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THEBIGGERPICTURE Estimating themalignant cell fraction accurately and cheaply is essential for cancer
diagnosis and prognosis. Although single-cell RNA sequencing (scRNA-seq) can provide accurate informa-
tion on malignant cell fraction, it is too labor intensive and expensive for clinical application. Bulk RNA-seq,
on the other hand, is cost effective and widely used in clinical settings but traditionally only provides the
average gene expression profiles of a cancer cell population. Using reference malignant and normal
scRNA-seq data, DeepDecon provides an iterative deep-learning-based computational method for accu-
rate estimation of the fraction of malignant cells based on the bulk-averaged gene expression profiles.
This study used DeepDecon to accurately estimate acute myeloid leukemia (AML), neuroblastoma, and
head-and-neck squamous cell carcinoma (HNSCC) cell fractions from bulk RNA-seq data.
SUMMARY
Understanding the cellular composition of a disease-related tissue is important in disease diagnosis, prog-
nosis, and downstream treatment. Recent advances in single-cell RNA-sequencing (scRNA-seq) technique
have allowed the measurement of gene expression profiles for individual cells. However, scRNA-seq is still
too expensive to be used for large-scale population studies, and bulk RNA-seq is still widely used in such
situations. An essential challenge is to deconvolve cellular composition for bulk RNA-seq data based on
scRNA-seq data. Here, we present DeepDecon, a deep neural network model that leverages single-cell
gene expression information to accurately predict the fraction of cancer cells in bulk tissues. It provides a
refining strategy in which the cancer cell fraction is iteratively estimated by a set of trained models. When
applied to simulated and real cancer data, DeepDecon exhibits superior performance compared to existing
decomposition methods in terms of accuracy.
INTRODUCTION

For centuries, biologists have recognized that multicellular or-

ganisms are composed of a vast array of distinct cell types.1

Cells and tissues play a critical role in all living organisms. Tis-

sues are composed of cells, and cells are responsible for making

up the different types of tissues in all multicellular organisms.

Classifying and quantifying cells are crucial to have a detailed un-

derstanding of how tissues function and interact with one

another and the microenvironment and to reveal mechanisms

underlying pathological states. For example, tumor tissues are

heterogeneous and consist of different fractions of cell types.

Cancer identification, treatment, and clinical outcomes such as

tumor growth, metastasis, recurrence, and drug resistance

have a direct relation with cell-type composition and its
Patterns 5, 100969, M
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changes.2–4 Quantifying cell-type fractions within tumor tissues

can provide insight into the role of heterogeneity in disease

and how particular environments can impact tumor biology.

RNA sequencing (RNA-seq) is an alternative method to con-

ventional microarrays for transcriptome analysis.5,6 Bulk RNA-

seq provides a view of the average gene expression profiles

(GEPs) within a whole organ or tissue. It can be regarded as

the sum of the product of cell-type-specific gene expressions

and corresponding cell-type proportions.7 However, information

on the variations of different cell types is lost in bulk RNA-seq.

Single-cell RNA-seq (scRNA-seq) instead can help solve this

problem. It allows for the quantification of transcripts for each

cell and the further identification of new cell types based on

GEPs.8 In addition, it enables the assessment of heterogeneity

in cohorts of patient samples, providing a deeper understanding
ay 10, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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of disease states and aiding in the development of effective

treatments.4,9–11 As a result, scRNA-seq data generated from

samples with similar microenvironmental conditions can poten-

tially help tackle the problem of bulk-tissue deconvolution.

Many methods have been developed in recent years to

decompose fractions of cell types in bulk tissues, and most of

them use cell-type-specific GEPs, as in Avila Cobos et al.12

and Mohammadi et al.13 ESTIMATE14 uses The Cancer Genome

Atlas to infer the fraction of stromal and immune cells in tumor

samples, which can be further used to approximate the propor-

tion of cancer cells in bulk RNA-seq data. Non-negative least-

squares regression (NNLS)15,16 is an optimization method to

solve this deconvolution problem throughmatrix decomposition,

but it can be easily affected by the choice of GEP. Noise, impre-

cision, and missing data of GEPs can lead to poor performance

of NNLS. CIBERSORT/CIBERSORTx17,18 are two widely used

deconvolution methods. CIBERSORT adopts a linear support

vector regression (SVR) approach, representing the gene

expression of a bulk sample as a weighted sum of gene expres-

sions from different cell types. These weights are determined

based on predefined GEPs. On the other hand, CIBERSORTx

is an enhanced version of CIBERSORT that enables the genera-

tion of GEPs from scRNA-seq data. Another approach, MuSiC,7

dynamically generates reference profiles from scRNA-seq data.

It assigns high weights to genes with low cross-subject variance

and low weights to genes with high cross-subject variance.

However, MuSiC ignores the possibility of significant variations

in tumor conditions between reference data and bulk data. Bis-

que19 addresses the issue of simple summation of scRNA-seq

profiles by adopting a linear transformation on artificially derived

bulk RNA-seq samples. The transformed data are then used for

decomposition. However, the success of this transformation

heavily relies on the similarity in distribution between reference

single cells and actual data. An alternative method, RNA-

Sieve,20 uses a likelihood-based inference method. It assumes

that the estimates of cell-type fractions are normally distributed

around the true fractions. MEAD,21 on the other hand, is a statis-

tical inference method that introduces a gene-gene dependence

structure to improve accuracy. Nonetheless, the dependence

matrix used in MEAD is highly dependent on the choice of bulk

samples and cannot be generated when there is only one single

bulk sample to decompose. Last, Scaden22 leverages neural

networks to predict cell fractions and has demonstrated superior

performance compared to traditional deconvolution methods. It

generates cell fractions by averaging the outputs of three

different neural networks.

In this study, we introduce DeepDecon, an iterative deep neu-

ral network model designed to accurately estimate the propor-

tion of cancer cells in bulk RNA-seq data. DeepDecon makes

use of scRNA-seq gene expression information to generate arti-

ficial bulk RNA-seq datasets with known proportions of cancer

cells in each artificial bulk RNA-seq sample. The artificial bulk

RNA-seq datasets can be employed to train an iterative deep

neural network model, which can subsequently be employed

to accurately predict the proportions of cancer cells in novel can-

cer tissues. Our approach utilizes an iterative process to refine

predictions and enhance estimation accuracy. Through exten-

sive benchmark evaluations using both simulated and real

data, we demonstrate that DeepDecon outperforms other exist-
2 Patterns 5, 100969, May 10, 2024
ing methods across different cancer tissues and is also robust to

the influence of gene expression perturbations and the number

of cells per bulk sample. Overall, by leveraging scRNA-seq infor-

mation, employing deep neural networks, and making use of an

iterative refinement process, DeepDecon achieves superior per-

formance in cancer cell deconvolution analysis.

RESULTS

Methods overview
Figure 1 shows the graphical overview of iterative DeepDecon.

DeepDecon starts with scRNA-seq datasets and assumes the

cells for each subject have labeled cell types (malignant/normal)

and known gene expression levels. Therefore, simulated bulk

RNA-seq datasets with known cell-type fractions can be gener-

ated from these scRNA-seq datasets (Figure 1A). In addition,

simulated bulk RNA-seq datasets can be generatedwith specific

ranges of malignant cell fractions. This allows us to develop an

iterative deconvolution model. During the model training pro-

cess, simulated bulk samples whose malignant cell fraction

p˛ ½0:01i; 0:01j�; i < j; i; j˛ f0;10;20;/;100g serve as the input

to train a DeepDecon model Mi;j (Figure 1B). The whole group

of DeepDecon models will be used in the iterative process. The

core architecture of DeepDecon is a group of deep neural net-

works (DNNs) that take bulk RNA-seq data as input and output

predicted malignant cell fractions. These models share the

same structure, consisting of four fully connected layers with

dropout layers (Figure 1C). When presented with a real bulk sam-

ple, DeepDecon first generates an initial malignant cell predictionbP using the whole range model M0;100. Then in each iteration,

DeepDecon will narrow down the prediction interval and update

the prediction bP with models trained on narrow-range datasets

(Figure 1D). The selection of these narrow-range models is only

determined by the previous prediction value and the training da-

tasets (see Equations 4 and 5). By incorporating datasets with all

kinds of malignant cell fractions and dynamically determining

fraction-specific model iterations, DeepDecon allows for esti-

mating cell proportions of bulk RNA-seq data accurately.

Our model was constructed using artificial bulk RNA-seq sam-

ples and evaluated through leave-one-out cross-validation.

Root-mean-square error (RMSE), Pearson’s correlation coeffi-

cient (r), and Lin’s concordance correlation coefficient (CCC)

values between the predicted fractions and the true fractions

of malignant cells were used to evaluate the performance of

different deconvolution methods.

DeepDecon outperforms other methods for estimating
malignant cell fraction
To demonstrate and evaluate the performance of DeepDecon, we

first compared DeepDecon with eight other methods (Scaden

[v.1.1.2],22 CIBERSORTx [https://cibersortx.stanford.edu/],18 Bis-

que [v.1.0.5],19 ESTIMATE [v.2.0.0],14 MuSiC [v.1.0.0],7 MEAD

[v.1.0.1],21 RNA-Sieve [v.0.1.4],20 and NNLS [v.1.4]7,15) on artificial

bulk RNA-seq datasets. scRNA-seq data described under ‘‘Data-

sets’’ was used as reference data for Bisque, MEAD, RNA-Sieve,

MuSiC, and CIBERSORTx. MuSiC will also give the output of the

NNLS method, and we used it as our NNLS result. Artificial bulk

RNA-seq datasets were used to train two neural network

methods, DeepDecon and Scaden. We compared all benchmark

https://cibersortx.stanford.edu/
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Figure 1. Overview of DeepDecon decomposition method

(A) Constructing simulated bulk RNA-seq samples with different fractions of malignant cells. p is the fraction of malignant cells in a simulated bulk sample.

(B) Training DeepDecon models using simulated bulk datasets with different malignant cell fractions. Simulated bulk samples whose malignant cell fraction p˛
½0:01i; 0:01j�; i; j = 0; 10;/; 100 serve as the input to train a DeepDecon model Mi;j.

(C) Core DeepDecon model structure. It consists of four fully connected layers with dropout layers. All DeepDecon models in the iterative process share the same

structure.

(D) Predicting the fraction of malignant cells from a real bulk sample iteratively. DeepDecon designs an iterative strategy to narrow down the prediction interval of

given bulk samples. When a new experimental tissue is given, DeepDecon first generates an initial malignant cell prediction bP using the whole rangemodelM0;100.

In each iteration step, DeepDecon tries to limit the estimate to a smaller range, denoted by ½0:01i0;0:01j0 �, based on the training datasets and the previous iteration

prediction value. If the prediction interval can be shortened, DeepDecon will update the prediction value bP by a newly selected model Mi0 ;j0 . Ultimately,

DeepDecon generates the final prediction ppred when the stopping conditions are satisfied. The flowchart shows the iterative procedure and the stopping

conditions.
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methods with their default settings. All methods were evaluated

on the same testing datasets that were separate from the training

datasets used to train the abovemodels. Details of the implemen-

tations of these comparedmethods are explained in supplemental

experimental procedure 1.

Figure 2A shows the scatterplots of true malignant fractions

with predicted malignant fractions for each method in three

simulated acute myeloid leukemia (AML) datasets (Figure S1

shows the scatterplot in all 15 simulated AML datasets).

Figures 2B–2D show the RMSE, correlation, and CCC metrics

between the true and the estimated malignant cell fractions in

all 15 simulated AML datasets. Table 1 also gives the RMSE

values and average performance ranks of each method in simu-
lated and real AML datasets. DeepDecon demonstrated excep-

tional performance in deconvoluting bulk RNA-seq data. It

achieved the lowest RMSE values in 11 of 15 simulated datasets.

Even on the three datasets where DeepDecon did not achieve

the lowest RMSE values, its performance was still highly

competitive, with only a marginal difference between its RMSE

values and the lowest ones. Among the nine methods, we

can see that the deep learning methods (i.e., DeepDecon and

Scaden) performed better than traditional methods (Bisque,

MEAD, RNA-Sieve, MuSiC, CIBERSORTx, ESTIMATE, and

NNLS). They not only have lower RMSE values but also have

higher correlations and CCC values compared to other methods

(Figures 2B–2D).
Patterns 5, 100969, May 10, 2024 3
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Figure 2. DeepDecon outperforms other methods in predicting malignant cell-type fractions on AML simulated bulk RNA-seq datasets

(A) Scatterplots of true versus predicted malignant cell fractions based on DeepDecon (D), Scaden (S), CIBERSORTx (C), Bisque (B), ESTIMATE (E), MuSiC (MU),

MEAD (M), RNA-Sieve (R), and NNLS (N) on three selected AML simulated datasets. The x axis is the true fraction and the y axis is the predicted fraction. The

numbers on each subplot are the root-mean-square error (RMSE) values between the true and the predicted fraction of each method.

(B) Boxplots of RMSE values between the predicted and the true fractions of malignant cells on 15 AML simulated bulk RNA-seq datasets.

(C) Boxplots of Pearson’s correlation coefficient (r) values between the predicted and the true fractions of malignant cells on 15 AML simulated bulk RNA-seq

datasets.

(D) Lin’s concordance correlation coefficient (CCC) values between the predicted and the true fractions of malignant cells on 15 AML simulated bulk RNA-seq

datasets. The correlation and CCC values of NNLS contain not-available (NA) values. Therefore, paired tests of correlation and CCC values between DeepDecon

and NNLS are not available. *0:01<pvalue% 0:05, **0:001<p value% 0:01, ***p value% 0:001.
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Figure 3A demonstrates the effectiveness of term frequency-

inverse document frequency (TF-IDF) transformation on

DeepDecon. Among all 15 simulated AML datasets, DeepDecon

with TF-IDF transformation exhibited lower RMSE values in 14 da-

tasets compared to DeepDecon without TF-IDF transformation.

We used the paired Wilcoxon signed-rank test to compare the

RMSE values of DeepDecon with versus without TF-IDF normali-

zation by combining all 15 simulated datasets, and the resulting

p value was 0.00099. This suggests that the use of TF-IDF can

enhance the predictive power of DeepDecon. We also compared

TF-IDF transformation with other existing normalization methods
4 Patterns 5, 100969, May 10, 2024
(fragments per kilobase per million mapped fragments [FPKM]

and transcripts per kilobase million [TPM] normalization), and

the corresponding results are given in Figure S2. The figure

shows that DeepDecon with TF-IDF normalization outperforms

DeepDecon with FPKM and TPM normalization methods. Fig-

ure3Bshows theeffectsof iterationsonDeepDecon.Non-iterative

DeepDecon is only one neural network trained on datasets

with malignant cell fractions ranging from 0.0 to 1.0. The RMSE

valuesof iterativeDeepDeconare lower than thoseof non-iterative

DeepDecon in all 15 simulated AML datasets (p value = 0.00065).

Figure S3 also gives the scatterplot of iterative DeepDecon and
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non-iterative DeepDecon on simulated AML datasets. It shows

non-iterative DeepDecon’s poor prediction accuracy when the

malignant cell fraction is close to 0 or 1.

Figure S4 shows this heterogeneity by presenting the uniform

manifold approximation projection (UMAP)23 of all 15 subject da-

tasets based on their scRNA-seq gene expression levels. Each

subject has a specific clinical outcome, leading to gene expres-

sion variations and model performance differences. The projec-

tion indicated the heterogeneity across different subjects and

further proved that it is necessary to simulate artificial bulk sam-

ples separately across different single-cell subjects.

We then investigated the decomposition performance of the

nine methods using real bulk RNA-seq data. We utilized all 15

artificial bulk RNA-seq datasets to train DeepDecon andScaden.

To obtain the single-cell reference data for Bisque, MEAD, RNA-

Sieve, MuSiC, and CIBERSORTx, we selected single cells from

all 15 scRNA-seq datasets and combined them together.

Figure 4 shows the decomposition performance of the nine

methods on real AML RNA-seq datasets (‘‘TARGET-AML’’ [pri-

mary and recurrent] and ‘‘BeatAML’’). The RMSE values for

each method on real datasets are also given in Table 1.

Figures S5, S6, and S7 show the scatterplots of true malignant

fractions with predicted malignant fractions for each method

in real ‘‘primary,’’ ‘‘recurrent,’’ and ‘‘BeatAML’’ AML datasets,

respectively. DeepDecon outperforms Scaden, Bisque, MEAD,

RNA-Sieve, MuSiC, CIBERSORTx, ESTIMATE, and NNLS in de-

convolving the malignant cell fraction on real AML datasets.

DeepDecon outperforms other deconvolution methods
for other cancer types
To test DeepDecon’s performance on other cancer types, we also

applied DeepDecon to other cancer types.24,25 Specifically, we

constructed artificial bulk RNA-seq samples for each subject sepa-

rately. Then, we trained each DeepDecon model using the gener-

ated artificial bulk RNA-seq datasets and evaluated the perfor-

mance of DeepDecon and other methods using leave-one-out

cross-validation. Figures 5 and 6 show the boxplots of the RMSE,

correlation, and CCC values between the true and the estimated

cancer cell fractions among all methods on the simulated neuro-

blastoma and head-and-neck squamous cell carcinoma (HNSCC)

datasets. TablesS1 andS2also give theRMSEvalues andaverage

performance ranks of each method on simulated and real neuro-

blastoma and HNSCC datasets. They show that DeepDecon still

achieves the lowest RMSE values, the highest correlations, and

CCC values in neuroblastoma and HNSCC cancers, indicating

that DeepDecon is robust and applicable to other cancer types.

We also compared DeepDecon with regression-based

methods such as CIBERSORTx, RNA-Sieve, and NNLS that do

not use subject-specific information in their original publications.

We designed a way to incorporate subject information in these

methods and showed that DeepDecon outperforms them in

both ways. Details are given in supplemental experimental pro-

cedure 2 and Figure S8.

The impacts of gene expression perturbations and cell
number per bulk sample on the performance of
DeepDecon
Under ‘‘Methods,’’ we discuss that bulk RNA-seq gene expres-

sion perturbations and the number of cells N in a bulk sample
Patterns 5, 100969, May 10, 2024 5



Figure 3. The TF-IDF transformation and the iterative strategy improve the performance of DeepDecon

(A) Bar plots of RMSE values of DeepDecon models with and without TF-IDF transformation. DeepDecon with TF-IDF transformation achieves the lowest RMSE

values in 14 of 15 simulated AML datasets.

(B) Bar plots of RMSE values on DeepDecon models with and without the iterative strategy. Iterative DeepDecon achieves the lowest RMSE values in all 15

simulated AML datasets. The x axis is the simulated AML dataset. The y axis is the RMSE value.
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can influence the accuracy of the decomposition algorithms. Fig-

ures 7, S9, and S10 show the influence of different levels of per-

turbations on the performance of various decomposition

methods. The RMSE values for most methods except Bisque

slightly increase with the noise level. DeepDecon consistently

achieves the lowest RMSE among all methods under different

noise levels, showing its robustness.

We also investigated the influence of the number of cells in a

bulk sample on the prediction accuracy of DeepDecon using

AML datasets. Figure 8 shows the RMSE values between true

and predicted malignant cell fractions under different combina-

tions of cell numbers in a bulk sample. More specifically, when

the training model is fixed, the RMSE value decreases with the

cell number in bulk samples in the testing data. This shows

that a better prediction performance can be achieved when the

testing bulk sample contains more single cells. If the number of

cells per bulk sample exceeds a certain threshold (> 3; 000),

the performance of the DeepDecon model becomes stable.

On the other hand, when the number of cells per bulk sample

in testing datasets is above 3,000, the number of cells in

the training dataset does not have a strong influence on

DeepDecon. The RMSE values are stable, showing the robust-

ness of DeepDecon to the number of cells in the training datasets

when the number of cells in the testing data is above 3,000.

DeepDecon was trained on a high-performance cluster (HPC)

with a Xeon-2640 6-core CPU node and it took � 20 min to train

a model and took � 3 s to predict on one bulk tissue.

DISCUSSION

DeepDecon is an innovative deep-learning-based algorithm that

leverages scRNA-seq information to accurately predict cancer

cell fractions. Due to the latent feature engineering capabilities

of neural networks, which can automatically extract non-linear

features in the hidden layers, DeepDecon can achieve superior

performance by incorporating all input genes ( � 104). We

showed that DeepDecon is applicable to multiple cancer data-
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sets. DeepDecon can iteratively predict malignant cell fractions

with lower RMSE compared to other methods, making it a

powerful tool for accurate and reliable prediction of cancer cell

fractions.

DeepDecon adopts a TF-IDF approach to weigh the expres-

sion of different genes, which addresses the issue of imbalanced

expression levels across genes. In addition, our algorithm em-

ploys an iterative approach to refine the prediction, as opposed

to the three deep neural network outputs average used by Sca-

den. These two steps have significantly improved the estimation

accuracy of malignant cell fractions in bulk RNA-seq samples.

By iteratively using small-range models Mi;j to predict the same

bulk samples, where these models share similar structures but

work in different malignant fraction ranges, we have achieved

better prediction accuracy compared to using only one initial

model M0;100. We have also evaluated DeepDecon’s perfor-

mance with respect to gene expression perturbations and vary-

ing numbers of cells per bulk sample. We showed that

DeepDecon is robust to gene expression perturbations and the

number of cells in the training set, if the number of cells in the

testing data is at least 3,000. These findings make DeepDecon

a valuable tool for the accurate and reliable prediction of malig-

nant cells.

DeepDecon accurately estimates the malignant cell fraction in

a tissue based on its transcriptomic features from bulk RNA-seq

data. In particular, for AML, this novel approach could be used to

accurately detect malignant clones in patients who appear to be

in complete remission by standard morphology and flow cyto-

metric analysis. DeepDecon can also be used to measure resid-

ual disease in AML patients with morphological remission and

classify patients into different phases, such as accelerated or

blast phase crisis, depending on malignant cell fractions.

While DeepDecon can achieve good performance on different

cancer samples and tissues, we note that there are still limita-

tions to this deep-learning-based method. First, the quality of

training data is very important. If the number of subjects is small

or the single-cell data are dominated by one specific cell type,
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Figure 4. DeepDecon outperforms other deconvolution methods on real AML RNA-seq datasets

Boxplots of root-mean-square error (RMSE) (A), Pearson’s correlation coefficient (PCC) (B), and Lin’s concordance correlation coefficient (CCC) (C) values

between the predicted and the true fractions of malignant cells. Each bar in the boxplots contains three points corresponding to three real AML bulk RNA-seq

datasets, namely ‘‘primary,’’ ‘‘recurrent,’’ and ‘‘BeatAML’’ datasets.
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DeepDecon can learn less information about real cell fraction

distribution and cannot generalize and represent the latent fea-

tures well. Second, experimental bias and noise can greatly limit

decomposition accuracy. These limitations can potentially be

alleviated by including more training subjects to increase the

training set size and by reducing noise in the expression data.

However, more computational resources will be needed to train

the DeepDecon models. How to efficiently train the model with

large training data is a topic for further research. Third,

DeepDecon constructed simulated bulk RNA-seq datasets by

assuming random sampling of single cells from the tissue. How-

ever, it should be noted that simulated bulk RNA-seq is not

necessarily the same as real bulk RNA-seq samples. A potential

limitation of DeepDecon is that the exact cell-type information

may not be available. Preparation methods for generating sin-

gle-cell suspensions may result in the underrepresentation of

certain cell types, particularly those that are rare or do not survive

disassociation. Therefore, the resulting cell composition may

differ from that in the real tissues. However, particular cell types

that are consistently missing from all single-cell suspensions are

less likely when using multiple training datasets. Since we

analyze both malignant and normal cell types in this study, this

is less an issue than a general cell-type deconvolution study

where a large number of cell types are considered in solid tis-

sues. We alleviate this issue further by only selecting subjects

with more than 100 malignant cells and 100 normal cells. In

future studies involving multiple cell types, we could adopt

similar requirements and add the cell type ‘‘unknown’’ to cover

potential missing cell types.
We plan to further improve the performance and applicability of

DeepDecon by implementing several key modifications to the ex-

istingmethodology. First,wewant to extendDeepDecon’s capac-

ity to include multiple cell types or subtypes. For instance, we

considered twomain cell types in this study:malignant and normal

cells. However, it has been reported that both cell types consist of

molecular subtypes.26 Thus, it is important to extend DeepDecon

to multiple cell types. Second, it is essential to consider both

known and unknown cell types in deconvolution. Cell composition

derived from biological experiments can contain cells that do not

belong to any of the existing cell types. These cells are labeled

as unknown cell types and have more complex gene expression

patterns. Third, the current DeepDecon model takes all genes

intoaccount.Selectinggenes thatareonly relevant to thecell types

of interest may further increase prediction accuracy.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for data should be directed to and will be ful-

filled by the lead contact, Prof. Fengzhu Sun (fsun@usc.edu).

Materials availability

The study did not generate new unique reagents.

Data and code availability

Single-cell AML data were obtained from the Gene Expression Omnibus (GEO)

under accession no. GSE116256.27 Single-cell neuroblastoma data were

downloaded from the GEO with accession no. GSE137804.24 HNSCC cancer

data were collected from the database TISCH.25 All real bulk RNA-seq data

sources are listed in Table S3. All original code has been deposited at Github
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Figure 5. DeepDecon outperforms other deconvolution methods on the simulated neuroblastoma datasets

Boxplots of root-mean-square error (RMSE) (A), Pearson’s correlation coefficient (PCC) (B), and Lin’s concordance correlation coefficient (CCC) (C) values

between the predicted and the true fractions of malignant cells on nine simulated neuroblastoma bulk RNA-seq datasets. Each bar in the boxplot contains nine

points corresponding to nine simulated neuroblastoma bulk RNA-seq datasets. Each simulated neuroblastoma dataset contains bulk samples constructed from

only one subject. The correlation and CCC values of methods MEAD, RNA-Sieve, and NNLS contain not-available (NA) values. Therefore, paired tests of cor-

relation and CCC values between DeepDecon and MEAD, RNA-Sieve, and NNLS are not available. *0:01<p value%0:05, **0:001<p value%0:01.

ll
OPEN ACCESS Article
(https://github.com/Jiawei-Huang/DeepDecon) and has been archived at

Zenodo.28

Methods

Datasets

AML is a heterogeneous disease in which hemopoietic progenitor cells (blasts)

lose the ability of normal differentiation and proliferation.29 The diagnosis of

AML has a direct relation with the malignant cell percentage in bone marrow

(BM) tissues.30,31 Therefore, we chose AML as our primary disease in this

study. The single-cell AML datasets were downloaded from the GEO with

accession no. GSE116256.27 This dataset contains scRNA-seq gene expres-

sion sequenced from subjects who have different degrees of AML disease.

Each cell in the dataset has labeled cell type (malignant or normal). A total of

15 subjects were selected to simulate artificial bulk RNA-seq datasets. The

scRNA-seq data were processed following the preprocessing workflow of

the widely used single-cell gene expression python package, Scanpy

(v.1.7.2).32 Initially, cell-gene matrices were filtered to exclude cells with fewer

than 500 detected genes and genes expressed in fewer than five cells. Subse-

quently, the count matrix for each subject was filtered to remove extreme out-

liers in gene expression values (Table S4). Then, gene expression was normal-

ized by Scanpy’s ‘‘normalize_total’’ function so that every cell had the same

total count after normalization. This will counteract the effect of different library

sizes. Finally, the resulting normalized matrix of all filtered cells and genes was

saved for subsequent simulated bulk data generation. The details of data se-

lection and preprocessing are given in supplemental experimental procedure 3

and Figure S11.

DeepDecon was tested on real AML bulk RNA-seq datasets. We first down-

loaded AML data from the GDC data portal (https://portal.gdc.cancer.gov/)

with the project name ‘‘TARGET-AML.’’ The AML samples were further divided

into primary AML and recurrent AML categories according to different cancer

stages. As a result, there were a total of 117 primary AML samples and 38

recurrent AML samples. Ground-truth cancer cell fractions from flow cytome-
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try are available in these bulk RNA-seq data. Moreover, an additional real AML

dataset, BeatAML,33 was collected from cBioportal.34 BeatAML contains a to-

tal of 451 bulk RNA-seq samples, and 300 of them have corresponding

ground-truth cancer cell fractions. The study used the ‘‘SureSelect’’

sequencing platform, which is different from the sequencing platform used

to generate the single-cell data on the TARGET-AML dataset (Table S3). These

datasets enable us to evaluate DeepDecon’s performance on data from

different sources.

To test DeepDecon’s performance on other cancer tissues, we also

collected 19,173 single cells from nine neuroblastoma cancer patients24 and

184,868 single cells from 27 HNSCC patients.25 They were used to simulate

artificial RNA-seq bulk samples to build and evaluate DeepDecon. A real neu-

roblastoma bulk RNA-seq dataset consisting of 99 bulk RNA-seq sampleswith

known cancer cell fractions was collected from cBioportal,34 and another

real HNSCC bulk RNA-seq dataset, ‘‘TCGA-HNSC,’’ consisting of 518 bulk

RNA-seq samples with known cancer cell fractions, was collected from

LinkedOmics.35 These two real datasets were used for testing. The details of

data selection and preprocessing are given in supplemental experimental

procedure 3.

Generating artificial bulk RNA-seq datasets

We used scRNA-seq datasets described under ‘‘Datasets’’ to construct artifi-

cial bulk RNA-seq samples. The generated samples were designed to have

predetermined malignant cell fractions, which were then employed as training

data for the DeepDecon model. Specifically, we first fixed the total number of

cells in an artificial bulk sample to be N, and a malignant cell number nm was

randomly generated from a uniform distribution between 0 and N. Subse-

quently, nm malignant cells and N � nm normal cells were randomly sampled

from the same scRNA-seq dataset. If the total number of malignant or normal

cells in the scRNA-seq dataset was smaller than nm or N � nm, respectively,

the cells were chosen with replacement, that is, each cell was chosen uni-

formly from all the single cells available; otherwise, the cells were chosen

without replacement, that is, each cell was chosen from the remaining cells.

https://github.com/Jiawei-Huang/DeepDecon
https://portal.gdc.cancer.gov/
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Figure 6. DeepDecon outperforms other deconvolution methods on the simulated HNSCC dataset

Boxplots of root-mean-square error (RMSE) (A), Pearson’s correlation coefficient (PCC) (B), and Lin’s concordance correlation coefficient (CCC) (C) values

between the predicted and the true fractions of malignant cells on 27 simulated HNSCC bulk RNA-seq datasets. Each bar in the boxplot contains 27 points

corresponding to 27 simulated HNSCC bulk RNA-seq datasets. Each simulated HNSCC dataset contains bulk samples constructed from only one subject. The

correlation and CCC values of method MEAD, RNA-Sieve, and NNLS contain not-available (NA) values. Therefore, paired tests of correlation and CCC values

between DeepDecon and MEAD, RNA-Sieve, and NNLS are not available. *0:01<p value% 0:05, **0:001<p value% 0:01, ***1:00e � 04<p value%1:00e �
03, ****p value% 1:00e � 04.
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Importantly, cells from different subjects (i.e., individuals) were notmerged into

an aggregated sample. This decision was motivated by two primary motiva-

tions. First, the aim was to safeguard within-subject relationships among

genes by preserving the unique gene expression patterns inherent to each

subject. Second, the intention was to capture the variability between subjects,

commonly referred to as cross-subject heterogeneity.22 The single cells were

merged into one bulk sample by summing their expression values, and the re-

sulting artificial bulk sample was labeled with the fraction of malignant cells

nm=N. This process was repeated for each scRNA-seq dataset, generating a

corresponding artificial bulk RNA-seq dataset. Each bulk dataset contained

T samples with known malignant cell-type proportions (supplemental experi-
Figure 7. DeepDecon is robust to gene expression perturbations

Boxplots of RMSE values between the true and the estimated malignant cell fracti

noise generated from a Gaussian distribution with zero mean and variance that e

sample. We also randomly selected 10% of the genes for each sample and mas

representing 15 separate AML datasets. The color represents different levels of
mental procedure 4). We set N = 3; 000 and T = 200 here for model training.

We also investigated the impacts of N on DeepDecon. This procedure pro-

vides a valuable resource for training and evaluating the DeepDecon algorithm.

Data processing

To ensure consistency between the data used for training and prediction, the

artificial bulk RNA-seq samples underwent a preprocessing procedure before

model training. Specifically, only genes that were present in both training and

testing datasets were retained, and genes with low expression variances

(below 0.1) were removed. Next, a TF-IDF transformation was applied to the

rawRNA-seq count matrix. This transformation, commonly used in information

retrieval and text mining,36,37 involves calculating the ‘‘term frequency’’ (TF) for
ons on simulated AML datasets under different noise levels. We added random

quals aða = 0:01; 0:05; 0:1Þ times gene expression level for each gene in each

ked its gene expression values into 0. Each bar contains a total of 15 points,

noise level a.
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Figure 8. DeepDecon is robust to the number of cells per bulk sam-

ple when the number of cells in testing data is above 3,000

The x axis is the trained DeepDecon model. The subscript is the number of

cells per bulk sample. DeepDeconN means a DeepDecon model trained on a

dataset in which one bulk sample consists of N single cells. The y axis is the

RMSE value between the true and the estimated malignant cell fractions. The

color represents the number of single cells per bulk sample in the testing data.
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each gene in each sample by normalizing the GEP (see Equation 1). The ‘‘in-

verse document frequency’’ (IDF) was then calculated by dividing the total

number of bulk samples by the total gene expression values of the gene across

all samples (see Equation 2), followed by log transformation and multiplication

by the TF value. The TF-IDF transformation weights genes with lower expres-

sion levels more heavily, which helps to adjust for the imbalanced expression

levels across genes.38 This preprocessing procedure is an important step in

ensuring the quality and consistency of the data used for training the deep

learning models:

TFðXi;jÞ =
Xi;jP
jXi;j

; (Equation 1)

IDFðGjÞ = log

�
TP
iXi;j

+ 1

�
; (Equation 2)

where Xi;j is the expression level of the j-th gene in the i-th sample,Gj indicates

the j-th gene, and T is the number of bulk samples.

Let X0 denote the gene expression matrix after TF-IDF transformation. A

MinMax transformation was applied to the resulting expression matrix X0 to
scale the expression values to the (0, 1) range (see Equation 3). This is a com-

mon practice in deep learning models that use gradient-based optimization

algorithms22,39:

Xnorm
i =

X0
i � min

�
X 0
i

�
max

�
X0
i

� � min
�
X 0
i

� ; (Equation 3)

where X0
i is the i-th row of X0 and Xnorm

i is the i-th row of the resulting expression

matrix after the MinMax transformation.

There are also several existing normalization methods, including FPKM and

TPM. These methods are mainly used for different sequencing methods.40 For

example, gene expression data from the unique molecular identifier (UMI)

counting can represent the real expression value, while gene expression

data from the Smart-Seq protocol need to be further normalized using

methods like TPM or FPKM.41 We compared these normalization methods

with TF-IDF normalization, and the details can be accessed in supplemental

experimental procedure 5.

The DeepDecon model

The deep learning model used in this study consisted of two main compo-

nents. The first component consisted of four fully connected layers with a
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dropout regularization between each two layers, and the rectified linear unit

(ReLU) was used as the activation function in every internal layer. The second

component was a softmax function used to predict the malignant and normal

cell fractions. All model parameters were optimized using the Adam optimiza-

tion algorithm42 with a learning rate of 0.0001 and a batch size of 128. The

output of the DeepDecon model is the estimated fraction of malignant (tumor)

cells of given bulk RNA-seq samples. The model was trained as a regression

task, with the RMSE as the loss function. Various combinations of learning

rates, batch sizes, and dropout rates in the deep learning model were tested,

and the results are shown in supplemental experimental procedure 6 and

Table S5. The Keras (v.1.0.8) library (https://keras.io/) was used to implement

the deep learning model.

To address the issue of poor prediction accuracywhen themalignant cell frac-

tion is close to 0 or 1 (Figure S3), an iterative deep-learning model was devel-

oped. This model involves iteratively narrowing down the prediction interval

of giving samples. More specifically, let di;j denote the set of artificial

bulk RNA-seq samples whose malignant cell fractions p˛ ½0:01 $i;0:01 $j�;
i < j; i; j˛ f0;10; 20;/; 100g and Mi;j denote a DeepDecon model trained on

di;j; that is, Mi;j was trained on artificial bulk samples with a particular range of

cell fraction. A total of 55 models were trained in this experiment. DeepDecon

modelMi;j was trained to minimize the error between the predicted cell fraction

and the true cell fraction. After training, the difference between the predicted and

the true malignant fractions was calculated for each artificial sample in di;j , and

the set of differences was defined as diffði; jÞ.
To predict themalignant fraction for a given real bulk sample X, the full-range

model M0;100 (with i = 0; j = 100) is used to provide an initial estimate bP.
DeepDecon tries to limit the estimate to a smaller range, denoted as ½0:01i0;
0:01j0 �, based on the previous prediction value bP and training datasets differ-

ence diffði; jÞ (see Formulas 4 and 5). ModelMi0 ;j0 is then used to predict thema-

lignant cell fraction of bulk sample X again, and the process continues to refine

the estimation. During each iteration, DeepDecon either shortens the intervals

or moves them to the left or right. Direction flags fl and fr are used to indicate

the directions in which DeepDecon moves. The number of intervals is finite,

and DeepDecon cannot shrink the intervals indefinitely. The intervals are

also not allowed to oscillate between left and right. Therefore, the algorithm

is finally forced to stop:

Lði; jÞ = bP +diffði; jÞl=2;
i0 = maxð0; P100 � Lði; jÞRÞ;

(Equation 4)

Uði; jÞ = bP +diffði; jÞ1� l=2;

j0 = minð100; d100 � Uði; jÞeÞ;
(Equation 5)

where l is a hyperparameter we use to select the lower and upper percentile of

diffði; jÞ and help define the new model interval. The default value of l is set at

10%. diffði; jÞl=2 and diffði; jÞ1� l=2 indicate the l=2 and 1 � l=2 percentiles of

the set diffði;jÞ, respectively. P$R and d$e indicate the floor and ceiling of a num-

ber, respectively. The specific steps of iterative DeepDecon are given in Algo-

rithm 1.

The impact of gene expression perturbations and the number of

cells per bulk sample on DeepDecon

To test the model’s robustness to gene expression perturbations, we added

different levels of Gaussian noise to the expression levels of the simulated

datasets. Specifically, we added random noise generated from a Gaussian

distribution with zero mean and variance that equals aða = 0:01; 0:05; 0:1Þ
times gene expression level for each gene in each sample (see Equation 6).

Moreover, for each simulated bulk sample, we randomly selected 10% of

the genes and masked their gene expression values into 0 to simulate data

missing issues in practice:

Xnoise
ij = maxð0;Xij + Nð0;XijÞÞ; (Equation 6)

where Xij is the gene expression value of gene j in simulated bulk sample i and a

is the noise level.

For each subject, we generated the simulated bulk datasets with different

noise levels separately. Leave-one-out cross-validation was used to evaluate

model performance across subjects. Specifically, we selected one of the k arti-

ficial bulk RNA-seq datasets as the testing dataset, while the remaining k � 1

https://keras.io/


Algorithm 1. Iterative DeepDecon

Require: Trained DeepDecon models, M = fMi;j; i < j; i; j ˛ f0;10;20;/;100gg; Difference sets, which are differences

between the prediction and the true malignant fractions from training datasets, DIFF = fdiffði; jÞ; i < j; i; j ˛ f0;10;20;/;100gg;
Testing bulk sample X

Ensure: Malignant cell fraction estimate, bP
1: Record the direction of the interval that DeepDecon moves compared to the last iteration, denoted by fl and fr
2: Initialization: model start interval index i = 0, end interval index j = 100, left direction fl = 0, right direction fr = 0,

iteration end flag flag = 0, and percentile hyperparameter l = 10%

3: bP = M0;100ðXÞ
4: Lði; jÞ = bP +diffði; jÞl=2; i0 = maxð0; P100 � Lði; jÞRÞ
5: Uði; jÞ = bP +diffði; jÞ1� l=2; j

0 = minð100;d100 � Uði; jÞeÞ
6: while flag = 0 do

7: if i0 R i and j0 % j then

8: flag = 0

9: else if i0 % i and j0 % j then

10: flag = 0; fl = 1

11: else if i0 R i and j0 R j then

12: flag = 0; fr = 1

13: end if

14:

15: if i0 R j0 or minðfl; frÞ> 0 or ði0 % i and j0 R jÞ then
16: flag = 1

17: end if

18:

19: if flag = 0 then

20: i = i0; j = j0

21: bP = Mi;jðXÞ
22: Lði; jÞ = bP +diffði; jÞl=2; i0 = maxð0; P100 � Lði; jÞRÞ
23: Uði; jÞ = bP +diffði; jÞ1� l=2; j

0 = minð100;d100 � Uði; jÞeÞ
24: end if

25:end while

26:return bP
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datasets served as the training set. This process was repeated k times to fully

evaluate the performance of our model.

The total number of cellsN in bulk RNA-seq samples can vary from sample to

sample, and it can be challenging to accurately estimate the number of cells in a

given sample. In addition, bulk RNA-seq samples in practice could also be influ-

encedby factors such as cell isolation, cell size, and clustering,which can further

complicate the estimation of cell numbers. In order to evaluate the performance

of DeepDecon under different numbers of single cells, we first fixed our

DeepDecon model and generated a set of testing datasets Q = fqi;n; ji = 0;

10;/;80;90;100; n = 500;1;000;2;000;3;000;4;000;5;000g. Each bulk sample

in the dataset qi;n contains n single cells, and the number of malignant cells fol-

lows a binomial distribution Binomial
�
n; i

100

�
. This simulates the variation of a

random sampling of malignant cells. In practice, the number of single cells in tis-

sue samples can vary widely among different patients and even among different

samplingperiods for the samepatient.43Finally,weusedDeepDecon to estimate

the fraction of malignant cells for each sample in the testing datasets. By evalu-

ating the performance of DeepDecon under different numbers of single cells, we

can assess the robustness and accuracy of the model in real-world scenarios.

In addition to testing the scenario in which the DeepDecon model is fixed

and the testing datasets are varied, we also conducted additional experiments

examining the impact of varying the number of cells per sample during the

training process. Specifically, we fixed the testing datasets and trained

different DeepDecon models using datasets where each bulk sample con-

sisted of a different number of single cells, ranging from 500 to 3,000. These

models are denoted as DeepDeconN;N = 500;1;000;2;000;3;000, where N

represents the number of cells per bulk sample (i.e., N = 500;1;000;2;000;

3; 000). These DeepDecon models were then used to predict the fraction of

malignant cells on the same testing bulk RNA-seq dataset qi;n, which was
generated as described earlier. This analysis provides insights into the perfor-

mance of DeepDecon under different training scenarios and can help with the

optimal selection of training cell numbers for a given experimental setup.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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