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ABSTRACT

Silicone implants are used widely in the field of plastic surgery and are used in a 
large population. However, their safety profile, especially the silicone-induced immune 
response, has been a major concern for plastic surgeons for decades. It has been 
hypothesized that there is a cause and effect relation between silicone and immunity, 
but this is controversial. The objective of the present study was to determine the hub 
genes and key pathways related to silicone implant–induced immune responses in a 
rat model. In addition to cluster and enrichment analyses, we used weighted gene 
co-expression network analysis (WGCNA) to examine the gene expression profiles in 
a systematic context. A total five genes (Fes, Aif1, Gata3, Tlr6, Tlr2) were identified as 
hub genes that are most likely related to the silicone-induced immune response, four 
of which (Aif1, Gata3, Tlr6, Tlr2) have been associated with autoimmunity as target 
genes or disease markers. The Toll-like receptor signaling pathway (p < 0.01, fold 
enrichment: 7.01) and systemic lupus erythematosus signaling pathway (p < 0.05, 
fold enrichment: 5.01), which are considered strongly associated with autoimmunity, 
were significantly enriched in the silicone-implanted skin samples. The results indicate 
that silicone implants might trigger the localized immune response, as various immune 
reaction genes were detected after silicone implantation. The identified five hub genes 
will hopefully serve as novel therapeutic targets for silicone-related complications 
and the associated autoimmune diseases.

INTRODUCTION

In past decades, millions of people have been exposed 
to silicone under different circumstances, especially in the 
area of plastic and reconstructive surgery, where silicone 
implants are considered the most popular candidate tools 
for augmentation (e.g. breast implants, tissue expanders, 
nasal prostheses). Given the wide application and 
large population exposure, the safety profile of silicone 
implantation has become a major public health concern.

Apart from common silicone-induced complications 
(capsule formation and contracture), the fact that silicone 
implants can increase the risk of connective tissue 

disease or even autoimmunity has aroused great interest 
from both researchers and doctors. The US Food and 
Drug Administration (FDA) limited the use of silicone-
filled breast implants in 1992 due to safety concerns [1]. 
Although the FDA finally reversed its decision for lack 
of robust evidence, the controversy around this issue 
has never abated. The evidence-based meta-analysis by 
Janowsky et al. [2] concluded that the adjusted relative 
risk between breast implants and connective tissue disease 
was 0.8 (95% confidence interval [CI]: 0.62–1.04). The 
authors reached this negative conclusion without including 
some strongly positive population-based cohort studies 
[3], which therefore prompted some queries [4].
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On the other hand, some large-scale population-
based epidemiological investigations have verified 
the postulated association between silicone implants 
and autoimmunity [5–7]. The improvement of clinical 
manifestations after implant removal further supports 
the relationship between silicone and autoimmunity [8]. 
Though Cohen Tervaert JW et al. has demonstrated that 
silicone implants could activate around inflammatory cells 
which contributes to an autoimmune condition [9], the 
underlying molecular mechanism of this development and 
progression has been rarely addressed.

Hence, we used dynamic microarray expression 
datasets and performed a primary investigation aiming 
to reveal the hub genes (the topmost interconnected 
genes that are considered to be the backbones of the co-
expression networks [10, 11]) and key pathways involved 
in the silicone implant–induced local immune response. 
Comprehensive bioinformatics analyses were used to 
enrich datasets for Gene Ontology (GO) and pathway 
information to provide deeper insight into the biological 
process of the local immune response after silicone 
implantation. Furthermore, we used dynamic co-expression 
network construction (similar patterns of connection 
strengths) and gene connectivity detection to predict the 
hub genes most likely to contribute to the silicone-induced 
immune response. A total five genes (Fes, Aif1, Gata3, 
Tlr6, Tlr2) and nine pathways were identified as central 
participants in the silicone-induced immune response, most 
of which are also related to autoimmunity. These genes and 
pathways will hopefully serve as novel therapeutic targets 
for silicone-related complications and associated diseases.

RESULTS

Cluster analysis of significant differential genes

A total 5,587 genes were identified as differentially 
expressed (p < 0.05), and 1,013 genes were included 
in significant model patterns (Figure 1), of which 117 
genes were enriched in immune response (GO:0006955,  
p = 2.5E–11, Supplementary Table 1). When clusters 
and then profiles were ordered based on actual size and 
the p-value of gene enrichment in immune response 
(GO:0006955), eight profiles had a significant model 
pattern and five clusters were significantly enriched in the 
target GO term. Followed by intersection analysis, two 
profiles (80 genes) were statistically significant for both 
expression pattern and GO term enrichment (Figure 2); 
the expression information of these genes is detailed in 
Supplementary Table 2.

GO analysis based on cluster analysis

GO analysis was used to identify a subset of the 
differentially expressed genes corresponding to immune 
response. A total 80 genes from cluster analysis were 

assigned to GO terms (Supplementary Tables 1, 2). 
After filtering using the significant criterion of corrected 
p < 0.05, we selected 24 GO terms with key functional 
classifications (Table 1).

An interaction network of significant GO terms 
was assembled into a GO map using ClueGO to depict 
the relationship among prominent functional categories 
(Supplementary Figure 1). Based on the GO map, 
we were able to directly and systematically find the 
subordinate relationship between GO terms. Comparison 
of the comprehensive GO analysis and cluster GO analysis 
suggested that immune response, leukocyte activation, 
lymphocyte activation and immune effector process, and 
signaling processes were the most prominent functions 
after silicone implantation.

Pathway analysis

We used DAVID software based on the KEGG 
pathway map to investigate key pathways linked to the 80 
genes. Our analysis yielded nine statistically significant 
pathways (Table 2) involving hematopoietic cell lineage, 
Toll-like receptor (TLR) signaling, and NOD-like receptor 
signaling. The association between autoimmunity and 
silicone implantation was highlighted by the identification 
of the systemic lupus erythematosus (SLE) signaling 
pathway (Figure 3, top) and TLR signaling pathway 
(Figure 3, bottom).

WGCNA and hub gene detection

We selected 1,013 genes for further analysis by 
constructing a weighted gene co-expression network. First, 
we identified six network modules, which are illustrated 
in the dendrogram (Supplementary Figure 2). In network 
terminology, modules are groups of genes with similar 
patterns of connection strengths with all other genes in 
the network and they usually share similar functions [12].

After module detection, the connection strength 
between two genes was determined using soft thresholding 
of the Pearson correlation matrix [12]. Figure 4 demonstrates 
the co-expression network of the 80 selected genes, which 
reflects the correlations between the genes. Each node 
describes a given gene, and the relationship between a pair 
of genes is represented with an edge. Further, the area of the 
node represents its k-core value within the module, and the 
edge correlates with the capacity for modulating adjacent 
genes. Genes with higher k-core values are more centralized 
in the network and have a stronger capacity for modulating 
adjacent genes. Consequently, we identified five genes with 
the highest k-core value in the network as hub genes in 
the immune response after silicone implantation, namely, 
Fes, Aif1, Tlr6, Tlr2, and Gata3. Twenty-five genes with 
the highest k-core values were subsequently assigned to 
significant GO terms to investigate the distribution of their 
participation; Figure 5 depicts the heatmap.
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Real-time PCR validation

The relative expression levels of the five 
differentially expressed genes (Fes, Aif1, Tlr6, Tlr2, 
Gata3) were assayed. The results of the microarray assay 
and RT-PCR were consistent (Supplementary Figure 3).

DISCUSSION

The present study yields information on the hub 
genes and key pathways related to the silicone implant–
induced immune response as determined using integral 
bioinformatics methods. We aimed to better understand and 
characterize local inflammatory and immunologic reactions 
caused by silicone implants as groundwork to clarify whether 

this local immunologic reaction can lead to subsequent 
systemic immune reactions, and even autoimmune diseases. 
Importantly, by utilizing novel bioinformatics techniques, 
we bridge the gap between individual genes and systematic 
biology. The detected hub genes and key pathways are 
expected to be future therapeutic targets for silicone 
implant–induced complications and diseases.

Five genes with the highest k-core values were 
identified as hub genes related to the silicone-induced 
immune response. Strikingly, most of these hub genes 
(Tlr2, Tlr6, Aif1, Gata3) have also been reported to be 
crucial in autoimmunity development. They not only give 
rise to the localized silicone-induced immune response, 
but also function as central players in autoimmune disease 
development [13–18].

Table 1: The summary of GO terms in significant expression patterns profiles
Category ID Category Name Genes 

Category
Genes 

Assigned
Genes 

Expected
Genes 

Enriched p-value Corrected 
p-value Fold

Profile 38

GO:0006955 immune response 396 49 17.8 31.2 2.50E-11 < 0.001 2.7

GO:0045321 leukocyte activation 286 35 12.9 22.1 3.60E-08 < 0.001 2.7

GO:0009617 response to bacterium 275 34 12.4 21.6 4.40E-08 < 0.001 2.7

GO:0009611 response to wounding 476 48 21.4 26.6 4.50E-08 < 0.001 2.2

GO:0002252 immune effector process 226 30 10.2 19.8 6.00E-08 < 0.001 2.9

GO:0002682 regulation of immune system process 401 42 18.1 23.9 1.30E-07 0.002 2.3

GO:0050865 regulation of cell activation 212 28 9.5 18.5 1.90E-07 0.002 2.9

GO:0002237 response to molecule of bacterial origin 230 29 10.4 18.6 3.10E-07 0.002 2.8

GO:0032101 regulation of response to external stimulus 248 30 11.2 18.8 4.80E-07 0.002 2.7

GO:0046649 lymphocyte activation 238 29 10.7 18.3 6.50E-07 0.004 2.7

GO:0032496 response to lipopolysaccharide 221 27 10 17 1.60E-06 0.004 2.7

GO:0006954 inflammatory response 271 30 12.2 17.8 3.20E-06 0.004 2.5

GO:0002366 leukocyte activation involved in immune response 76 14 3.4 10.6 5.50E-06 0.01 4.1

GO:0002263 cell activation involved in immune response 76 14 3.4 10.6 5.50E-06 0.01 4.1

GO:0002694 regulation of leukocyte activation 189 23 8.5 14.5 1.00E-05 0.022 2.7

GO:0051249 regulation of lymphocyte activation 163 21 7.3 13.7 1.10E-05 0.022 2.9

GO:0002274 myeloid leukocyte activation 75 13 3.4 9.6 2.40E-05 0.034 3.8

Profile 49

GO:0006955 immune response 396 31 9.8 21.2 4.70E-09 < 0.001 3.2

GO:0002682 regulation of immune system process 401 28 10 18 3.50E-07 < 0.001 2.8

GO:0006954 inflammatory response 271 22 6.7 15.3 6.30E-07 < 0.001 3.3

GO:0002684 positive regulation of immune system process 261 21 6.5 14.5 1.40E-06 < 0.001 3.2

GO:0002252 immune effector process 226 18 5.6 12.4 9.60E-06 0.01 3.2

GO:0002274 myeloid leukocyte activation 75 10 1.9 8.1 1.30E-05 0.016 5.4

GO:0002696 positive regulation of leukocyte activation 128 13 3.2 9.8 1.40E-05 0.018 4.1

GO:0002675 positive regulation of acute inflammatory response 23 6 0.6 5.4 1.50E-05 0.024 10.5

GO:0030097 hemopoiesis 260 19 6.5 12.5 1.80E-05 0.028 2.9

GO:0002823 negative regulation of adaptive immune response 
based on somatic recombination of immune 
receptors built from immunoglobulin superfamily 
domains

15 5 0.4 4.6 2.20E-05 0.04 13.4

GO:0002820 negative regulation of adaptive immune response 16 5 0.4 4.6 3.10E-05 0.046 12.6

GO:0002697 regulation of immune effector process 119 12 3 9 3.30E-05 0.05 4.1
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Table 2: Summary of statistically significant key pathways
Term Genes Count % P-Value Fold 

Enrichment FDR

Cytokine-cytokine receptor interaction CSF3, CCL3, TNF, CCL2, CSF1, CXCL2, 
CXCL9, TNFSF13, PF4, IL7R, TNFSF18, CCL4, 
IL10, CXCL10, OSM, CSF1R

16 1.714898 1.60E-09 7.322744 1.73E-06

Hematopoietic cell lineage CSF3, CD38, CD55, CD37, TNF, CSF1, FCGR1A, 
IL7R, CD14, CSF1R

10 1.071811 1.21E-07 11.55914 1.31E-04

Chemokine signaling pathway CXCL1, CCL3, CCL2, CXCL2, CXCL9, CCL9, 
JAK2, PF4, CCL4, CCL7, CCL6, CXCL10

12 1.286174 1.76E-06 6.327108 0.001906

Toll-like receptor signaling pathway CCL3, TNF, TLR2, CXCL9, TLR6, CD14, 
CXCL10

7 0.750268 4.02E-04 7.012545 0.433237

NOD-like receptor signaling pathway CXCL1, TNF, CCL2, CXCL2, CCL7 5 0.535906 0.004465 7.271072 4.721757

Systemic lupus erythematosus TNF, FCGR2B, C6, FCGR1A, IL10 5 0.535906 0.01632 5.008961 16.29149

Jak-STAT signaling pathway OSM, CSF3, STAT5A, JAK2, IL7R, IL10 6 0.643087 0.017261 3.891854 17.15306

Natural killer cell mediated cytotoxicity ITGAL, TNF, FCGR2B, FCER1G, TYROBP 5 0.535906 0.023113 4.508065 22.33229

Asthma TNF, FCER1G, IL10 3 0.321543 0.025582 11.76017 24.4271

Fc gamma R-mediated phagocytosis PTPRC, GAB2, FCGR2B, FCGR1A 4 0.428725 0.070663 4.09824 54.70701

Cell adhesion molecules (CAMs) ALCAM, ITGAL, PTPRC, CD274, SPN 5 0.535906 0.077219 3.04599 58.04327

Intestinal immune network for IgA production TNFSF13, IL10, TGFB1 3 0.321543 0.086023 6.010753 62.17279

Cytosolic DNA-sensing pathway IL33, CCL4, CXCL10 3 0.321543 0.089322 5.880084 63.62241

Figure 1: Flow chart of bioinformatics analyses of hub genes and pathways related to immune response after silicone 
implantation.
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As important components of foreign entity 
recognition localized on antigen-presenting cells, TLRs are 
the key signaling molecules in innate immune activation 
[19]. The downstream activated signaling pathway, termed 
the TLR signaling pathway (Figure 3, bottom), is the key 
element of not only adjuvant-induced immune response 
[5], but also the therapy target in autoimmune disease 
[19]. In the present study, we found that Tlr2 dimerized 
with Tlr6 are the major receptors involved in silica surface 
antigen recognition. Various studies have demonstrated 
that abnormal and constant activation of TLRs and the 
TLR signaling pathway can result in sterile inflammation 
or autoimmunity [20, 21] and the subsequent development 
of a syndrome termed autoimmune syndrome induced 
by adjuvants (ASIA) [5, 22]. Considering the suggested 
linkage between autoimmunity and the silicone-induced 
immune response, novel material should be employed for 

implantation in the future to avoid activating the Tlr2/6 
signaling pathway to circumvent the common adverse 
effects stemming from the costly whole-body immune 
response to antigens.

Allograft inflammatory factor-1 (Aif1), the hub 
gene with the second highest k-core value, is expressed 
predominantly by activated monocytes. An increasing 
number of studies suggest that Aif1 may play a critical 
role in the immune response to allo- or auto-antigens and 
inflammatory responses [13, 23–24], and its expression 
level parallels the autoimmune disease stage [25]. Of 
interest is that, in a rat model with silicone implants, Eltze  
et al. found a significant correlation between Aif1-positive 
macrophages and capsule thickness, which indicates 
that Aif1 might be a novel marker of silicone-induced 
chronic immune response monitoring [15]. However, 
the molecular regulatory mechanism of Aif1 expression 

Figure 2: STEM cluster analysis of 80 significantly differential genes after silicone implantation. Two trends (p < 0.001) 
with a statistically significant number of genes were assigned. The boxes on the left side of the figure contain detailed information on these 
two profiles. In the boxes, the number in the top left corner represents the profile ID, the bottom right corner shows the p-value, and the 
bottom left corner shows the gene number assigned to the profile. Details of the genes mapped to each temporal profile are in Supplementary 
Table 2.
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and function is unknown. Aif1-1 knockout mice and 
modern biological technology are important for better 
understanding of Aif1 immune regulatory biology.

The hub gene with the highest k-core value was 
feline sarcoma oncogene (Fes). However, it is rarely 
investigated in immunology and little information is 

currently available to derive preliminary understanding 
of its function and role in immune-regulation. Further 
study is necessary to identify specific cell lines that 
predominantly express Fes after silicone implantation 
and that demonstrate the exact function of Fes when 
interacting with silicones. 

Figure 3: Identification of two autoimmunity-related signaling pathways. Top: SLE signaling pathway; bottom: TLR signaling 
pathway. Red stars indicate the significantly expressed genes in the pathways.
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The imbalance of T helper cell (Th1/Th2) 
differentiation is considered a major pathogenesis step in 
autoimmune diseases [14, 26, 27]. Interestingly, three of 
the five hub genes (Gata3, Aif1, Tlr2) function as agonists 
for Th1 differentiation. Gata3 (GATA Binding Protein 3) 
plays an indispensable role in Th2 differentiation [28], 
and its overexpression has been considered a therapeutic 
target in autoimmune disease [14]. Our data show that 

Gata3 had a tendency to be significantly decreased 
after silicone implantation (Supplementary Table 1, 
Supplementary Figure 3), indicating imbalanced T 
helper cell differentiation that may give rise to Th1 
autoimmune disease. Additionally, Aif1 regulates Th1 
inflammatory responses by augmenting the production 
of specific cytokines [29], and its expression is increased 
in Th1-type disease [30, 31]. The characteristic of Tlr2 

Figure 4: Gene co-expression network. Genes contained in significant GO terms were analyzed and identified by the gene co-
expression network using the k-core algorithm. Nodes represent genes; edges indicate the interaction between the genes. The area of each 
node represents the k-core value within the module, and the edge correlates with the capacity for modulating adjacent genes. Genes with 
higher k-core values are more centralized in the network and have a stronger capacity for modulating adjacent genes.
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in Th1 differentiation is well-described. Tlr2 is a specific 
activator of Th1 function and its involvement is implied in 
Th1-mediated responses [32]. The co-expression of these 
three genes following silicone implantation suggested 
abnormally increased differentiation towards Th1 and 
Th1/Th2 imbalance. However, little is known about 
how silicone affects T helper cell differentiation, and 
our findings might provide clues to the establishment of 
a novel pathway model for mimicking silicone-induced 
autoimmunity.

Further investigation will mainly focus on whether 
interfering with the expression of these hub genes would 
significantly exacerbate or alleviate the immune response 
after silicone implantation. Additionally, these data will 
be further validated and replicated with silicone implants 
in human samples. The shared target genes and common 
pathways between the silicone-induced immune response 
and population-based connective tissue disease microarray 
data (from the Gene Expression Omnibus [GEO] database) 
will also be compared and analyzed for further study.

Our study has limitations: the time points span a 
relatively short period compared to that in human patients, 
who bear silicone implants for years. However, this 
setting is based on the principle of co-expression network 
construction, which mainly depends on relative expression 
changes between two genes from different samples, 
rather than the expression level of one single gene [33]. 

Consequently, the expression level profiles of the single 
genes we report are of lower reference value than the 
information on the hub genes, which can only represent 
the acute immune response triggered by silicone implants. 
Therefore, the expression results at single gene–level should 
be interpreted with care (Supplementary Tables 1, 2).

With the integral bioinformatics approach, 
especially WGCNA, we were able to identify the hub 
genes of the silicone-induced immune response, and 
thereby infer its potential relationship with autoimmunity, 
which is controversial and has perplexed epidemiologists 
for decades. We hope that the information presented here 
will prompt not only scientists to develop interference 
medicines, but also encourage manufacturers to improve 
silicone surface antigens to elude immune recognition for 
the purpose of alleviating the suffering of patients with 
silicone-caused complications and associated diseases.

MATERIALS AND METHODS

Animals and silicone implantation

Ethics statement: All animal studies complied with 
current ethical considerations in Directive 2010/63/EU. 
We used male specific pathogen–free Sprague-Dawley 
(SD) rats (8 weeks old; male, average body weight,  
250–300 g). 

Figure 5: Heat map of distribution of top 25 genes in 25 significant GO terms. The bar on the right indicates if the gene is a 
participat in the GO term (light blue, yes; dark blue, no).
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The rats were randomly allocated to silicone 
implantation (n = 18, intervention) or sham (n = 3, control) 
groups. in the intervention group were randomly assigned to 
six time points (n = 3 rats per time point): 7, 8, 9, 10, 11, and 
14 days. The tissue expander and implantation procedures 
were described in previous studies [34, 35]. Briefly, the 
rats were implanted with 10-ml silicone tissue expanders 
(silicone MED4735, Shanghai Xinsheng Biomedical 
Co. Ltd, Shanghai, China; http://www.xinsheng-sh.net/) 
subcutaneously on the dorsal side (Supplementary Figure 
4), and 30 ml saline was injected through the pot to mimic 
the mechanical stretching after silicone implantation. Rats 
in the control group underwent a sham procedure without 
implanting the silicone expanders. At each time point, 
0.5 cm × 0.5 cm full-thickness skin specimens (including 
the capsule) from the implanted skin area were collected. 
In the control group, 0.5 cm × 0.5 cm full-thickness skin 
specimens from the dorsal midline were collected at day 
7. The animals were euthanized immediately after sample 
collection. The experiments were performed in accordance 
with the National Experimentation Manual.

RNA isolation

Total RNA was extracted from the skin specimens, 
added to TRIzol (Invitrogen, Carlsbad, CA, USA) per 
the manufacturer’s protocol, and was purified using 
RNeasy Mini columns (Qiagen, Valencia, CA, USA). 
The absorbance ratio at 260/280 nm (OD 260/280) was 
measured to evaluate the purity of all RNA samples; 
RNA quality and integrity were assessed using agarose 
gel electrophoresis. The 28S to 18S rRNA band intensity 
ratio of all RNA samples was approximately 2:1; the OD 
260/280 ratio was 2.0–2.1.

Microarray experiment

RNA samples from all groups were used to detect 
gene expression changes at each time point. Hybridization, 
washing, and scanning of Affymetrix GeneChip Rat Exon 
1.0 ST Arrays (Santa Clara, CA, USA) were performed 
according to standard Affymetrix protocols. Statistically 
significant gene expression was determined using two-
way analysis of variance (ANOVA, p < 0.05) because we 
investigated two factors (silicone implantation and time 
course). All data generated in this study were minimum 
information about a microarray experiment (MIAME)-
compliant [36].

Bioinformatics analysis of microarray data

Comprehensive bioinformatics analysis was used to 
determine the hub genes related to the silicone implantation–
induced immune response, and included: cluster analysis, 
GO analysis, pathway analysis, dynamic gene network 
construction, and hub gene identification (Figure 1).

Cluster analysis

A total 5,587 significantly expressed genes 
were assigned to cluster analysis by Short Time-series 
Expression Miner (STEM) version 1.4 and according to 
the instructions by Ernst et al. [37]. Fifty model temporal 
expression patterns were used to identify the expression 
patterns of the significantly differential genes, and 
were simultaneously integrated with GO classification. 
Each cluster contained genes with similar expression 
patterns. The gene clusters were ranked by the p-value 
of significance of the observed number of genes that fit a 
profile beyond the expected number.

GO analysis and pathway analysis

A total 1,013 genes had a significantly differential 
expression pattern (p < 0.001), and underwent GO 
analysis, which is the key functional classification of the 
National Center for Biotechnology Information (NCBI) 
[38]. All GO terms assigned to these genes were obtained, 
and pathway analysis was enriched using the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) [39] web server, interrogating the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database, 
and examined simultaneously using Fisher’s exact test 
and the χ2 test for calculating the level of significance. 
The false discovery rate (FDR) was calculated to correct 
the p-value. Significant genes related to GO terms 
named “immune response” were extracted for pattern 
identification, and the GO term interaction network was 
visualized using ClueGO [40].

Dynamic weighted gene co-expression network 
construction

Next, we used weighted gene co-expression network 
analysis (WGCNA) to integrate the genes with significant 
expression patterns into a higher-order, systems-level 
context [33]. WGCNA is designed to identify modules of 
densely interconnected genes by searching for genes with 
similar patterns of connectivity with other genes, which 
can be summarized as the topological overlap between 
genes [33]. The blockwiseModules function allowed 
the entire dataset of 1,013 genes to be utilized in the 
construction of the weighted gene co-expression network. 
A pair-wise correlation matrix was computed for each set 
of genes, and the correlations were weighted to a power of 
β using the power function [33].

Network module and hub gene identification

The dynamic tree-cutting algorithm [41] was then 
used to identify the modules of co-expressed genes. After 
all blocks had been processed, a gene was reassigned to 
another module if it had higher connectivity to the other 
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module, and modules with highly correlated hub genes 
were merged [42]. Modules, or groups of highly correlated 
genes, could be a result of transcriptional co-activation 
(gene activation or gene repression), the co-regulation 
of mRNA stability, or a combination thereof, resulting 
in a complex genetic network of closely related genes 
coordinately operating to accomplish a function or a group 
of related functions [10].

The TOM function was used to calculate the 
connectivity (k-core value) of every signal gene in the 
network; genes with higher k-core values are more 
centralized in the network and have stronger capacity for 
modulating adjacent genes. Highly connected “hub” genes 
are of special interest because they are the backbone of the 
scale-free network architecture [10], and are far more likely 
than non-hub genes to be essential for survival in lower 
organisms [43–45]. As an analogy, the interference of hub 
genes related to the silicone-induced immune response may 
lead to amelioration of the pathological process.

Real-time PCR validation of microarray data

Real-time reverse transcription (RT)-PCR was 
performed to verify the differential expression of five 
selected genes: Fes, Aif1, Gata3, Tlr6, and Tlr2. Total 
RNA was isolated from the skin specimens of rats in 
the intervention group via microarray assay in three 
independent experiments. The RNA was reverse-
transcribed using a ReverTra Ace qPCR RT Kit (TOYOBO, 
Osaka, Japan). Real-time RT-PCR was conducted in 10-ml 
reactions consisting of 5 ml SYBR Green Real-time PCR 
Master Mix (Applied Biosystems), 0.3 mM primers, and 
1 ml template complementary DNA (cDNA). The PCR 
program began with initial denaturation for 5 min at 94°C, 
followed by 40 cycles of 30 sec at 94°C, 30 sec at 60°C 
or 65°C, and 30 sec at 72°C, and ended with the melting 
curve program. The relative changes in gene expression 
were calculated using the comparative threshold cycle (2–

ΔΔCt) method; β-actin was used as the internal control gene 
to normalize the amount of RNA used in the PCR [46].

CONCLUSIONS

The present study results indicate that the silicone-
induced immune response is related to various immune 
reaction genes and pathways. Five hub genes and nine 
signaling pathways were identified as central participants 
in the silicone-induced immune response, most of which 
are also related to autoimmunity. These genes and 
pathways will hopefully serve as novel therapeutic targets 
for silicone-related complications and associated diseases.
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