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Abstract

Background: Many organisms, in particular bacteria, contain repetitive DNA fragments called tandem repeats. These
structures are restored by DNA assemblers by mapping paired-end tags to unitigs, estimating the distance between
them and filling the gap with the specified DNA motif, which could be repeated many times. However, some of the
tandem repeats are longer than the distance between the paired-end tags.

Results: We present a new algorithm for de novo DNA assembly, which uses the relative frequency of reads to
properly restore tandem repeats. The main advantage of the presented algorithm is that long tandem repeats, which
are much longer than maximum reads length and the insert size of paired-end tags can be properly restored.
Moreover, repetitive DNA regions covered only by single-read sequencing data could also be restored. Other existing
de novo DNA assemblers fail in such cases.
The presented application is composed of several steps, including: (i) building the de Bruijn graph, (ii) correcting the
de Bruijn graph, (iii) normalizing edge weights, and (iv) generating the output set of DNA sequences.
We tested our approach on real data sets of bacterial organisms.

Conclusions: The software library, console application and web application were developed. Web application was
developed in client-server architecture, where web-browser is used to communicate with end-user and algorithms
are implemented in C++ and Python. The presented approach enables proper reconstruction of tandem repeats,
which are longer than the insert size of paired-end tags. The application is freely available to all users under GNU
Library or Lesser General Public License version 3.0 (LGPLv3).
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Background
Next-generation sequencing (NGS) has dramatically
reduced the time and the cost of producing genome
sequences using massively parallel technologies [1]; there-
fore, we observe exponential increase of sequencing data
[2]. The reduction of cost and sequencing the time allowed
to developmany applications, such as biosurveillance, bio-
forensics, and infectious disease epidemiology [3]. What
is more, genome-scale metabolic modeling and metage-
nomic sequencing of patient samples could improve the
efficiency of diagnosis and treatment of diseases in the
near future. All of the shown above practical applications
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are based largely on the genome sequencing of bacterial
organisms.
The sequencing procedure for bacterial organisms has

changed a lot over the last 20 years. In 1995, the first
two sequenced bacterial organisms were published. Over
time, sequencing technology has evolved, and now bac-
terial sequencing has become the standard procedure.
However, many of the sequenced bacterial genomes are
currently incomplete - for example 90% of bacterial
genomes in GenBank [3] are incomplete. In many cases
the incompleteness is a result of the occurrence of repet-
itive sequences in bacterial genomes that can not always
be reconstructed from short DNA reads from second-
generation sequencing.
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Some of the repetitive DNA regions could represent a
structure called tandem repeat - a sequence built from
several identical DNA fragments lying one after another,
caused mainly by strand-slippage replication [4]. Bacterial
genomes contain up to several dozens of tandem repeats
divided into two groups: intragenic and intergenic. Nev-
ertheless, only a small number of tandem repeats have
been functionally studied to date; for example, some of the
functions of specific genes can be modulated by instability
of tandem repeats. This process allows bacteria adaptation
to a new environment in a short termwithout complicated
mutation [5].
Current DNA assemblers, like ABySS [6], Velvet [7] or

SPAdes [8], reconstruct tandem repeats using the infor-
mation contained in paired-end tags. However, some
repetitive regions may be much longer than maximum
reads length and the insert size of paired-end tags.
Such regions cannot be reconstructed by modern DNA
assemblers.
Here, we present a new algorithm for DNA assem-

bly, which uses the relative frequency of DNA reads to
properly reconstruct tandem repeats. The main advan-
tage of our approach is that tandem repeats, which are
longer than the insert size of paired-end tags, can also
be properly reconstructed, while other de novo genome
assemblers fail in such cases. What is more, long tandem
repeats could also be restored if only single-read sequenc-
ing data is available. The presented approach requires high
sequencing coverage, currently easily achievable for bacte-
rial genomes, but the tandem repeats reconstruction pro-
cess could significantly improve contiguity over previous
approaches, which was also indicated in the study.

Implementation
In this section, we present the main data processing
pipeline that has been implemented in a new DNA assem-
bler named ’dnaasm’.We use de Bruijn graph due to its effi-
ciency for the next generation sequencing data.Wemainly
focus on describing the process of estimation tandem
repeats length and the process of reconstruction repetitive
DNA fragments. We also present the main implemen-
tation aspects that make our application memory and
computing efficient.

Assembly workflow
Building and correcting de Bruijn graph
The first stage of de novo assembling in ’dnaasm’ is de
Bruijn graph construction. As in the typical de novo DNA
assembler, dnaasm builds de Bruijn graph from input set
of DNA reads by splitting each read into set of k-mers.
Each k-mer represents a substring of length k from input
DNA read - a number of k-mers generated from sin-
gle DNA read of length L is equal to L − k + 1. Then,
on the constructed de Bruijn graph, some algorithms for

error correction are applied, similar to algorithms imple-
mented previously [7]. Especially, dnaasm uses algorithms
for removing tips, bubbles and edges of low weight. At
this stage, all edges representing DNA sequencing errors
should be removed from the de Bruijn graph. Moreover,
the edges of the de Bruijn graph represent substrings of
length k and in the presented approach each edge has
an additional property, the integer number named edge
weight, which depicts a number of occurrence of DNA
fragment of length k in the input set of DNA reads, as in
A-Bruijn graph [9].
The specified edge weight w is equal to exact k-mer

count, where edge represents specified DNA substring of
length k in the set of reads. Let’s consider ideal assem-
bler input R, called k-spectrum, where reads are gener-
ated without errors from a circular bacterial genome of
sequence s0s1...sG−1 of length G, and reads r ∈ R have
identical length L, and R is a set of all substrings si...si+k−1
for 0 ≤ i ≤ G. The edge weight w in this case is w =
N(L−k+1)

G for non-repetitive k-mers, where N depicts a
number of reads, and edge weight w = �

d
N(L−k+1)

G , for
k-mers inside tandem repeat of length n, where repeti-
tive motif of length d is repeated �n/d� times (integer
division), tandem repeat is longer than graph dimension,
n > k, and � = n − k + 1.
We prove in [10] the edge weight w for de Bruijn graph

of dimension k, for error-less set of N reads with identical
length L, assuming uniform distribution of the reads posi-
tion over input circular bacterial genome of length G, is
a random variable with Poisson distribution (probability
mass function is P (x) = e−λλx

x! ), as depicted in Eq. 1.

W ∼Poisson (λ)where λ= NL(L − k + 1)�
Gkd

,� = n−k+1,

(1)

Estimating a number of repeats
After the de Bruijn graph construction and correction,
dnaasm application estimates the number of occurrences
of a given DNA fragment, represented by the edge in the
de Bruijn graph, in the investigated genome. This process
consists of two stages: firstly, the normalization factor is
calculated in accordance with the equation:

p = G
N(L − k + 1)

(2)

The presented normalization factor is the result of mod-
eling edge weight by Poisson distribution described in
Eq. 1. Then, the edge normalization is carried out - it con-
sists in multiplying the input edge weight (which is the
number of occurrences of the DNA fragment represented
by the edge in the input set of DNA reads) by the previ-
ously calculated normalization factor. The multiplication
result is rounded to the nearest integer, which represents
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the number of occurrences of the DNA fragment repre-
sented by the edge in the investigated genome. This step
could be briefly described by the following equation:

w′ = round(p ∗ w) = �p ∗ w + 0.5� (3)

The proper repetitive sequence reconstruction requires
high coverage c = N∗L

G ≥ 100. When c ≥ 10 Poisson dis-
tribution of edge’s weight can be approximated by Normal
distributionN (μ, σ):

W ′ ∼ N (μ, σ)whereμ = �

d
, σ =

√
�

d
,� = n−k+1

(4)

For given level of confidence q, 0 ≤ q ≤ 1 we can
calculate a required read coverage c for proper repetitive
motif reconstruction, using the Eq. 5, where �−1

N (q) is
the inverse cumulative distribution function for standard
normal distribution (μ = 0, σ = 1), d is the length of
repetitive motif, n is the length of tandem repeats, n > k,
k is de Bruijn graph dimension, L is read length.

c = k
L − k + 1

(
2�−1

N

(
1 + q
2

))2
�

d
where� = n−k+1

(5)

The process of estimating the number of occurrences
of a given DNA fragment in the investigated genome is
presented in Fig. 1.

Detecting tandem repeats
The next step of the tandem repeats reconstruction
process is the detection of structures in the de Bruijn
graph, which represent tandem repeats in the investigated
genome. These structures appears as loops in de Bruijn
graph connected with the rest of the graph by only one
in-edge and only one out-edge. In other words, tandem
repeats are represented by a sub-graph, where exactly
one vertex has two in-edges and one out-edge, exactly
one vertex has one in-edge and two out-edges, and all
other vertices have one in-edge and one out-edge. Such
structure consists of two parts:

• a branch from a vertex which represents an entry to
the loop to a vertex which represents an exit of the
loop;

• a branch from a vertex which represents an exit of the
loop to a vertex which represents an entry to the loop.

An example of a structure representing tandem repeat in
the de Bruijn graph is presented in Fig. 2.

Correcting weights in tandem repeats
The next step of the tandem repeats reconstruction pro-
cess is the correction of the edge weights in the previously
detected de Bruijn graph loops. Firstly, the weights in sin-
gle branches are corrected so that all weights of the branch
have the same weight. Secondly, the number of vertices in

a

b

Fig. 1 Edge weight normalisation. An example effect of edge weight normalisation. a Unnormalised graph – the edge weights depict the number
of occurrences of a sequence of length k in a set of reads. b Normalised graph – the edge weights depict the number of occurrences of a DNA
fragment of length k in the investigated genome
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b

a

Fig. 2 Tandem repeat detection. Sample structures representing and not representing tandem repeats in de Bruijn graph. a De Bruijn graph with an
invalid tandem repeats structure – the loop in this example has two vertices with two in-edges and two vertices with two out-edges. b De Bruijn
graph with a valid tandem repeats structure – the loop in this example has a single vertex with two in-edges and a single vertex with two out-edges

both parts of the loop are counted. Then, the edge weights
in the less numerous parts of the loop are adapted to the
weights of the edges of the more numerous parts of the
loop, so that all of the vertices in the loop will be of 0
degree. Here, a degree is a sum of weights of vertex edges
where the weights of in-edges are positive, and the weights
of out-edges are negative. An example of correction of
normalized edge weights in the de Bruijn graph loops is
presented in Fig. 3.

Resolving tandem repeats in DNA sequence
The last step of reconstructing the repetitive DNA
sequence from next-generation sequencing reads is to
generate a DNA sequence from the de Bruijn graph. This
process involves traverse the vertices of the de Bruijn
graph until an ambiguous vertex is encountered.
The vertex is treated as unambiguous if it has zero, one

or two input (output) edges and, in the case of exactly two
input (output) edges, for one of them a simple return path
exists ie. path from the target vertex to the source ver-
tex, that has at least one vertex with more than one input
edges and at least one vertex with more than one out-
put edges. This condition makes the number of ambigu-
ous vertices in our approach smaller than in the other
existing assemblers, where ambiguity is set if a vertex
has more than one input edge or more than one output
edge.
The process of resolving tandem repeats consists of

two steps: (1) finding vertices without any input edges
and with at least one output edge, such vertex starts new
contig and becomes current vertex; (2) iteratively process-
ing directly connected vertices ie. adding them to actual

contig and decrementing weights of visited edges; if the
edge weight is 0, edge is removed from the graph. If the
current vertex v is unambiguous, it extends the current
contig, otherwise, it starts the new one. Moreover, if cur-
rent vertex v is unambiguous and has two output edges,

a

b

c

Fig. 3 Correcting weights in loops of de Bruijn graph. A sample
process of correcting weights in the de Bruijn graph. a The input de
Bruijn graph. b De Bruijn graph after correcting weights in branches -
the weight of (GGT,GTA) edge was changed to 2. The graph has
uncorrected weights in valid loops - vertices ATT and TAA have
degrees different from zero. c De Bruijn graph after correction
weights in valid loops - the weights of less numerous branch
(ATT,TTA,TAA) of the loop were changed so that all vertices of the
loop will have degree equal to zero
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the edge, for which a previously defined simple return
path exists, is chosen.
This process is repeated until all ambiguous vertices are

resolved. An example of generating DNA sequences from
de Bruijn graph is presented in Fig. 4.

Final assembly steps
All of the previously described steps of de novo assem-
bly in dnaasm application lead to a generation set of DNA
sequences called unitigs. Then, created unitigs could be
extended to contigs and scaffolds using paired-end tags
and mate-pairs - both algorithms are also implemented in
dnaasm application.

Implementation
The web-application was developed in client-server archi-
tecture, where web-browser is used to communicate with
end-user, Python is used to realize the application server,
and algorithms are implemented in C++. The described
architecture is based on a bioweb framework [11], the
main modules of the application are presented in Fig. 5.
To achieve the high performance of calculation module

we used several memory-efficient structures, e.g. Com-
pressed Sparse RowGraph from Boost library to represent
de Bruijn graph, Google Sparse Hash to implement hash
map. Our advanced memory optimization enabled build-
ing and processing graph up to 7 ∗ 109 vertices (e.g. for
human genome) in 256 GB RAM. We deploy the module
as shared C++ library.

Results
In this section, we presented the results of tests for
real data sets of bacterial organisms. We compared the
results obtained by our approach with tandem repeats
detected by algorithms based on paired-end tags. We also
briefly describe new real assembly case from the whole
genome sequencing project, where our approach gives an
advantage. Moreover, we carried out several experiments

on simulated datasets to compare efficiency of tandem
repeats reconstruction.

Comparison to another applications
We compared the dnaasm application with the three pop-
ular de novo DNA assemblers: ABySS [6] ver. 2.0.1, Velvet
[7] ver. 1.2.10 and SPAdes [8] ver. 3.11.0. Applications were
compared on four sets of bacterial DNA reads obtained
from the National Center for Biotechnology Informa-
tion. The benchmark dataset contains DNA reads from
four samples - ERR351243 forHelicobacter pylori PeCan4,
SRR5431732 for Mycobacterium bovis, SRR1981622 and
SRR1981619 for Helicobacter pylori J99. The description
of benchmark data sets is presented in Table 1.
De novo assembling of the mentioned DNA reads was

carried out in two modes - with and without using paired-
ends tags. The results were compared in terms of the
number of contigs longer than 1000 bp, the length of N50
contig, the length of the longest contig and two param-
eters describing the quality of the resultant sequences -
the average number of mismatches and indels per 100,000
aligned bases. The above parameters were calculated by
the quality assessment tool QUAST [12] ver. 4.1; and the
results are presented in Table 2.
In Table 3 we showed the improvement of results by

tandem repeat resolution. Furthermore, we counted the
number of places in investigated samples, where our
approach works properly and other assemblers fail. To
compare the number of detected tandem repeats we used
Tandem repeats finder application [13]; the results of this
application are presented in Table 4.

Simulated reference genome
The next two experiments were carried out on the
simulated data generated from the generated reference
genome. This sequence consists of the 20 tandem repeats
isolated from each other by a section of 1000 random sym-
bols over {A, C, G, T} alphabet. The repetitive structures

Fig. 4 Generating DNA sequences from de Bruijn graph. An example process of building output contigs from a normalised de Bruijn graph. The
resultant set of contigs should contain five contigs: CCAT, CATGGGAG, CATTAACCC, TTTCCC, and CCCGACGACGACT. The ambiguous vertices (CAT
and CCC) are marked with gray colour
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Fig. 5Modules of the dnaasm application. The main modules of
dnaasm application. Dnaasm application could be treated as
client-server application or command line software - the application
could be run by the graphical user interface or by the command line.
Moreover, command line version is developed in docker container, so
that the installation is quick and easy

include: motif of length 100 bp repeated 2, 3, 4 and 5 times;
motif of length 200 bp repeated 2, 3, 4 and 5 times; motif of
length 300 bp repeated 2, 3, 4 and 5 times; motif of length
400 bp repeated 2, 3, 4 and 5 times; motif of length 500
bp repeated 2, 3, 4 and 5 times. The motifs were random
symbols.

Simulated dataset for different value of insert size
In this experiment we investigated how insert size affects
the accuracy of tandem repeats detection. We generated
sets of reads from simulated reference genome using the
profile-based Illumina pair-end Read Simulator pIRS [14].
Three sets were generated:

• mean insert size: 250 bp, standard deviation of insert
sizes: 25;

• mean insert size: 750 bp, standard deviation of insert
sizes: 75;

• mean insert size: 1250 bp, standard deviation of insert
sizes: 125.

Table 1 Sets of benchmark data

Sample Coverage Read length Insert size mean Insert size std dev

ERR351243 200x 100 bp 250 bp 63 bp

SRR1981622 200x 100 bp 226 bp 84 bp

SRR1981619 200x 100 bp 211 bp 78 bp

SRR5431732 150x 75 bp 268 bp 101 bp

To compare the performance of our approach and another de novo DNA
assemblers we used four bacterial datasets - ERR351243, SRR1981622, SRR1981619
and SRR5431732. To speed up calculations, we decreased the value of genome
coverage in ERR351243, SRR1981622 and SRR1981619 datasets to 200x

The read length and depth of coverage for all simulated
sets of reads was 100 bp and 150x, respectively. The
substitution-error rate was 0.01, simulating indel errors in
reads was switched on. To compare a number of detected
tandem repeats we used Tandem repeats finder applica-
tion [13]. The results are shown in Table 5.

Simulated dataset for different depth of coverage
In this experiment we checked how read coverage affects
the tandem repeats detection for different types of repeti-
tive sequences - we compared efficiency of reconstructing
tandem repeats by our approach and by methods based
on paired-end tags on simulated datasets generated with
another depth of coverage. We used, as in the previous
experiment, dataset generated by read simulator from our
reference genome, The read length, insert size mean and
standard deviation of insert sizes was 100 bp, 250 bp and
25, respectively, the error simulation parameters – as in
previous experiment. We generated three sets of input
paired-end tags with depth of coverage: 50x, 100x and
150x. The results are depicted in Table 6.

PCR confirmation
To present the correctness and usefulness of our
approach, we use our application in a project managed by
the Witold Stefański Institute of Parasitology of the Polish
Academy of Sciences dealing with, inter alia, the problem
of sequencing and assembling mitochondrial DNA of rat
tapeworm Hymenolepis diminuta. Despite the small size
of this sequence (only 13,900 bp), there is a large repet-
itive DNA region (tandem repeats), which contains 13
repeats of the same 31-nt sequence [15]. To assemble this
sequence, we obtained reads from the Illumina sequencer,
the reads were paired (2x100 bp), an average insert size
was equal to 300 bp. Unfortunately, the insert size of
paired-end tags was smaller than the length of the inves-
tigated repetitive region. Due to this fact, our application,
as the only one DNA assembler, was able to reconstruct
this repetitive region. Moreover, the depth of coverage for
this sequencing project was high, ie. for mitochondrial
DNA above 1000x, so we were able to use our application
several times with different coverage depths (from 300x
to 1000x). The results for all these calculations were the
same, especially, the DNA fragment with tandem repeat
was always reconstructed. What is more, additional ultra-
deep sequencing of PCR amplicons for this DNA region
confirmed the results obtained by our approach.

Discussion
In this paper we describe an application used to recon-
struct some of the repetitive DNA regions based on the
normalised read depth. The presented approach was thor-
oughly tested and the experiments carried out on the
simulated data, described in this paper, confirmed our
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Table 2 Evaluation of dnaasm in comparison to ABySS, Velvet and SPAdes assembler

Sample Assembler
Type No. of

N50 [bp] Max [bp]
Avg. Avg.

of output contigs mis. indels

ERR351243 ABySS unitigs 79 40021 224368 0.00 1.61

Velvet unitigs 206 12813 38818 0.31 0.81

SPAdes unitigs 43 61281 287932 0.93 2.28

dnaasm unitigs 84 30628 191880 0.06 1.98

ABySS scaffolds 33 65136 224368 1.59 2.69

Velvet scaffolds 30 82451 224509 1.42 3.15

SPAdes scaffolds 27 74784 333212 1.23 2.53

dnaasm scaffolds 34 61265 333846 0.62 3.82

SRR1981622 ABySS unitigs 81 36448 110990 1.11 0.99

Velvet unitigs 254 8636 27708 1.12 0.37

SPAdes unitigs 53 58976 228504 1.42 1.29

dnaasm unitigs 73 45793 134195 0.93 1.11

ABySS scaffolds 40 67391 207675 4.89 1.96

Velvet scaffolds 33 114376 285632 4.99 2.65

SPAdes scaffolds 35 98439 228504 3.26 2.09

dnaasm scaffolds 39 91627 228504 3.33 1.73

SRR1981619 ABySS unitigs 80 36449 110993 8.36 2.85

Velvet unitigs 314 7163 22826 7.92 1.56

SPAdes unitigs 53 58765 228586 9.00 3.21

dnaasm unitigs 77 43959 134261 7.76 2.77

ABySS scaffolds 43 79578 111309 16.00 4.15

Velvet scaffolds 35 107026 492812 10.06 4.32

SPAdes scaffolds 34 98351 228586 8.99 4.31

dnaasm scaffolds 38 93136 256270 11.21 4.25

SRR5431732 ABySS unitigs 559 11471 57586 17.85 2.90

Velvet unitigs 1032 4790 18304 17.98 2.57

SPAdes unitigs 238 30607 129385 21.02 3.74

dnaasm unitigs 416 16178 59383 21.68 4.10

ABySS scaffolds 208 35552 131767 19.81 4.51

Velvet scaffolds 202 41843 182297 21.99 7.21

SPAdes scaffolds 172 46834 159097 22.65 4.72

dnaasm scaffolds 354 19644 120052 25.13 4.42

Unitigs output depicts assembling mode without using paired-end tags, scaffolds - with paired reads. The table shows that the presented de novo assembler works
comparatively in terms of the number of contigs, N50 statistic, the largest contig length and the quality (average number of mismatches and indels per 100000 aligned
bases) of the resultant DNA sequences

concept. What is more, the reconstruction of repetitive
DNA region was proved by biological experiments.
The read coverage of the genome region is key to the

correct reconstruction of the repetitive fragment in our
approach. However, the read depth of the specific DNA
region varies depending on the GC content [16]. There
are many methods for correction of the GC bias [17],
most of them are implemented in copy number variation

(CNV) detection tools based on read depth. Implemen-
tation and testing of some correction GC bias algorithm
in our approach is one of the most important tasks in the
near future.
Nowadays, nanopore sequencers are very popular. They

allow to obtain the DNA reads of length greater than 10
kbp. The main disadvantage of nanopore sequencing is
that obtained data contains more errors than the second
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Table 3 Evaluation of tandem repeats reconstruction algorithm in dnaasm

Sample Type of output
With tandem repeats reconstruction Without tandem repeats reconstruction

No. of contigs N50 [bp] Max [bp] No. of contigs N50 [bp] Max [bp]

ERR351243
unitigs 84 30628 191880 93 27268 176501

scaffolds 34 61265 333846 34 61265 333846

SRR1981622
unitigs 73 45793 134195 82 33787 110992

scaffolds 39 91627 228504 43 80288 206366

SRR1981619
unitigs 77 43959 134261 81 36452 110995

scaffolds 38 93136 256270 42 84434 205320

SRR5431732
unitigs 416 16178 59383 450 14774 47710

scaffolds 354 19644 120052 388 17344 120052

Unitigs output depicts assembling mode without using paired-end tags, scaffolds - with paired reads. The table shows that tandem repeats reconstructuion process could
significantly improve the results in terms of the number of contigs, N50 statistic and the largest contig length

generation sequencing reads. However, the usage of the
long reads can improve the assembly results from the
short reads [18]. The presented algorithm currently does
not use long reads. However, we plan to integrate such
sequencing data in the next version of the software.

What is more, in the future we plan to add the possibility
of running the application on a computer cluster. The de
novo assembler will be divided into the set of containers,
which will be managed and run by Apache Spark. The new
architecture will allow to disperse the calculation, which

Table 4 Detected tandem repeats in bacterial test datasets

Sample
Seq.
len. [bp]

Motif
len. [bp]

Min. cov.
(Eq. 5)

Unitigs Scaffolds

ABySS Velvet SPAdes dnaasm ABySS Velvet SPAdes dnaasm

ERR351243 668 334 33 0 0 2 2 0 0 2 2

371 16 371 0 0 0 0 0 0 0 0

SRR1981622 934 467 35 0 0 2 2 0 0 2 2

706 307 39 0 0 0 0 0 0 0 0

740 370 34 0 0 2 2 0 2 2 2

1285 612 36 0 0 0 0 0 0 0 0

1224 612 29 0 0 0 0 0 0 0 0

1094 576 33 0 0 1.9 1.9 0 0 1.9 1.9

SRR1981619 934 467 35 0 0 2 2 0 0 2 2

706 307 39 0 0 0 0 0 0 0 0

740 370 34 0 0 2 2 0 0 2 2

1285 612 36 0 0 0 0 0 0 0 0

1224 612 29 0 0 0 0 0 0 0 0

1094 576 33 0 0 1.9 1.9 0 0 1.9 1.9

SRR5431732 327 58 185 0 0 0 0 0 0 0 0

335 69 160 0 0 0 0 0 0 0 0

293 57 165 0 0 0 5.1 0 0 0 5.1

267 51 164 0 0 0 5.2 0 0 0 5.2

749 345 79 0 0 0 2.2 0 0 2.2 2.2

579 111 186 0 0 0 5.2 0 0 0 5.2

636 57 401 0 0 0 0 0 0 0 0

The numbers in the table depict number of motif repetitions in reconstructed DNA sequence. The proper restorations are in bold, the expected number of motif repetitions
is defined as repetitive sequence length divided by the motif length. The table shows that only dnaasm and SPAdes reconstruct tandem repeats longer than insert size of
paired-end tags in bacterial genomes. Moreover, dnaasm and SPAdes reconstruct these repetitive DNA regions even without using paired-end tags (unitigs). However, some
of the tandem repeats are not reconstructed by any algorithm - they are contained in complex DNA regions, with many repeats of the same motif in other parts of the
investigated genome
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Table 5 The efficiency of tandem repeats reconstruction from simulated data

Sequence
len. [bp]

Motif
len. [bp]

Unitigs Scaffolds

ABySS Velvet SPAdes dnaasm ABySS Velvet SPAdes dnaasm

200 100 0/0/0 0/0/0 2/2/2 2/2/2 2/2/2 2/2/2 2/2/2 2/2/2
300 100 0/0/0 0/0/0 0/0/0 3/3/3 2/3/3 0/2/0 2/2/2 3/3/3
400 100 0/0/0 0/0/0 0/0/0 4/4/4 2/4/4 0/0/0 2/2/2 4/4/4
500 100 0/0/0 0/0/0 0/0/0 5/5/6 2/0/5 0/0/0 2/2/2 5/5/6

400 200 0/0/0 0/0/0 2/2/2 2/2/2 0/2/2 2/2/2 2/2/2 2/2/2
600 200 0/0/0 0/0/0 0/0/0 3/3/3 0/0/0 0/2/2 2/2/2 3/3/3
800 200 0/0/0 0/0/0 0/0/0 4/4/4 0/0/0 0/0/2 2/2/2 4/4/4
1000 200 0/0/0 0/0/0 0/0/0 5/5/6 0/0/0 0/0/0 2/2/2 5/5/6

600 300 0/0/0 0/0/0 2/2/2 2/2/2 0/2/2 0/2/2 2/2/2 2/2/2
900 300 0/0/0 0/0/0 0/0/0 3/3/3 0/0/2 0/0/2 2/2/2 3/3/3
1200 300 0/0/0 0/0/0 0/0/0 4/4/4 0/0/0 0/0/0 2/2/2 4/4/4
1500 300 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 2/2/2 5/5/5

800 400 0/0/0 0/0/0 2/2/2 2/2/2 0/2/0 0/2/2 2/2/2 2/2/2
1200 400 0/0/0 0/0/0 0/0/0 3/3/3 0/2/0 0/0/0 0/2/2 3/3/3
1600 400 0/0/0 0/0/0 0/0/0 4/4/4 0/2/0 0/0/0 0/2/2 4/4/4
2000 400 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 0/2/2 5/5/5

1000 500 0/0/0 0/0/0 2/2/2 2/2/2 0/2/2 0/2/2 2/2/2 2/2/2
1500 500 0/0/0 0/0/0 0/0/0 3/3/3 0/2/0 0/0/0 0/2/2 3/3/3
2000 500 0/0/0 0/0/0 0/0/0 4/4/4 0/2/0 0/0/0 0/2/2 4/4/4
2500 500 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 0/2/2 5/5/5
The numbers in the table depict number of motif repetitions in reconstructed DNA sequence for insert size mean equal to 250 bp, 750 bp and 1250 bp, respectively. The
proper restorations are in bold, the expected number of motif repetitions is defined as in Table 4. Only dnaasm was able to reconstruct tandem repeats with more than two
motif repetition from unitigs. Additionally, the ABySS results of 100 bp motif reconstruction from paired-end tags shows, that increasing the insert size value increases the
probability of tandem repeat reconstruction

Table 6 The efficiency of tandem repeats reconstruction from simulated data

Sequence
len. [bp]

Motif
len. [bp]

Min. cov.
(Eq. 5)

Unitigs Scaffolds

ABySS Velvet SPAdes dnaasm ABySS Velvet SPAdes dnaasm

200 100 26 0/0/0 0/0/0 2/2/2 2/2/2 2/0/2 2/2/2 2/2/2 2/2/2
300 100 44 0/0/0 0/0/0 0/0/0 4/3/3 0/0/2 0/0/0 2/2/2 4/3/3
400 100 62 0/0/0 0/0/0 0/0/0 4/4/4 0/0/2 0/0/0 2/2/2 4/4/4
500 100 80 0/0/0 0/0/0 0/0/0 6/6/5 0/0/2 0/0/0 2/2/2 6/6/5

400 200 31 0/0/0 0/0/0 2/2/2 2/2/2 0/0/0 2/2/2 2/2/2 2/2/2
600 200 49 0/0/0 0/0/0 0/0/0 4/3/3 0/0/0 0/0/0 2/2/2 4/3/3
800 200 66 0/0/0 0/0/0 0/0/0 3/4/4 0/0/0 0/0/0 2/2/2 3/4/4
1000 200 84 0/0/0 0/0/0 0/0/0 6/6/5 0/0/0 0/0/0 2/2/2 6/6/5

600 300 32 0/0/0 0/0/0 2/2/2 2/2/2 0/0/0 0/0/0 2/2/2 2/2/2
900 300 50 0/0/0 0/0/0 0/0/0 3/3/3 0/0/0 0/0/0 2/2/2 3/3/3
1200 300 68 0/0/0 0/0/0 0/0/0 4/4/4 0/0/0 0/0/0 2/2/2 4/4/4
1500 300 86 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 2/2/2 5/5/5

800 400 33 0/0/0 0/0/0 2/2/2 2/2/2 0/0/0 0/0/0 2/2/2 2/2/2
1200 400 51 0/0/0 0/0/0 0/0/0 3/3/3 0/0/0 0/0/0 0/0/0 3/3/3
1600 400 69 0/0/0 0/0/0 0/0/0 4/4/4 0/0/0 0/0/0 0/0/0 4/4/4
2000 400 87 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 0/0/0 5/5/5

1000 500 33 0/0/0 0/0/0 2/2/2 2/2/2 0/0/0 0/0/0 2/2/2 2/2/2
1500 500 51 0/0/0 0/0/0 0/0/0 3/3/3 0/0/0 0/0/0 0/0/0 3/3/3
2000 500 69 0/0/0 0/0/0 0/0/0 4/4/4 0/0/0 0/0/0 0/0/0 4/4/4
2500 500 87 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 0/0/0 5/5/5
The numbers in the table depict number of motif repetitions in reconstructed DNA sequence for depth of coverage 50x, 100x and 150x, respectively. The proper restorations
are in bold, the expected number of motif repetitions is defined as in Table 4. Only our algorithm was able to reconstruct tandem repeats with more than two motif
repetition. It is worth paying attention to dnaasm results for 100 bp and 200 bp motifs, where increasing the depth of coverage increases the probability of tandem repeat
correct reconstruction
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will significantly reduce the time of de novo assembling.
Furthermore, in the future we plan to create a virtual
machine [19] image and an Amazon machine image.
The demo application with web interface as well as

source code of the application are available at project
homepage1. What is more, there is a public Docker con-
tainer [20] with dnaasm de novo assembler. The pre-
sented application is freely available to both academic and
commercial users under GNU Library or Lesser General
Public License version 3.0 (LGPLv3).

Conclusions
As more and more bacterial genomes are sequenced,
it becomes desirable to analyze their tandem repeats.
Here we have presented dnaasm, a de novo DNA assem-
bler that uses the relative frequency of reads to properly
reconstruct repetitive sequences, especially, in bacterial
genomes.

Endnote
1 http://dnaasm.sourceforge.net
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