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Abstract

Background: Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also
accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-
distance transportation is very important for understanding the mechanism of heavy metal accumulation in this
hyperaccumulator.

Methodology/Principal Findings: We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens.
TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses
showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the
long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially
in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore,
heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments
demonstrated that TcOPT3 could transport Fe2+ and Zn2+. Moreover, expression of TcOPT3 in yeast increased metal (Fe,
Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu).

Conclusions: Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate.
This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the
heavy metal hyperaccumulation.
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Introduction

Metal hyperaccumulators can not only tolerate high concen-

tration of heavy metals in the soils but also take them up actively

and accumulate and distribute them to appropriate tissues at

extreme high levels, thus make them very attractive for the

remediation of heavy metal polluted soils [1]. A large amount of

different metal hyperaccumulators have been recognized in

different regions all over the world [2], among them, Thlaspi

caerulescens, a Cd/Zn/Ni hyperaccumulator, has been used as a

model plant to study the physiological and molecular mechanisms

of heavy metal hyperaccumulation [3,4].

The efficient metal loading and unloading ability in the vascular

systems was regarded as the key step of hyperaccumulating process

for hyperaccumulators [5]. Nonetheless, knowledge about the

mechanisms and proteins involved in transporting heavy metals

from soil via the roots and stems into their storage sites is much

limited. Transporter families, including ZIP (ZRT/IRT like

Protein), Nramp (Natural Resistance and Macrophage Protein),

MTP (Metal Tolerance Protein), HMA (Heavy Metal transporting

P-type ATPase), ABC-type (ATP-binding cassette), COPT family

CTR/COPT (high-affinity Cu transporters) as well as YSL

(Yellow strip1-Like transporters) families have been porved to

involve in transit metal movements, they either act at the plasma

membrane (PM) to transport metals into cytoplasm or redistribute

metals from intracellular compartments into the cytoplasm

[6,7,8,9]. Besides the above transporters families, novel transport-

ers related to metal homeostasis are continuously under discovery,

oligopeptide transporter (OPT) family is among those being

focused recently [10,11,12]. OPT family is one of three families

responsible for peptide transport; the other two are the ATP-

binding cassette (ABC-type) transporters superfamily and the

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38535



peptide transporter (PTR) superfamily [10]. Peptides, existing

abundantly in xylem and phloem saps, are important for plant

growth, development and signaling. Transport of peptides is taken

as a more efficient means of nitrogen distribution than transport of

individual amino acids, implying the important role of peptide

transporters in long-distance transport of nutrients [10]. Besides

the peptides, inorganic nutrients and transit metals have been

reported as the substrates of peptide transporters in the recent

studies. For intances, the ABC transporters AtMRP3 [13],

AtATM3 [14] and AtPDR8 [15] are proposed to involve in

heavy metal (Cd, Pb) resistance and movement.

The first OPT family is identified in the pathogenic yeast

Candida albicans [16] and subsequently in Schizosaccharomyces pombe

[17] and Saccharomyces cerevisiae [18]. Later, it is also found in

bacteria, plants, and archaea [11], but still not in animals. OPT

family is grouped into two distinct subfamilies, the yellow stripe

(YS) clade and the peptide transport (PT) clade [11,12]. The

function of YS1-like (YSL) transporter on transportation of metal-

complex has been documented well in planta. For example, YSLs

mediate long-distance transport of specific Fe species [19,20].

ZmYS1 cloned from Zea mays is the founding member of YSL

family, which functions in root Fe-phytosiderophore (Fe-PS)

uptake from the soil [21]. HvYS1 encoding a YSL transporter is

a specific transporter for iron (III)-PS in barley roots [22]. Since

non-Poaceae species do not synthesize phytosiderophores, the

substrates of YSL transporters in dicotyledonous plant are

suggested to be Fe(II)/Fe(III)-nicotianamine (Fe-NA) functioning

in the long-distance transporting system [23,24,25]. NA is a

chelator for several micronutrient metals and involves in the

movement of micronutrients and heavy metals throughout the

plant [26]. Three YSL genes cloned from T. caerulescens express at

higher levels as compared with their Arabidopsis thaliana homologs

with distinct patterns. TcYSL3 was further confirmed as a Fe/Ni-

NA influx transporter [19]. Functional analysis in yeast demon-

strated that TcYSL3 can transport both Ni-NA and Fe-NA

complexes into yeast, indicating that TcYSL3 may be involved in

the long-distance translocation of Ni in T. caerulescens.

In Arabidopsis, nine putative OPT orthologues (AtOPT1 to

AtOPT9) have been identified [27,28]. OPT transporters predom-

inantly recognize tetrapeptides and pentapeptides, thus they are

also called peptide transporters, but this is challenged recently as

AtOPTs have been proved to play a role in metal homeostasis and

movements. Transcript of AtOPT2 is induced in root by iron and

zinc deficiency, and that of AtOPT3 by iron, copper and

manganese deficiency [28,29]. AtOPT3 is further proved to

involve in the movement of iron to the developing seeds [30].

Moreover, both AtOPT6 and AtOPT7 can transport cadmium or

cadmium-glutathione conjugates when heterologously expressed

in yeast [31,32]. All these studies indicate that OPT family might

play important roles in metal uptake and transportation.

In the present study, we isolated a member of the OPT family

from a metal hyperaccumulator, Thlaspi caerulescens, named

TcOPT3. We characterized its expression in different tissues, and

conducted heterologous expression in yeast to investigate the role

of TcOPT3 in metal uptake. We demonstrated that TcOPT3 was

involved in Fe/Zn/Cd/Cu transportation and it should be a very

important component in the metal long-distance transport system,

and contribute to heavy metal hyperaccumulation in the shoots.

Results

Identification of TcOPT3 Gene
Degenerated primers were designed from the most conserved

regions according to the AtOPT3, BjGT1 and ZmGT mRNA

sequence. We isolated the full-length cDNA from Thlaspi

caerulescens by RACE PCR, and designated it as TcOPT3

(Genebank accession no. HQ69984). The coding region of

TcOPT3 was 2211 bp, and a corresponding 737 amino-acid

sequence was predicted.

TcOPT3 exhibited 79% identity with its homologous AtOPT3,

and the deduced protein TcOPT3 showed 95% identity with

AtOPT3 (Fig. 1). It contained 14 putative transmembrane

domains (TM I-TM XIV, Fig. 1) and two highly conserved motifs

(NPG motif and KIPPR motif, Fig. 1) of OPT family, thus

TcOPT3 is likely to be localized to membrane and owns the

structure of a transporter protein.

From the rooted phylogenetic tree to compare TcOPTs with

OPTs and YSLs in A. thaliana and the related species. We can see

that TcOPT3 belongs to the PT clade, moreover, it clusters

together in one branch with the OPTs from T.caerulescens, B. juncea,

A. lyrata and A. thaliana and is most closely related to BjGT1 (Fig. 2).

Tissue- and Organ- Specific Analysis of TcOPT3
The expression of TcOPT3 was investigated by real-time RT-

PCR, where ubiquitin-conjugating enzyme gene (UBQ10) was

used as a control. The transcript level of TcOPT3 mRNA was 2-

fold more in the leaf and stem tissues than that in the root (Fig. 3).

To further identify the spatiotemporal expression of TcOPT3

in vivo, we performed in situ hybridization on the longitudinal and

transverse sections of root, stem and leaf using DIG-labeled

TcOPT3 antisense and sense RNA as probes (Fig. 4). Sense-

oriented probe was used as the negative control (Fig. 4 B, D, F, H,

J). In roots, more intense signals were detected in the pericycle and

the vascular tissues, including xylem and phloem (Fig. 4A). This

pattern of localization was further confirmed in the cross-section

(Fig. 4C). In the stem, TcOPT3 transcripts were strong in almost all

the central cylinder cells (Fig. 4E, I). Additionally, in the leaf,

extremely strong signals were detected in the vein of the mesophyll

(Fig. 4G). All these suggest that as a transporter protein, TcOPT3

most probably plays a role in the long-distance transporting

system.

TcOPT3 Expression in Response to Metal Deficiency
To see whether the gene responses to metal deficiency, we

measured the expression of TcOPT3 in root, stem and leaf tissues

(Fig. 5) and found it was also highly induced by Fe and Zn

deficiency, especially in the stem and leaf. But the expression of

TcOPT3 responded to Fe and Zn deficiency faster in the root as

the enhancement was detected in 1-day treatment, while 2-day in

the aerial parts.

Sub-Cellular Localization of the TcOPT3 Protein
To investigate the sub-cellular localization, TcOPT3 fused with

a green fluorescent protein (GFP) under the control of the

cauliflower mosaic virus 35 S promoter and pm-rk (Plasma

membrane marker) were co-expressed in the onion epidermis

cells. The confocal microscopy observation showed that the green

fluorescence and red pm-rk were both confined to the plasma

membrane (Fig. 6) and can be merged perfectly, indicating that

TcOPT3 encoded a plasma membrane-localized protein.

Functional Characterization of TcOPT3 by Heterologous
Expression in Yeast

To study the function of TcOPT3 in Fe and Zn transport, we

tested whether expression of a TcOPT3 cDNA could restore the

growth of yeast double mutants fet3fet4 (strain DEY1453) and

zrt1zrt2 (strain ZHY3), which can not grow on the Fe- and Zn-
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limited medium respectively [33,34,35]. As expected, expression of

TcOPT3 complemented the growth of mutants fet3fet4 and zrt1zrt2

(Fig. 7) when both metal sources in the medium were provided at a

low concentration (10 mM Fe2+ or 50 mM Zn2+), suggesting that

TcOPT3 can transport both Fe2+ and Zn2+.

TcOPT3 Contributes to Fe/Zn/Cu/Cd Accumulation
The role of TcOPT3 in the metal accumulation was further

investigated by expressing TcOPT3 and empty vector in the wild-

type yeast line (stain DY1455) cultured in the solutions containing

50 mM FeCl3, 50 mM ZnSO4, 50 mM CuSO4 or 20 mM CdSO4,

respectively. Compared with those empty vector-expressing

strains, the TcOPT3-expressing trains grew worse (Fig. 8),

meanwhile the corresponding contents of these metal ions were

significantly higher as well, suggesting that TcOPT3 can transport

Fe/Zn/Cd/Cu into yeast cells (Fig. 9).

Discussion

The Oligopeptide transporters (OPTs) were initially character-

ized as small-peptide transporters. However, this has been

challenged by their new functions in metal trafficking recently.

The first report is from Wintz et al who found that heterologous

expression of AtOPT3 in yeast can transport Cu, Mn and Fe [28].

Later, AtOPT6 and AtOPT7 were also proved to transport Cd or

Cd-glutathione chelate in yeast [31]. Recently, AtOPT3 was

further demonstrated to be involved in Fe homeostasis [30]. It was

showed that heterologously expressed AtOPT3 increased Cd

sensitivity of S. cerevisiae opt2 mutants and contributed to Cd

accumulation [36]. All the above reports indicate the potential role

of OPTs in transit metal transportantion. Thlaspi caerulescens, a Cd/

Zn/Ni hyperaccumulator, ecotype of Ganges, from southern

France, can accumulate 10 000 mg Cd kg21 at shoot dry weight

base [3,37]. In this study, we cloned and elucidated the function of

a novel member of OPT family, TcOPT3 from T. caerulescens.

Role of TcOPT3 in Metal Transport
AtOPT3 has been proved to play a role in Fe homeostasis in

A. thaliana [30]. Here, we also found that heterologous expression

of TcOPT3 in Saccharomyces cerevisiae rescued the growth of Fe-

depleted mutant fet3fet4 (Fig. 7), suggesting that TcOPT3 can

transport Fe too. As T. caerulescens is also a Zn hyperaccumulator,

we tested the possible role of TcOPT3 in transporting Zn. As

expected, TcOPT3 restored the growth of Zn-uptake-defective

mutant zrt1zrt2. Furthermore, heterologous expression of TcOPT3

negatively affected the growth of S. cerevisiae when treated with

elevated Fe, Zn, Cd, or Cu (Fig. 8) as more Fe, Zn, Cd or Cu was

accumulated in the transformed yeast (Fig. 9), suggesting a broader

substrates specificity for TcOPT3. The broad substrate specificity

of cytoplasmic transition metal importers may ensure their

universal potential to fulfill different developmental stages, without

perpetuating the consequences of limited metal transporter

specificity throughout the plant [7], while the specificity of

transition metal export from cytoplasm may serve to establish

specificity through the differential storage of transition metals in

specific tissues of cell types. Therefore, the specificity of the efflux

transporters appears to be more pounced than that of the influx

transporters. For example, the P1B-type ATPases HMA3 from

T.caerulescens showed high specificity for Cd, that serves to efflux

Cd into vacoule [38]. As T. caerulescens can also accumulate Ni, we

tested the possibility of transporting nickel (Ni), and found that

altough the growth was negatively affected by Ni addtion (Fig. S1),

the content in the yeast did not change much (Fig. S2), suggeting

that TcOPT3 does not transport Ni, and there must be other

transporters responsible for Ni hyperaccumulation, such as

TcYSL3 [19]. Futhermore, we still found that TcOPT3 did not

transport Pb into yeast too (Fig. S1, S2).

Roles of membrane transporters that are responsible for

hyperaccumulation include uptake, efflux, translocation and

sequestration of transit metals. Metal transporters herein identified

include ZIP (ZRT/IRT like Protein), Nramp (Natural Resistance

and Macrophage Protein), MTP (Metal Resistance Protein), and

HMA (Heavy metal/CPX-type ATPases) families in A.thaliana and

hyeperaccmulators such as T. caerulescens and A. halleri

[4,38,39,40,41]. Transporters of the HMA family and the MTP

family that are involved in metal efflux from the cytoplasm, either

by movement across the plasma membrane (PM) or into

organelles, whereas metal uptake transporters include the

NRAMP family and the ZIP families that are transporters either

act at the PM to move metals into the cytoplasm or remobilize

metals from intracellular compartments into the cytoplasm [6]. In

this study, heterologous expression of TcOPT3 in S. cerevisiae

increased the sensitivity of yeast by accumulating more metals,

indicating that TcOPT3 function as an uptake transporter for

heavy metals (Fig. 8, 9).

Potential Role of TcOPT3 in Plant Long-distance Metal
Transport and Hyperaccumulation

In this study, qRT-PCR results showed that TcOPT3 was

preferentially expressed in the aerial parts (stem and leaf) than

roots both under normal condition or Fe/Zn deficient conditions

(Fig. 3, 5). While in Arabidopsis, AtOPT3 expressed stronger in

flower, leaf and root, but relatively lower in the stem [42]. It may

be due to the different growth stage tested, but most probably, the

different expression patterns between AtOPT3 and TcOPT3 may

suggest their different roles in trafficking heavy metals within

plants. It was reported that reduced expression of AtOPT3 in the

Arabidopsis mutant opt3-2 resulted in the accumulation of very

high levels of Fe in tissues except seeds [30]. Recently, it was

showed that heterologously expressed AtOPT3 increased Cd

sensitivity of S. cerevisiae opt2 mutants and contributed to Cd

accumulation [36]. Consistent with the role of OPT3 in Cd

detoxification, the early-stage seedlings of A. thaliana opt3-3

knockdown allele were extremely sensitive to Cd. In contrast,

leaves of hydroponically-grown opt3-3 mature plants were more

tolerant to Cd compared to the wild type [36]. We also found that

heterologously expressed TcOPT3 increased heavy metal (Cu/Cd)

sensitivity of S. cerevisiae and contributed to metal accumulation,

suggesting a similar role of TcOPT3 in heavy metal trafficking in

plant. However, little evidence from overexpression OPTs in metal

distribution is reported to date. Given the different expression

Figure 1. Sequence analysis of TcOPT3. Sequence alignment among the TcOPT3, AtOPT3 ATOPT3, ZmGT and BjGT1. CLUSTAL W (version 1.8)
alignment of deduced amino acid sequences from the OPTs. Amino acids are numbered from the initiator ATG. Black-shaded areas represent the
consensus, dark-gray-shaded areas represent identical amino acids, and light-gray-shaded areas represent similar amino acids. The putative
transmembrane (TM) domains of the TcOPT3 were determined by the TMHMM algorithm. The predicted transmembrane membrane spanning
domains are shown as lines above the sequences, and numbered TM I–TM XIV respectively. The bars under the sequence show the location of the
two conserved motifs (NPG and KIPPR motifs). Tc, T. caerulescens; At, Arabidopsis thaliana; Als, Arabidopsis lyrata subsp.; Zm, Zea mays; Bj, Brassica
juncea. Accession numbers are: HQ699884 (TcOPT3), NP_567493 (AtOPT3), XP_002868139 (AlsOPT3), ACL82964 (ZmGT), CAD91127.1 (BjGT1).
doi:10.1371/journal.pone.0038535.g001
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patterns between TcOPT3 and AtOPT3, it is interesting to

investigate the potential role of TcOPT3 in hyperaccmulation in

T. caerulescens. The tissue specific overexperssion of TcOPT3 is

highly desirable in order to verify its potential role in creating

metal hyperaccumulators for the purpose of phytoremediation of

heavy metal polluted environments in future.
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Figure 2. Phylogenetic tree of OPT gene transporters based on the amino acid sequences. Dendogram showing sequence comparisons
of several known members of the PT family from different species. Analysis was performed using the CLUSTAL X method in MEGA (4.0) using
Neighbor-Joining method (Tamura K et al., 2007). Accession numbers are as follows: AtOPT1, NP_200404.1 GI: 15241078; AtOPT2, NP_172464.1
GI15218331; AtOPT3, NP_567493.5 GI:240255930; AtOPT4, NP_201246.1 GI:15237689; AtOPT5, NP_194389.1 GI:15236800; AtOPT6, NP_194503.1
GI:15234254; AtOPT7, NP_192815.1 GI:15236912; AtOPT8, NP_564525.1 GI:18402162; AtOPT9, NP_200163.1 GI:15238761; AlOPT3, XP_002868139.1
GI:297800510; AtYSL1, NP_567694.2 GI:79484897; AtYSL2, NP_197826.2 GI:79518939; AtYSL3, NP_200167.2 GI:145359208; AtYSL4, NP_198916.2
GI:42568235; AtYSL5, NP_566584.1 GI:18401590; AtYSL6, NP_566806.1 GI:18405202; AtYSL7, NP_176750.1 GI:15218799; AtYSL8, NP_564525.1
GI:18402162; TcYSL1, ABB76761.1 GI:82468791; TcYSL2, ABB76762.1 GI:82468793; TcYSL3, ABB76763.1 GI:82468795; CaOPT1, AAB69628.1 GI:2367386;
CaOPT3, ABD17824.1 GI:87045965; ScOPT1, NP_012323.1 GI:6322249; ZmGT, ACL82964.1 GI:220901863 BjGT1, CAD91127.1 GI:30722286.
doi:10.1371/journal.pone.0038535.g002
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As proposed by Milner and Kochian [4], Zn hyperaccumula-

tion of T.caerulescens appears to include at least five physiological

events: (1) Increased Zn2+ influx across the root-cell PM; (2)

Reduced Zn sequestration in the root-cell vacuole; (3) Increased

Zn transport into the xylem and via the xylem to the shoot; (4)

Increased Zn2+ influx into leaf mesophyll cells; and (5) Zn and Cd

stored primarily in leaf epidermal cells. In situ hybridization results

showed that, TcOPT3 was highly expression in vascular cells both

in roots and shoots (Fig. 4). This expression pattern is similar to

the previous report on the expression of AtOPT3 in A. thaliana,

which is also highly expressed in the vascular tissues both in light-

grown seedlings and adult plants [42]. As efficient translocation of

metals from root to shoot is one of the most important hallmarks

of hyperaccumulators. Thus, efficient transporters expressed in

loading and unloading tissues are fundamental for hyperaccumu-

lation. For example, HMA4 is characterized metal transporter

primarily localized in the root stele. It plays a critical role in

loading heavy metals into xylem for long-distance transportation

from root to shoot not only in T.caerulescens but also in another

hyperaccumulating plant A.halleri [43,44,45]. TcHMA3, another

member of HMA family was proved to be a tonoplast-localized

transporter highly specific for Cd, which is responsible for

sequestration of Cd into the leaf vacuoles, and that a higher

expression of this gene is required for Cd hypertolerance in the

Cd-hyperaccumulating ecotype of T. caerulescens [38]. Uptake

transporters responsible for hyperaccumulation, TcIRT1,

TcIRT2, TcZNT1 and TcZNT5 of ZIP families in T.caerulescens,

for instance, were expressed only in roots but not in leaves [46].

The yellow-stripe 1-like (YSL) subfamily is included in the OPT

superfamily, some of which was proved to be involved in loading

and unloading of nicotianamine-metal chelates from the vascular

tissues. TcYSLs of YSL transporters from T. caerulescens, especially

for TcYSL3 and TcYSL7, were expressed in xylem parenchyma

and phloem [19]. Furthermore, TcYSL3 was shown to transport

Ni-NA chelates. Here we demonstrated that TcOPT3 is a plasma

membrane-localized protein, and can transport metals into yeast

cells (Fig. 6, 8). TcOPT3 was expressed primarily in shoots,

especially under nutrient deficiency, indicating their specificity in

metal uptake and transport in shoots (Fig. 3, 5). As it is highly and

constructively expressed in vascular system, including xylem,

phloem and vein, it is reasonable to assume that it plays important

roles in unloading of nutrients and heavy metals in those tissues,

thus consists of an important component in the long-distance

transportation system. However, it needs further investigation.

In this study, ecotype Ganges instead of ecotype Prayon was

studied. Considered that heavy metal hyperaccumulation varies

greatly among different ecotypes, it is interesting to further confirm

the expression and functional analysis of TcOPT3 in two

contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.

We have analyzed the amino acids sequence and expression of

TcOPT3-p preliminarily; however, there is no significant differ-

ence between TcOPT3-g and TcOPT3-p expression pattern.

Further studies need to be conducted in the future.

In conclusion, we demonstrated that TcOPT3 in a metal

hyperaccumulator, Thlaspi caerulescens, was an Fe/Zn/Cu/Cd

influx transporter with non-specificity substrate. This is the first

report showing that TcOPTs gene may be involved in metal long-

distance transport systems that contribute to heavy metal

hyperaccumulation.

Materials and Methods

Plant Growth
Seeds of Thlaspi caerulescens J. & C. Presl, ‘Ganges’ ecotype, were

surface sterilized by 75% alcohol and 10% NaClO4, then stored at

4uC for 3 days. Seeds were germinated on agar with modified MS

medium (with addition 270 mM ZnSO4 in Murashige and Skoog,

Sigma, U.S.) for two weeks at 14-h/25uC d and a 10-h/18uC night

regime, a light intensity of 100 mmol photons m22 s21. Then the

seedlings were transferred to modified Hoagland nutrient solution

(2 mM Ca(NO3)2, 0.1 mM KH2PO4, 0.5 mM MgSO4,

0.1 mM KCl, 0.7 mM K2SO4, 0.1 mM Fe-EDTA,

10 mM H3BO3, 0.5 mM MnSO4, 10 mM ZnSO4, 0.2 mM CuSO4

and 0.01 mM (NH4)6Mo7O2, pH 5.5).

Gene and cDNA Cloning and Sequencing
Total RNA was extracted from T. caerulescens roots or leaves by

the Trizol reagent (Invitrogen, USA) and purified by DNase I

(RNase Free) Kit (TaKaRa, China). First strand cDNA of

T. caerulescens synthesis was performed using M-MLV reverse

transcriptase (TaKaRa, China) and PCR-amplified with degener-

ated primers designed from conserved AtOPT3 sequence. One

fragment was cloned into the pMD19-T Vector (TaKaRa, China),

sequenced and identified as AtOPT3 orthologs by BLAST using

the NCBI database. RACE PCR (59 and 39) were performed in

order to obtain full-length sequences from uncomplete cDNA

fragments (see Table 1 for primer sequences). The 59 and 39

regions of cDNA fragments were cloned with a SMARTTM

RACE cDNA Amplification Kit (Clontech, TaKaRa Bio, USA)

according to the manufacturer’s protocol. The PCR products were

subcloned to pMD19-T Vector and sequenced. By sequencing

alignment with its AtOPT3 ortholog from A. thaliana, it was

observed that the 59 region of the isolated TcOPT3 cDNA

contained the first initiating ATG codon and the 39 region

containing the stop codon and the 39 UTR. The gene we cloned

Figure 3. Tissue-specific analysis of the TcOPT3. Real-time RT-
PCR expression analysis of the TcOPT3 gene expression in roots (R),
leaves (L) and stems (S). The DCp values were calculated as follows: CP
of target gene (TcOPT3) – CP of constitutive control gene (ubiquitin-
conjugating enzyme), where the CP value is the fractional cycle number
of crossing point (CP). The DCP values represent the mean of three
technical replicates (6SD) of one experiment representative of three
independent experiments. Relative transcript levels (RTL) were calcu-
lated as follows: RTL = 22DCP.
doi:10.1371/journal.pone.0038535.g003
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has been deposited in Genbank with the accession number of

HQ699884.

Sequence Comparisons
The predicted amino-acid sequence from TcOPT3 cDNA and

other selected OPT protein sequences were aligned using

the CLUSTAL W program, version 1.8 (Thompson et al.,

1994). The putative trans-membrane domains were predicted by

the TMHMM (version 2.0; http://www.cbs.dtu.dk/services/

TMHMM/). The putative amino acid sequences were aligned

with the program Clustal X Version 1.8 [47] and viewed by

GeneDoc version 2.6 [48]. Phylogenetic trees were constructed

with the neighbor-joining algorithm using the program with

MEGA 4 (http://www.megasoftware.net) [49]. Hydrophilicity

plots for TcOPT3 was generated based on the Kyte and Doolittle

(1982) method using Protean sequence analysis software (DNAS-

TAR) under default parameters.

Quantitative PCR Analysis of TcOPT3 Expression
Total RNA was isolated from roots, stems and leaves of one-

month-old T. caerulescens and treated by DNase I (RNase free) as

described above. RT-PCR with oligo d(T)-anchor primer were

performed with PrimeScript RT (Perfect Real Time) reagent kit

(TaKaRa, China). For real-time RT-PCR, 2 ml of the diluted (1:5)

cDNA products were used as templates with 5 ml SYBR Pre mix

(Takara, China), 0.5 ml primers (10 mM each) and 2.5 ml water.

Calculation of the DCp values was performed as described [50].

Primers were list in Table 1.

In Situ Hybridization
One-month-old seedlings grown on hydroponic culture were

obtained. Plant materials were fixed in potassium phosphate buffer

(0.1 M, pH 7.4) containing 4% paraformaldehyde overnight at

4uC, then dehydrated in ethanol series, and embedded in paraffin.

A gene-specific fragment containing the 416 bp fragment cross

39UTR of TcOPT3 was amplified by PCR (primers were shown in

Table 1) and cloned into pSPT19 vectors. Sense and antisense

probes were synthesized using SP6 and T7 primers with DIG

RNA Labeling kit according to the manufacturer’s instructions

(Roche, USA). In-situ hybridization was performed as described

previously [19,51].

GFP Fusion and Subcellular Localization
To construct the TcOPT3-GFP fusion protein, the ORF

without the stop codon of TcOPT3 cDNA fragment containing

SmaI and SacI restriction sites (see Table 1 for primer sequences)

was cloned into the modified pEGFP-N2 vector under the control

of 35 S promoter. The final construct p35S::TcOPT3-EGFP and

the pm-rk were transiently expressed in onion epidermal cells

using a particle gun–mediated system (PDS-1000/He; Bio-Rad),

where pm-rk was used as the plasma membrane-localizated maker

[52]. Onion epidermal cells were bombarded with 1 mm gold

particles coated with plasmid DNA and then incubated in the dark

at 25uC for 20 h. Fluorescence was observed by confocal laser

scanning microscopy (LSM700; Carl Zeiss).

Yeast Complementation
For yeast transformation and functional complementation, the

Saccharomyces cerevisiae (Meyen) E.C. Hansen knock-out strain

fet3fet4 (DEY1453; MATa/MATa ade2/+ can1 his3 leu2 trp1

ura fet3-2::HIS3 fet4-1::LEU2) [33], zrt1zrt2 (ZHY3; MATa

ade6 can1 his3 leu2 trp1 ura3 zrt1::LEU2 zrt2::HIS3) [34,35];

and its parent strain DY1455 (MATa ade2–1oc can1 his3 leu2

trp1 ura3) were used, which is defective in low- and high-affinity

iron or zinc uptake, respectively. The ORF of TcOPT3 was

amplified by PCR with primers (see Table 1 for primer

sequences), which was then cloned into the pGEM-T Easy

(Promega) vector, digested with NotI, and subsequently cloned

into yeast binary vector pFL61 [53] to form TcOPT3-pFL61.

Constructs were sequenced to ensure the correct orientations of

the inserts and correct sequences. fet3fet4 transformants were

selected on SD medium lacking uracil (SD-ura) and supplement-

ed with 10 mM FeCl3. zrt1zrt2 transformants were selected on

SD-ura and supplemented with 50 mM ZnSO4.

Figure 4. Localization of TcOPT3 expression by in situ hybridization. (A,C,E,G,I) represents hybridization with TcOPT3 antisense probe.
(B,D,F,H,J) shows hybridization with the sense probe (negative control). In situ hybridization of the sense and antisense TcOPT3 probes to sections of
Thlaspi caerulescens root tissues (A) to (D), stem tissues(E,F,I,J) and leaf tissues(G,H). Abbreviation: c, cortex; ep, epidermis; p, pericycle; ph, phloem; rh,
root hair; x, xylem; cb, cambium; ve, vein; me, mesophyll; vc, vascular cambium.
doi:10.1371/journal.pone.0038535.g004

Figure 5. Effect of element deficiency on mRNA expression of the TcOPT3 gene. Real-time RT-PCR expression analysis of the TcOPT3 gene
expression in roots (R), leaves (L) and stems (S) with the treatment of Fe or Zn deficient for 1, 2, 4 days. The DCp values were calculated as follows: CP
of target gene (TcOPT3) – CP of constitutive control gene (ubiquitin-conjugating enzyme), where the CP value is the fractional cycle number of crossing
point (CP). The DCP values represent the mean of three technical replicates (6SD) of one experiment representative of three independent
experiments. Relative transcript levels (RTL) were calculated as follows: RTL = 22DCP.
doi:10.1371/journal.pone.0038535.g005

TcOPT3, a Novel Fe/Zn/Cd/Cu Transporter

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e38535



Figure 6. Sub-cellular localization of TcOPT3 protein. Onion epidermal cells transiently co-transformed with TcOPT3::GFP and pm-rk (Plasma
membrane marker). (A) Fluorescence image of epidermal cell expressing the p35S::EGFP fusion protein. (B) Fluorescence image of epidermal cell
expressing the pm-rk. (C) Merged fluorescence image of epidermal cell expressing the p35S-TcOPT3::EGFP fusion protein and pm-rk marker.
doi:10.1371/journal.pone.0038535.g006

Figure 7. Complementation of the fet3fet4 and ZHY3 (zrt1ztr2) yeasts mutant by T. caerulescens cDNAs. Yeast strains defective in iron
uptake (fet3fet4) and zinc uptake (zrt1ztr2) were transformed with pFL61 (empty vector) and pFL61-TcOPT3. Serial dilutions of yeast cells were
dropped onto a low-zinc medium (LZM) supplemented with 50 mM ZnSO4 (A) and a low-iron medium (LIM) supplemented with 10 mM FeCl3 (B)
assayed for growth on SD-ura plates. The entire experiment was performed twice.
doi:10.1371/journal.pone.0038535.g007
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For complement test, fet3fet4 and zrt1zrt2 transformants were

grown overnight in liquid SD-ura and supplemented with

10 mM FeCl3 or 50 mM ZnSO4, respectively. Yeast cells were

recovered by centrifugation, resuspended in SD-ura (without

added Fe or Zn) at an OD600 of 1, 0.1, 0.01 and 0.001. Then

10 mL of each culture was spotted on SD-ura plates; plates were

incubated at 30uC for 2 d and then photographed.

Figure 8. Growth of the wild-type (DY1455) and TcOPT3-transformed yeast cells under different metal supplies. Yeast cells were
grown to an OD600 of 1.0, then supplemented with 50 mM FeCl3, 50 mM ZnSO4, 20 mM CdCl2 or 50 mM CuSO4 respectively. Data are the means 6 SE
per experiment (n = 3), P,0.05 by Student’s t-test.
doi:10.1371/journal.pone.0038535.g008

Figure 9. Heavy metal accumulation of wild-type (DY1455) and TcOPT3-transformed yeast cells. Zn, Fe, Ni, Cd and Cu accumulation in
yeast transformants. Metal accumulation was conducted in liquid SD media supplemented with 50 mM FeCl3, 50 mM ZnSO4, 20 mM CdCl2, or
50 mM CuSO4 respectively. Data are the means 6 SE per experiment (n = 3), P,0.05 by Student’s t-test.
doi:10.1371/journal.pone.0038535.g009
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Heavy Metal Tolerance in Yeast
Wild-type yeast DY1455 was transformed with TcOPT3-

pFL61, or with pFL61, which served as a negative control.

DY1455 transformants were grown on liquid SD-ura medium

overnight at an OD600 of 1. After washed by CaCl2 and

centrifugation, resuspended in SD-ura with 50 mM FeCl3,

50 mM ZnSO4, 20 mM CdCl2, or 50 mM CuSO4 were grown

for another 0, 6, 12, 24 hours. After measured the OD values and

washed by CaCl2 to remove adsorbed transit metals in apoplast

cells, aliquots of yeast cells were taken for measurement of metal

accumulation.

Elemental Analysis
For metal accumulation, yeast cells were concentrated at

5,000 rpm for 5 min and washed by 0.5 mM CaCl2 for 5 min

twice to remove adsorbed transit metals from the yeast cell walls.

Then cell sediments were dried at 70uC for 2 days, and digested in

HNO3. Metal concentration in the digested solution was

determined by inductively coupled plasma-atomic emission

spectrometry (ICP-AES; IRIS/AP optical emission spectrometer).

Statistics
Data were statistically analyzed using analysis of variance

(ANOVA) in Origin 8, and tested for significant (P#0.05)

treatment differences using Student’s t-test.

Supporting Information

Figure S1 Growth of the wild-type (DY1455) and
TcOPT3-transformed yeast cells under different metal
supplies. Yeast cells were grown to an OD600 of 1.0, and then

supplemented with 100 mM PbNO3 or 100 mM NiSO4 respec-

tively. Data are the means 6 SE per experiment (n = 3), P,0.05

by Student’s t-test.

(EPS)

Figure S2 Heavy metal accumulation of wild-type
(DY1455) and TcOPT3-transformed yeast cells. Pb and

Ni accumulation in yeast transformants. Metal accumulation was

conducted in liquid SD media supplemented with

100 mM PbNO3 or 100 mM NiSO4 respectively. Data are the

means 6 SE per experiment (n = 3), P,0.05 by Student’s t-test.

(EPS)
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