.74-fold, 2.50-fold, 11.48-fold, 10.82-fold and 3.60-fold, while the other three
genes, 4CLL5, 4CLL7 and COMT1, exhibited a downregulation of 0.65-fold, 0.35-fold and
0.18-fold, respectively, at 15 ◦C compared to 22 ◦C (Figure 4). For flavonoid biosynthesis, the
RELs of the two genes CHS and CHI exhibited an upregulation of 4.16-fold and 3.65-fold,
while the other two genes GT6 (UDP-glucose flavonoid 3-O-glucosyltransferase 6) and
I3′H (isoflavone 3′-hydroxylase) exhibited a downregulation of 0.95-fold and 0.40-fold,
respectively, at 15 ◦C compared to 22 ◦C (Figure 5).
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Biosynthesis 

The mRNA expression levels of two genes related to volatile oils biosynthesis 
(trans-anol O-methyltransferase 1 (AIMT1) and acetyl-CoA-benzylalcohol acetyltrans-
ferase (BEAT)) and three genes related to polysaccharide biosynthesis (sucrose synthase 
isoform 1 (SUS1), pancreatic alpha-amylase (Amy2) and granule-bound starch synthase 1 
(WAXY)) in roots at 15 and 22 °C were quantified. For volatile oil biosynthesis, the RELs 

Figure 4. Expression levels of ten genes related to ferulic acid biosynthesis in A. sinensis. His-
tograms show the relative expression level in response to 15 ◦C compared to 22 ◦C. The same below.
Abbreviations: PAL1, phenylalanine ammonia lyase 1; 4CLLs, 4-coumarate-CoA ligase like pro-
teins; HCT, hydroxycinnamoyl shikimate transferase; C3H, p-coumarate 3-hydroxylase; CCOAMT,
caffeoyl-CoA 3-O-methyltransferase; CCR1, cinnamoyl CoA oxidoreductase 1; COMT1, caffeic acid
3-O-methyltransferase 1.
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viations: CHS, chalcone synthase; CHI, chalcone isomerase; GT6, UDP-glucose flavonoid 3-O-
glucosyltransferase 6; I3′H, isoflavone 3′-hydroxylase.
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2.4. Effect of Temperatures on Gene Expression Related to Volatile Oils and Polysaccharide
Biosynthesis

The mRNA expression levels of two genes related to volatile oils biosynthesis (trans-
anol O-methyltransferase 1 (AIMT1) and acetyl-CoA-benzylalcohol acetyltransferase (BEAT))
and three genes related to polysaccharide biosynthesis (sucrose synthase isoform 1 (SUS1),
pancreatic alpha-amylase (Amy2) and granule-bound starch synthase 1 (WAXY)) in roots at
15 and 22 ◦C were quantified. For volatile oil biosynthesis, the RELs of the two genes, AIMT1
and BEAT, exhibited an upregulation of 1.11-fold and 1.10-fold, respectively (Figure 6). For
polysaccharide biosynthesis, the RELs of the two genes SUS1 and WAXY exhibited an
upregulation of 8.91-fold and 5.16-fold, while gene Amy2 exhibited a downregulation of
0.44-fold, respectively, at 15 ◦C compared to 22 ◦C.
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Figure 6. Expression levels of five genes related to volatile oils and polysaccharide biosynthesis in A.
sinensis. Abbreviations: AIMT1, trans-anol O-methyltransferase 1; BEAT, acetyl-CoA-benzylalcohol
acetyltransfe-rase; SUS1, sucrose synthase isoform 1; Amy2, pancreatic alpha-amylase; WAXY,
granule-bound starch synthase 1.

3. Discussion

The formation of geo-authentic herbs not only lays on the human society and species
but also natural environmental conditions [7,25]. Previous studies have found that the geo-
authentic formation of A. sinensis depends on geographic environmental conditions (e.g.,
higher altitude, cooler temperature and less sunshine) [2,4,6,10]. In this study, we found
that cooler temperatures enhanced root biomass, ferulic acid and flavonoids accumulation
and related genes expression; and inhibited polysaccharide biosynthesis, while it did not
significantly affect ligustilide accumulation.

A significant increase in plant biomass was observed at cooler temperatures of 15 ◦C
than 22 ◦C, which mainly resulted from the significant increase in root diameter (Figure 2).
The increase in plant biomass at 15 ◦C authenticates that the A. sinensis species prefers cool
environmental conditions, which is accordance with previous studies that higher-altitude
improves the root yield and bioactive metabolites accumulation [11,12,14]. Several studies
have found that cooler temperatures are conducive to plant growth and root biomass, such
as increases in root diameter and biomass of Sinopodophyllum hexandrum seedings at 15 ◦C
compared to 22 ◦C [15,26]; hairy roots biomass of Panax ginseng at 20 ◦C/13 ◦C compared
to 25 ◦C and 35 ◦C/25 ◦C [27]; and whole plant biomass of Hypericum perforatum at 15 ◦C
compared to 22 ◦C [28].

The accumulation of plant secondary metabolites is often affected by environmental
factors, such as light, water and temperature [29]. Low temperatures are one of the most
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important factors regulating phenylpropanoid metabolism [30]. Both ferulic acid and
flavonoid biosynthesis pathways belong to the phenylpropanoid metabolism and employ
the same genes, PAL, C4H and 4CL (Figure 1). In this study, a significant increase in ferulic
acid and flavonoids contents was observed at 15 ◦C compared to 22 ◦C (Figure 3A,B),
which largely relied on upregulation of genes related to ferulic acid (i.e., PAL1, 4CLL4,
4CLL9, C3H, HCT, CCOAMT and CCR) and flavonoid biosynthesis (i.e., CHS and CHI)
(Figures 1, 4 and 5). A significant downregulation of COMT1 (Figure 4) indicates that
ferulic acid biosynthesis depends on not COMT but the CCOAMT pathway (Figure 1).

In addition, with respect to the two genes 4CLL5 and 4CLL7 that were downregulated
at 15 ◦C compared to 22 ◦C, the gene 4CLL5 was found to contribute to jasmonic acid
biosynthesis [31], and gene 4CL7 encodes enzyme 4CL7 that had no catalytic activity
toward hydroxycinnamic acid compounds [32], which indicate that two genes 4CLL5 and
4CLL7 do not participate in the ferulic acid biosynthesis. For the other two genes GT6
and I3′H that were downregulated at 15 ◦C compared to 22 ◦C, gene GT6 is involved in
xenobiotic metabolism [33], and gene I3′H is involved in the biosynthesis of pterocarpan
phytoalexins [34]; both GT6 and I3′H are required for pathogen defense and insect-induced
responses [35,36]. The downregulation of two genes GT6 and I3′H further confirms that
the A. sinensis species is an alpine plant that prefers a cool environment.

No significant increase in ligustilide and volatile oils contents was observed at 15 ◦C
compared to 22 ◦C (Figure 3C,D), which is consistent with the slight upregulation of
two genes AIMT1 and BEAT involved in volatile oils biosynthesis (Figure 6). For the
biological functions, gene AIMT1 is involved in the conversion of anethole and isoeugenol
to isomethyleugenol, which are the primary constituents of volatile oils [37], and gene
BEAT is involved in the biosynthesis of benzyl acetate [38].

For the polysaccharide accumulation, a significant decrease was observed at 15 ◦C
compared to 22 ◦C (Figure 3E), while the three genes SUS1, Amy2 and WAXY were observed
to be differentially regulated at 15 ◦C, with upregulation for SUS1 and WAXY and, on
the other hand, downregulation for Amy2 (Figure 6). For biological functions, gene SUS1
is involved in sucrose cleaving, which provides UDP-glucose and fructose for various
metabolic pathways such as glycolysis [39]; gene WAXY is involved in starch and glycan
biosynthesis [40]; and the gene Amy2 is involved in starch hydrolase [41]. In this study,
the upregulation of the gene SUS1 may degrade polysaccharides to glucose and fructose,
which provide energy to adapt to cooler temperatures. The upregulation of gene WAXY
and downregulation of gene Amy2 may promote starch accumulation, which results in
greater plant biomass at 15 ◦C than 22 ◦C.

4. Materials and Methods
4.1. Plant Material

Seedlings of Angelica sinensis (cultivar Mingui 1) with root-tip diameter 0.4–0.5 cm (see
Figure S1) were selected to plant in pots (13 cm × 9 cm) with soil (coconut coir: peat: fer-
mented cow dung: pearlite = 3:3:2:2) and to germinate in a growth chamber with a constant
temperature (18 ◦C) and a photoperiod cycle (16/8 h light/dark, 500 µmol·m−2·s−1). After
15 days, plantlets that contained two leaves (see Figure S2) were moved to a growth cham-
ber set at a constant temperature of 15 or 22 ◦C. After 30 days growth (see Figure S3), plants
were harvested for physiological measurement, metabolites determination and mRNA
quantification. Herein, higher temperatures such as 30 ◦C is excluded from treatments
because A. sinensis is an alpine plant that prefers a cool environment with average annual
temperatures ranging from 4 to 9 ◦C [1,2,9].

4.2. Physiological Measurement

After temperature-treated plants were removed from pots and rinsed with tap water,
shoot height (cm), stem diameter (mm), root length (cm), diameter (mm), fresh weight (FW,
g) and dry weight (DW, g) of aerial parts and roots were measured.
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4.3. Metabolites Determination
4.3.1. Extracts Preparation

After air-dried roots, finely powdered aliquots (0.2 g) were soaked in ethanol (95% v/v,
20 mL) and agitated at 25 ◦C and 120 r/min for 72 h. The homogenate was centrifuged (TGL-
20M, Changsha, China) at 4 ◦C and 5000 r/min for 10 min. The extracts were increased to
25 mL with ethanol (95% v/v) for determination of ferulic acid, ligustilide, flavonoids and
polysaccharides.

4.3.2. Determination of Ferulic Acid and Ligustilide Contents

Ferulic acid and ligustilide contents were determined according to the previous proto-
col [42]. Briefly, extracts (10 µL) were determined at 323 nm using an HPLC Symmetry®

C18 column (250 mm × 4.6 mm, 5 µm; column temperature 30 ◦C; Waters ACQUITY
Arc, Milford, MA, USA). The solution of acetic acid (1.0% v/v, A)-acetonitrile (B) was
the mobile phase with gradient elution: 38–90% B (0–8 min), 90–38% B (8–12 min) and
38% B (12–14 min) at a flow rate of 1.0 mL/min. Ferulic acid and ligustilide contents
were evaluated on peak area comparison with a reference standard. Representative HPLC
chromatograms of standard reference and samples at 15 and 22 ◦C were shown in Figure S4.

4.3.3. Determination of Flavonoids Content

Flavonoids content was determined using the NaNO2-AlCl3-NaOH method [43,44].
Briefly, the extracts (2.5 mL) were added into ddH2O (2 mL) and NaNO2 (5% w/v, 0.3 mL);
after oscillation, and AlCl3 (10% w/v, 0.3 mL) was added and reacted at 22 ◦C for 1 min;
then, NaOH (1.0 mol/L, 2 mL) was added to stop the reaction. An absorbance reader was
taken at 510 nm using a spectrometer (V1800, Shanghai, China). Flavonoid content was
expressed as milligram of catechin.

4.3.4. Determination of Polysaccharides Content

Polysaccharides content was determined using the sulfuric acid-phenol protocol
method [45,46]. Briefly, the extracts (150 µL) were added into a phenol reagent (9% v/v,
1 mL); after oscillation, sulfuric acid (3 mL) was added and reacted at 22 ◦C for 30 min. An
absorbance reader was taken at 485 nm by using a spectrometer (V1800, Shanghai, China).
Polysaccharides content was expressed as milligram of sucrose.

4.3.5. Volatile Oils Determination

The extract of volatile oils was conducted using a steam distillation method [47].
Briefly, air-dried roots powder (5.0 g) was soaked in dH2O (30 mL) and extracted in a steam
distillation apparatus for 8 h; after NaCl (1.0 g) added into the extracts and left standing for
10 min, ethyl acetate (30 mL) was added; following exhaustive extraction (×3), the upper
portion was pooled, filtered and dried in vacuo at 35 ◦C to evaporate ethyl acetate. The
rate of volatile oils was expressed as extract volume (mL) of roots weight (g).

4.4. Quantification of mRNA

Total RNA was extracted from roots using a Plant RNA Kit (R6827, Omega Bio-Tek,
Inc., Norcross, GA, USA). The quality of the total RNA was examined using 1.0% agarose
gel electrophoresis. Based on RNA sequencing and analysis of bolting and flowering of
A. sinensis in our previously published articles [48,49], 19 candidate genes involved in
bioactive metabolite biosynthesis were dig out. Primer sequences for 19 candidate genes
(Table 1) were designed using an NCBI Primer-BLAST tool. cDNA was synthesized using a
FastKing RT kit (KR116, Tiangen, China), and qRT-PCR was performed by ABI QuantStudio
5 system (USA) with a SuperReal PreMix Plus (SYBR Green) (FP205, Tiangen, China). Actin
was used as an internal reference. The relative expression level (REL) was evaluated based
on a 2−44Ct method [50].
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Table 1. Primer sequences used in qRT-PCR analysis.

Genes Accession No. Sequences (5′ to 3′) Amplicon Size (bp)

ACT [26]
Forward: TGGTATTGTGCTGGATTCTGGT

109
Reverse: TGAGATCACCACCAGCAAGG

Ferulic acid Biosynthesis

PAL1 XM_017399483.1
Forward: GGACTTGACAGTAGGGCAG

146
Reverse: CCCCGTAACTATCCGTTCCTT

4CLL4 XM_017376722.1
Forward: AAGCAGTGTTTCAGAGGCAG

105
Reverse: GCTGAGCGCGGTATTGAGTT

4CLL5 XM_017388768.1
Forward: CGGGACGAGTAAAGGAGTGG

171
Reverse: AGCGTTGCTACAAACCAAGC

4CLL7 KJ531407.1
Forward: TGCTCCGTTGGGTAGAGAGT

164
Reverse: CTCCAGGCACAAGCATTCCT

4CLL9 XM_017397573.1
Forward: GGTGGGGAAGCTAACAGGTC

183
Reverse: TCGCCAGTTCTTAACCAGCC

HCT XM_017397289.1
Forward: CCGGTGACATATCTGCGTGT

171
Reverse: GCGGAATGGCAATGGAAAGG

C3H [26]
Forward: CAATCCAAGTTGACGACGAA

119
Reverse: CGAAGGCGAAACATAGGC

CCOAMT AY620245.1
Forward: TCGGCTACGACAACACCCTA

157
Reverse: TCGCCAACAGGAAGCATACA

CCR1 XM_017403617.1
Forward: CCATTCATGGATGCGTTGGT

135
Reverse: CCACACGTCTCACATTGGCT

COMT1 XM_010673030.2
Forward: TGGCGGAAAGGTAGTCGTTG

130
Reverse: TTCAGTCCTCTCACTTCCGC

Flavonoid Biosynthesis

CHS KP726914.1
Forward: GCAAAGACGCTGCATCCAAA

126
Reverse: GGAGCTTGGTGAGCTGGTAG

CHI XM_017365109.1
Forward: GTGTTTCCCCAGCTGCAAAG

102
Reverse: TTCCGACTTCTGCTTTCCCA

I3′H XM_017363227.1
Forward: GGCCACCTTCACCTCATCAA

173
Reverse: GGGCGGTCAGCTAAAACAAC

GT6 XM_017383880.1
Forward: TTCGGTGCCCATCACAAGAA

166
Reverse: AATCCTCCGACAGATGCGTG

Volatile oils Biosynthesis

AIMT1 B8RCD3.1
Forward: CGCTAGTCTTTTGAGCGAAGC

119
Reverse: CATGGGCACCTCCTACATCC

BEAT O64988.1
Forward: GATCAAGCCAGCAGTGATGC

147
Reverse: ACTTCAACACGTGTAGGCCG

Polysaccharide Biosynthesis

SUS1 XM_017363708.1
Forward: ATGAAGTCCACACAGGAAGCC

124
Reverse: CGACGACAAGGTGATGAGTG

Amy2 V00718.1
Forward: TCTTCTGAGCCCTGGAGTGT

117
Reverse: TCCAGGGAAGCCTCATGGAT

WAXY AJ006293.1
Forward: GCACTCATCCTCCATTCAGAG

167
Reverse: TCCGTTACTGATCCACCAGC
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4.5. Statistical Analysis

All measurements were performed using three biological replicates. A t-test in SPSS
22.0 was performed for independent treatments with p < 0.05 as the basis for statistical
differences.

5. Conclusions

From the above observations, cooler temperatures significantly enhance biomass
accumulation, ferulic acid and flavonoid biosynthesis in A. sinensis as well as their related
genes expression while inhibiting polysaccharide accumulation. These findings will provide
a strong foundation for regulating plant growth and bioactive metabolites production of A.
sinensis. The roles of sunshade and rainfall in the geo-authentic formation will be conducted
in the upcoming studies.

Supplementary Materials: The following supporting information can be downloaded online. Figure
supplemental legends: Figure S1: Seedlings of A. sinensis (cultivar Mingui 1) with root-tip diameter
0.4–0.5 cm; Figure S2: Plantlets contained two leaves after 15 days; Figure S3: Plants treated at 15
and 22 ◦C after 30 days; Figure S4: Representative HPLC chromatograms of standard and samples at
15 ◦C and 22 ◦C. A and B represent ferulic acid and ligustilide.
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