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Abstract: Effective delivery of oxygen and essential nutrients to vital organs and tissues throughout
the body requires adequate blood flow supplied through resistance vessels. The intimate relationship
between intracellular calcium ([Ca2+]i) and regulation of membrane potential (Vm) is indispensable for
maintaining blood flow regulation. In particular, Ca2+-activated K+ (KCa) channels were ascertained
as transducers of elevated [Ca2+]i signals into hyperpolarization of Vm as a pathway for decreasing
vascular resistance, thereby enhancing blood flow. Recent evidence also supports the reverse
role for KCa channels, in which they facilitate Ca2+ influx into the cell interior through open
non-selective cation (e.g., transient receptor potential; TRP) channels in accord with robust electrical
(hyperpolarization) and concentration (~20,000-fold) transmembrane gradients for Ca2+. Such an
arrangement supports a feed-forward activation of Vm hyperpolarization while potentially boosting
production of nitric oxide. Furthermore, in vascular types expressing TRP channels but deficient
in functional KCa channels (e.g., collecting lymphatic endothelium), there are profound alterations
such as downstream depolarizing ionic fluxes and the absence of dynamic hyperpolarizing events.
Altogether, this review is a refined set of evidence-based perspectives focused on the role of the
endothelial KCa and TRP channels throughout multiple experimental animal models and vascular
types. We discuss the diverse interactions among KCa and TRP channels to integrate Ca2+, oxidative,
and electrical signaling in the context of cardiovascular physiology and pathology. Building from
a foundation of cellular biophysical data throughout a wide and diverse compilation of significant
discoveries, a translational narrative is provided for readers toward the treatment and prevention of
chronic, age-related cardiovascular disease.
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1. Introduction

Endothelial cells lining the lumen of resistance arteries command changes in vascular diameter as
needed to meet the metabolic demand of vital organs and tissues throughout the body. In particular, the
relationship of intracellular calcium ([Ca2+]i) to the hyperpolarization of membrane potential (Vm) is
essential for a key signaling pathway underlying blood flow control, known as endothelium-derived
hyperpolarization (EDH; i.e., activation of small- and intermediate-Ca2+-activated K+ (SKCa/IKCa)
channels). In such a manner, endothelial cells coordinate with their surrounding smooth muscle cells
via gap junctions for arterial relaxation and increased blood flow [1]. Physiological stimulation of EDH
entails stimulation of Gq-protein-coupled receptors (GqPCRs) and then an increase in [Ca2+]i typically
defined by initial Ca2+ release from the endoplasmic reticulum (ER) followed by a “plateau” phase
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of extracellular Ca2+ influx into the cellular interior through open transient receptor potential (TRP)
channels [2,3]. Vascular TRP channels may be recruited by Orai for Ca2+ influx in response to cytosolic
stromal interaction molecule (STIM) oligomers that form as a result of ER Ca2+ depletion [4–7]. The influx
of Ca2+ contributes serves a dual role to (i) sustain activation of intracellular enzymes and plasma
membrane ion channels for prolonged cellular function, and (ii) to refill ER Ca2+ (via smooth endoplasmic
reticulum Ca2+ ATPase (SERCA) pump activity) to maintain consistent and repetitive physiological
function. During elevation of overall [Ca2+]i, SKCa/IKCa channels are activated, and the cell interior local
to the inner leaflet of the plasma membrane increases in negative charge (“hyperpolarization”) due to K+

efflux through open SKCa/IKCa channel pores [8,9]. Thus, the intimate relationship of endothelial [Ca2+]i

and Vm is integral to blood flow regulation and, therefore, indispensable for cardiovascular function.
The aim of this review is to resolve the interaction of KCa and TRP channel function with [Ca2+]i

and electrical signaling during physiology and pathology. The current working paradigm of the
“microanatomy” of the [Ca2+]i-to-electrical signaling interface underlying EDH is located to endothelial
projections that traverse through the internal elastic lamina to contact smooth muscle cells (Figure 1).
Endothelial projections contain spatially proximal myoendothelial gap junctions, IKCa channels, TRP
channels, and inositol 1,4,5-trisphosphate receptors (IP3Rs) of the endoplasmic reticulum [10–12].
When KCa channel function is present, robust Vm hyperpolarization occurs in response to sequential
[Ca2+]i release and Ca2+ influx, notably during treatment with a GqPCR agonist (e.g., acetylcholine
(ACh) or adenosine triphosphate (ATP)) or hydrogen peroxide (H2O2), which mimics conditions
of oxidative stress during old age. When KCa channel function is absent, an otherwise rapid Vm

hyperpolarization response converts into slow Vm depolarization due to accumulation of intracellular
positive charges in the form of Na+ and Ca2+ having entered through activated non-selective cation
channels. With perspectives for future directions, we examine recent evidence demonstrating the
functional contrasts among “normal” or “healthy” vascular aging and the development of chronic
disease (e.g., hypertension, diabetes, heart failure, and coronary artery disease).
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(M3), purinergic (P2Y)) occurs through neurotransmitter secretion (parasympathetic nervous system
(PSNS), acetylcholine (ACh); sympathetic nervous system (SNS), adenosine triphosphate (ATP)) or
ATP release from red blood cells (RBCs) as primary examples. ACh and ATP are pharmacologically
applied using bulk flow or focal delivery via pipettes (iontophoresis and pressure ejection). Following
endothelial GqPCR activation, inositol 1,4,5-trisphosphate (IP3) is produced, which in turn activates
IP3 receptors (IP3Rs) to release Ca2+ from the endoplasmic reticulum (ER) into the cytosol. ER Ca2+

release is observed as the initial “peak” response in ∆[Ca2+]i. The ER Ca2+ stores are filled or refilled
through uptake of Ca2+ from the cytosol into the ER through smooth endoplasmic reticulum Ca2+

ATPase (SERCA) pumps to sustain repetitive physiological signaling. The influx of Ca2+ occurs
through TRP channels (e.g., vanilloid class, TRPV4) to help refill ER Ca2+ stores while integral to
the secondary “plateau” phase of the ∆[Ca2+]i following GqPCR stimulation. The increase in [Ca2+]i

leads to production of nitric oxide (NO) and/or activation of small- and intermediate-conductance
Ca2+-activated K+ (SKCa and IKCa) channels. The production of NO is dependent on the conversion of
L-arginine to L-citrulline in the presence of O2 via endothelial NO synthase (eNOS). Endothelial
NOS contains an oxygenase domain to bind L-arginine, heme, Zn2+, and an essential cofactor
tetrahydrobiopterin (BH4); a calmodulin (CaM) domain to bind Ca2+; and a reductase domain that binds
to reducing agents nicotinamide adenine dinucleotide phosphate (NADPH), flavin mononucleotide
(FMN), and flavin adenine dinucleotide (FAD). Activation of SKCa and IKCa channels generates
hyperpolarization that is transmitted concomitantly along endothelial cells and to smooth muscle
cells through myoendothelial gap junctions. Note that, regardless of endothelial Ca2+ mobilizing
mechanism, endothelial [Ca2+]i increases can regulate vascular tone ranging from normalization
of vasoconstriction for basal tone (steady-state blood flow) to net decreases in vascular resistance
(increased blood flow). Smooth muscle: Endothelium-derived hyperpolarization deactivates L-type
voltage-gated Ca2+ channels (VGCCs) to prevent Ca2+ entry into smooth muscle cells (see broken lines
with flat ends). Additionally, endothelial production of NO diffuses to smooth muscle and increases
the activity of K+ channels such as the large-conductance Ca2+-activated K+ (BKCa) channel via
cGMP-dependent protein kinase (PKG) for hyperpolarization, another signaling input for deactivation
of L-type VGCCs. Although not covered in detail in this review, TRP channels (TRPs; e.g., TRPM4)
are also expressed in smooth muscle cells and play a general role for depolarization of Vm, thereby
activating L-type VGCCs for myogenic constriction. Note that, regardless of smooth muscle Ca2+

mobilizing mechanism, smooth muscle [Ca2+]i increases can regulate vascular tone ranging from
normalization of vasoconstriction for basal tone (steady-state blood flow) to net increases in vascular
resistance (decreased blood flow). Myoendothelial feedback: Activation of α-adrenergic receptors
(αARs) on smooth muscle by norepinephrine (NE) secreted by the SNS or the pharmacological α1R
agonist phenylephrine (PE) results in IP3 production to elicit Ca2+ release through IP3Rs in the
sarcoplasmic reticulum (SR) to evoke vascular contraction. When elevated in smooth muscle, IP3

and Ca2+ diffuse through myoendothelial gap junctions into the endothelium to activate SKCa/IKCa

channels and/or NO production, providing negative feedback to smooth muscle contraction (see
broken lines indicating signaling from endothelium back to smooth muscle). The (−) and (+) symbols
indicate Vm hyperpolarization and depolarization respectively while the respective color of lines
corresponds to Ca2+ (red), IP3 (lime green), or Na+ (light blue) signaling.

2. Significance of the Relationship of [Ca2+]i and Vm in the Vascular Wall of Blood Vessels

Whether influenced by hormones, transmitters, or the shear forces of blood flow itself,
the interplay between smooth muscle and endothelium of the vascular wall regulates resistance
to blood flow in the form of vascular dilation or constriction [1]. Myoendothelial gap junctions
between the two cell layers allow for the transmission of IP3, Ca2+, cyclic adenosine monophosphate
(cAMP), cyclic guanosine monophosphate (cGMP), or the general distribution of electrogenic ions
(e.g., Na+, K+, or Cl−) from endothelium to smooth muscle in response to stimulation of endothelial
GqPCRs (e.g., muscarinic, purinergic) [13,14], or vice versa following smooth muscle α-adrenergic
receptor stimulation [15]. Fundamentally, the central mediator underlying coordination of vascular
reactivity is Ca2+, which activates endothelial nitric oxide synthase (eNOS) and the production of
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nitric oxide (NO) concomitant with stimulation of SKCa/IKCa channels for EDH. The oxidoreductase
activity of eNOS is described by the conversion of L-arginine to NO and L-citrulline with additional
requirements of the Ca2+ sensor calmodulin, the co-factor tetrahydrobiopterin (BH4; composes the
oxygenase domain with heme), and nicotinamide adenine dinucleotide phosphate (NADPH; reductase
domain) [16]; deficiency in L-arginine or BH4 results in eNOS “uncoupling”, whereby reactive oxygen
species are produced [17]. Smooth muscle relaxation to eNOS-derived NO occurs via protein kinase G
(PKG)-dependent phosphorylation of multiple ion pumps and channels (e.g., SERCAs or voltage-gated
K+ channels) in a manner that establishes a hyperpolarized smooth muscle Vm, reduced smooth
muscle [Ca2+]i and, thereby, reduced myosin light-chain phosphorylation [18,19]. Calmodulin also
plays a primary role in SKCa/IKCa channel activation via the sensing of [Ca2+]i using C- and N-lobe
EF hand domains to open channel pores and allow K+ efflux from the endothelial cell. However, in
studies using Xenopus oocytes and the inside-out patch clamp configuration to examine intracellular
regulation of SKCa channels, it was found that the C-lobe may play a dispensable role for modulating
Ca2+ affinity, whereas the N-lobe in particular constitutively stabilizes KCa subunits for activation [20].
The resulting hyperpolarization of endothelial Vm transmits to the smooth muscle via myoendothelial
gap junctions [21,22], whereby L-type voltage-gated Ca2+ channels are deactivated, and in like
fashion with the NO/cGMP/PKG pathway, smooth muscle [Ca2+]i is ultimately reduced to promote
vasodilation [23].

Original investigations of the structural resolution of myoendothelial gap junctions [24,25] and
functional determinations of myography and electrophysiology [26] altogether revealed regional
contributions of EDH vs. NO to vasodilation along the vascular network. In particular, myoendothelial
gap junctions are composed of connexins (Cxns) Cx37, Cx40, and Cx43 [11,27,28] as required for the
spread of EDH from the endothelium to the smooth muscle, a mechanism that plays a prominent
role in small arteries and arterioles [29]. Shimokawa et al. showed that the contribution of EDH to
endothelium-dependent relaxations rises as vessel size (diameter) decreases in six- to eight-month-old
male rats [26]. In particular, the range of the contribution of EDH was >2-fold when extending from
aorta (~30%) to the proximal (~46%) and then to the distal (~72%) mesenteric arteries, whereas trends
in NO-dependent vasodilation were the opposite (aorta: ~56%, proximal: ~17%, distal: ~20%). It is
also worth noting that the contribution of prostacyclin (PGI2) was negligible regardless of blood vessel
size. Thus, when examining Ca2+ and electrical signaling underlying EDH or NO, it is important to
consider the anatomical position of the arterial segment throughout the conduit and resistance blood
vessel network feeding into each organ in the body.

Altogether, regardless of source (intracellular release or plasma membrane entry), increased
[Ca2+]i plays a dichotomous role in the smooth muscle vs. endothelial cell layers (See Figure 1
Legend; smooth muscle [Ca2+]i increase → depolarization → L-type Ca2+ channel activation →
myosin light-chain phosphorylation→ vasoconstriction vs. endothelial [Ca2+]i increase→ SKCa/IKCa

channel activation→ hyperpolarization→ myosin light-chain dephosphorylation→ vasodilation)
and maintains a narrow window of effective blood flow regulation [30,31] while preventing vascular
rupture or ischemia. With some exception (e.g., direct PKG activation of myosin light-chain
phosphatase and subsequent dephosphorylation of myosin light chain [32]), the cross-talk between
[Ca2+]i and Vm is the “master regulator” for the coordination of blood flow throughout vascular
resistance networks regardless of the mode of the upstream cellular signaling pathway. The most direct
bridge between these two physiological variables is EDH with SKCa/IKCa channels as the transducers
of increased [Ca2+]i to hyperpolarization of the Vm throughout the vascular wall.

Recent perspective points to an initial rapid role for EDH during vasodilation following the onset
of physical activity and skeletal muscle contraction, whereas NO signaling underlies a secondary
prolonged but slower vasorelaxation for sustained blood flow per lumenal sheer stress [1]. It is
also worth noting that the spatial domain of signaling for NO is on the order of hundreds of
microns vs. thousands of microns for EDH along the vascular wall encompassing from large
extraparenchymal arteries to capillaries. Furthermore, a phenomenon of GqPCR-stimulated “slow”
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Ca2+ waves (~100 µm/s vs. cm/s for electrical conduction) among and along the endothelial cell
layer may govern the spatial activation of both NO and EDH [33,34]. Although, as described, Ca2+

waves occur within an order of timing most consistent with the production and signaling of NO. It is
possible that the amplitude, distance, and/or speed of a Ca2+ wave can be enhanced by direct opening
of SKCa/IKCa channels to hyperpolarize Vm, thereby increasing the electrical gradient for Ca2+ to
move into cells through open TRP channels, a phenomenon known as “hyperpolarization-induced
Ca2+ entry” [3]. In its entirety for intra- and intercellular signaling, this hypothesis was proposed
>5 years ago [34], and now has support with findings of enhancement in NO production [35] and the
feed-forward activation of EDH [3,36]. Of course, there are limits to the effectiveness of SKCa/IKCa

channel activation, vasodilation, and the delivery of blood flow, as we found that hyperpolarization of
Vm >−60 mV results in current leak that reduces the spread of hyperpolarization among endothelial
cells by more than half [37,38]. In addition to the diminishment of sufficient resting vascular tone [10],
the consequence of the “over-activation” of SKCa/IKCa channels entails significant charge loss through
electrically “leaky” membranes, thereby impairing effective cell-to-cell vasoreactivity coordination
of blood flow along vascular resistance networks [1,21]. Accordingly, as the relationship between
Vm and the increase in [Ca2+]i is only linear from ~−25 to −60 mV [3], and as only 10 to 15 mV of
hyperpolarization from resting (~−30 to −40 mV) is needed for maximal vasodilation [39,40], “more”
is certainly not “better” with respect to KCa channel function.

3. Significance of SKCa/IKCa and TRP Channels in the Blood Vasculature

Properties of transmembrane ion channel activity include the electrical and driving forces
on the ionic species that are permeant through the channel pore, channel conductance for ease
of current flow, and the number of channels (n) multiplied by their individual probability of
opening (PO). The SKCa/IKCa channels are permeant to K+ ions which are favored for outward
movement in accordance with the concentration gradient ([K+]o/[K+]i: ~0.030) despite an opposing
electrical gradient (the intracellular side of the plasma membrane is negatively charged and attracts
cations). The Vm must be as high as −90 mV at physiological temperature (37 ◦C) in order to bring
transmembrane K+ flux to equilibrium (EK). For reference, vascular endothelial cells typically have
a Vm of ~−30 to −40 mV during rest, and activation of SKCa/IKCa channels alone using NS309
can increase Vm to EK [37,41]. As a dominant form of K+ channel expressed in the endothelial
membrane, the SKCa/IKCa channels are tetrameric (four subunits), voltage-independent (from Vm

~−80 to +10 mV [37]), and are constitutively bound to calmodulin binding sites for [Ca2+]i [42].
The physiological “agonist” is Ca2+, whereby the PO of the channels is determined by the [Ca2+]i

needed to produce half-maximal activation for opening channel pores (K0.5) and cooperativity among
the four subunits of the channel per number of Ca2+ ions (Hill coefficient; HC).

The SKCa channels were first identified for their role in the “after hyperpolarization” phase
following the firing of individual action potentials in central neurons of the mammalian brain [43]. SKCa

channels (KCa2.1, KCa2.2, and KCa2.3, or SK1, SK2, and SK3), have a relatively “small” conductance
(~5 to 20 pS), a high affinity for Ca2+ (K0.5: ~400 to 700 nM), and a steep dependence on Ca2+, whereby
at least four Ca2+ ions (HC = 3.9 to 4.8) are involved in the cooperativity of channels subunits for
gating the pore ([43]; SK messenger RNA (mRNA) extracted from human (SK1) and rat (SK2 and
SK3) brain and cloned in Xenopus oocytes). Later, the KCa2.3 (or SK3) channels in particular were
demonstrated to play a role in endothelial cell regulation of vascular tone in mesenteric arteries and
systemic blood pressure [44] using a SK3T/T mouse model, whereby the KCa2.3 gene promoter is
governed by a tetracycline-sensitive transactivator protein [45]. Relative to wild type, the mesenteric
arteries of SK3T/T mice contained elevated expression of KCa2.3 channels that were suppressed upon
treatment with the tetracycline derivative doxycycline (DOX) to the extent that SKCa currents were
~25-fold lower in endothelial cells; thus, resting endothelial Vm was depolarized by ~14 mV. Also,
vasoconstriction due to intravascular pressure (20 or 100 mmHg) or direct stimulation of smooth
muscle α1-adrenergic receptors using phenylephrine was enhanced by >20% with blocking SKCa
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channels via apamin or removal of the endothelium in SK3T/T mice (no DOX) or by genetically
suppressing SKCa channel expression in SK3T/T mice fed DOX. Furthermore, genetic deletion of SKCa

channels increased diastolic (~94 to 118 mmHg) and systolic (~128 to 147 mmHg) blood pressure
(mean arterial: ~105 to 128 mmHg) [44].

Relative to SKCa channels, IKCa (KCa 3.1, SK4, or IK1) channels have an “intermediate”
conductance (=39 pS), reduced cooperativity of individual subunits per Ca2+ ion (>50%; HC = 1.7),
and a similarly high Ca2+ affinity with a K0.5 of ~300 nM ([46]; IK1 mRNA extracted from human
pancreas and cloned in Xenopus oocytes). The IKCa channels are generally absent in excitable cells
such as neurons and cardiac myocytes [46–48] with an originally defined role characterized in immune
cells [49]. However, similar to the role of SKCa channels for hyperpolarizing cellular Vm, the importance
of the IKCa channel is now well established for endothelium-dependent vascular function [50].
A comprehensive demonstration of the cardiovascular role of endothelial KCa3.1 channels was achieved
using a KCa3.1−/− (or IK−/−) mouse model with a genetic deletion of exon 4 coding the channel
pore [51]. As a result, the overall endothelial KCa current densities were reduced by ~50%, while
endothelial Vm hyperpolarization in response to ACh decreased by ~60%. Accordingly, measurements
of maximal EDH-dependent vasodilation in response to ACh in isolated, pressurized carotid arteries
ex vivo and cremaster arteries in vivo were less by ~30 to 50%. The physiological consequence
entailed increased systolic and diastolic blood pressure by ~13 mmHg and ~12 mmHg, respectively
(∆ mean arterial: ~14 mmHg) and mild left ventricular hypertrophy in KCa3.1−/− mice [51]. Thus,
endothelial IKCa channels are fundamental for endothelial hyperpolarization underlying regulation of
vascular tone, blood flow, and blood pressure, determinants that can altogether impact chronic cardiac
remodeling as well.

Following thorough characterization of individual genetic models for SKCa and IKCa, further
studies utilized SK3T/TIK−/− offspring generated by interbreeding SK3T/T and KCa3.1−/− mice,
respectively [52]. This approach allowed for the delineation of the individual roles of SKCa and
IKCa to EDH and regulation of blood pressure in a combinatorial manner. As expected, the combined
genetic SKCa and IKCa deficiency eliminated endothelial K+ currents and substantially impaired (>50%)
smooth muscle hyperpolarization of carotid arteries from IK1−/−/SK3T/T mice (+DOX). Consequently,
IKCa deficiency (IK−/−/SK+/+ mice) reduced ACh-induced EDH-mediated vasodilation by ~75%,
whereas deficit of both channels (IK−/−/SK3T/T + DOX mice) eliminated responses altogether
(by ~99%). A reduction in ACh-induced vasodilation in either carotid arteries ex vivo or cremasteric
arteries in vivo was not apparent in mice with a SKCa deficiency alone (IK+/+/SKT/T + DOX).
The mean arterial pressure relative to wild-type mice (~100 mmHg) modestly increased with SKCa

deficiency (to ~106 mmHg), IKCa deficiency (to ~108 mmHg), or combined SKCa/IKCa genetic deletion
(to ~110 mmHg) [52]. An additional study of the double transgenic study concluded that SKCa

channels, but not IKCa channels, played an integral role for vasodilation of cremasteric arterioles in
response to tetanic muscle stimulation [53]. Also, it is also worth noting that the SKCa channel-driven
vasodilation requires Cx40 endothelial and myoendothelial containing gap junctions [53], whereas
IKCa-dependent responses do not require Cx40 during hyperemia of the mouse cremaster tissue [54].
These general findings of the endothelial role of SKCa vs. IKCa channels were further reinforced using
an endothelium-specific SK3 knock-out mouse model generated from crossing a floxed SK3 mouse
with another that expresses endothelial Cre recombinase driven by the endothelial receptor-specific
tyrosine kinase (or Tie2) promoter [55].

The majority of the work delineating the individual contributions of SKCa and IKCa channels
to vasodilation and tissue hyperemia was performed using mesenteric (gut) arteries as an accessible
and abundant source of resistance arteries in the body [56–58]. However, to a lesser extent, studies
also resolved clear contributions of respective KCa channel subtypes in the microcirculation of the
eye [59], brain [60–62], heart [63,64], lung [65,66], skeletal muscle [8,67], and kidney [68–70]. While
it is clear that both SKCa and IKCa channels are integral to overall cardiovascular health (systemic
vascular resistance and blood pressure control), respective KCa contributions underlying hyperemia
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throughout organs may vary. A common feature at the biophysical level in isolated endothelium
is that IKCa (vs. SKCa) channels play a predominant role in the regulation of Vm and membrane
resistance during steady-state and pharmacological conditions in the presence of direct (e.g., NS309
and SKA-31) or indirect (e.g., ACh and ATP) KCa openers [8,71]. At the level of vasoreactivity and
regulation of blood flow, evidence supports SKCa channels as the “affinity” component (sensitivity of
vasodilation/hyperemia per unit stimulus), whereas IKCa channels define “efficacy” (amplitude of
vasodilation/hyperemia per unit stimulus) [51,52,72].

Equipped with an enhanced electrical gradient via hyperpolarization [3] in accordance with a
~20,000-fold transmembrane concentration gradient [73], Ca2+ influx through open Ca2+-permeant TRP
channels may serve at least two purposes: (i) to sustain the duration of elevated [Ca2+]i for prolonged
control of blood flow, and (ii) to facilitate Ca2+ refilling of the endoplasmic reticulum to maintain
continued, repetitive vascular function [8]. Note that endothelial TRP channels involved in EDH can
be homo- or heteromeric among families and respective isoforms: canonical (TRPC; isoforms 1, 3, 4, 5,
and 6), vanilloid (TRPV; isoforms 1, 3, and 4), ankyrin (TRPA; isoform 1), and polycystin (TRPP; isoform
2) [74,75]. Functional examples of heteromeric configurations of vascular TRPs include TRPC3-C4 [76],
TRPV4-C1 [77–79], and TRPV4-C1-P2 [80]. Due to recent breakthroughs in pharmacological and genetic
tools [81,82], the role of TRPV4-containing channels is the most widely studied thus far [3,83,84].

In general, most experimental evidence demonstrates that TRP channel function produces EDH
via [Ca2+]i activation of SKCa and IKCa channels governing vascular dilation, thereby promoting
increases in blood flow (Figure 2A). However, TRP channels can regulate EDH in a positive or
negative manner based on relatively permeability of Ca2+ to Na+ ions of a particular TRP channel
configuration. Whereas TRPC1-containing channels are relatively low conductance (~16 pS) and
non-selective (PCa/PNa ~1:1; [85]), TRPC6 (~35 pS, PCa/PNa ~5:1; [86]) or TRPV4 (~90 pS, PCa/PNa

~6:1; [87]) channels are examples of high conductance, dominant for mediating Ca2+ (vs. Na+) influx.
Consequently, TRPC1-containing channels in mouse resistance arteries mediate a net depolarizing
influence on Vm, counteracting EDH, whereas TRPC6- [88] and TRPV4-containing channels [83]
augment EDH in the presence of functional SKCa/IKCa channels. Depolarization of endothelial
Vm is due to relatively higher Na+ permeability and influx, whereas net hyperpolarization is a
result of prominent influx of Ca2+ because, unlike highly electrogenic Na+ ions, Ca2+ ions are
primarily second messengers that rapidly bind with intracellular proteins such as calmodulin to
activate SKCa/IKCa channels (as one example). Similar to endothelial TRPC1, smooth muscle TRP
melastatin (TRPM, isoform 4; ~25pS, not Ca2+ permeant [89]) channels also permit Na+ influx
to depolarize smooth muscle Vm, thereby activating L-type voltage Ca2+ channels for myogenic
constriction [90]. Remarkably, blocking TRPM4 channels in rat mesenteric arteries using 9-phenanthrol
also hyperpolarizes endothelial Vm via apparent enhancement of IKCa channel function [91]. Also, in
mouse collecting lymphatic endothelium, where TRPV4 channels are present but functional SKCa/IKCa

channels are absent (i.e., no EDH), depolarization of Vm in response to TRPV4 channel activation occurs
almost exclusively due to Na+ influx [92] (Figure 2B). Subtle variations of positive or negative regulation
of EDH will depend on oligomeric configurations of the TRP channel to govern permeability of one
form of cationic species vs. another, and, in this regard, much remains to be resolved in physiological
study models vs. heterologous cell culture systems.
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Figure 2. Functional contribution of major transient receptor potential (TRP) channel isoforms
to activation of small- and intermediate-Ca2+-activated K+ (SKCa and IKCa) channels and
endothelium-derived hyperpolarization. (A) Permeability of Ca2+ to Na+ ions (PCa/PNa) varies
across the canonical (TRPC), vanilloid (TRPV), and ankyrin families of TRP channels. However,
with the exception of TRPC1, endothelial TRP channels underlie significant influx of Ca2+ to activate
SKCa and IKCa channels. As discussed in the text, note that these individual TRP isoforms can
form tetrameric TRP channels via heteromeric combinations (e.g., TRPV4–TRPC1, TRPC3–TRPC4)
in a physiological setting that may not be representative of determinations of homomeric channels
expressed in heterologous culture systems. As it relates to the competition with Na+ influx, the “?”
symbol indicates the unknown contribution of Ca2+ influx through TRPC1-containing channels for
Vm depolarization vs. activation of SKCa and IKCa channels for Vm hyperpolarization as both are
theoretically possible. Hyperpolarization via activation of SKCa/IKCa channels may stimulate Ca2+

influx through TRPV4-containing channels for further activation of SKCa and IKCa channels and
production of NO (“positive” feedback; broken black arrow). Although, nitric oxide (NO) may
inhibit TRPV4-containing channels (“negative” feedback) via S-nitrosylation (broken black line with
flat end). (B) In the absence of functional SKCa and IKCa channels, Ca2+ and Na+ influx (PCa/PNa

~6:1; extracellular Ca2+ ([Ca2+]o) present) through TRPV4-containing channels leads to endothelial
depolarization (left panel). In the absence of [Ca2+]o, Na+ influx through TRPV4 channels is robust, and
depolarization occurs regardless of SKCa and IKCa channel presence and function (right panel). Green
crosses over SKCa and IKCa channels denote their functional absence in the plasma membrane (e.g.,
collecting lymphatic endothelium). For all panels, (−) and (+) symbols indicate Vm hyperpolarization
and depolarization respectively while the respective color of lines corresponds to Ca2+ (red) or Na+

(light blue) signaling. All lines with arrow ends indicate positive signaling of respective ions to
ultimately effect a change in Vm (hyperpolarization or depolarization) or production of NO.
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Since original myoendothelial investigations around the turn of the 21st century [24,25], the use
of transgenic animal models and confocal microscopy greatly advanced cardiovascular studies of
“microdomain” signaling among spatially localized KCa and TRP channels. The Taylor laboratory
group in particular developed auto-detection and analysis algorithms to quantitate discrete Ca2+

events throughout cellular interior with primary data outputs of ∆[Ca2+]i event amplitude, frequency,
duration, and spatial spread [93–95]. Throughout such studies, mesenteric arterial endothelium
was examined using an en face study model, whereby experimentally feasible arteries (diameter:
~300 µm) for this protocol were cut open longitudinally and pinned down into silicone with the
endothelium facing up toward the microscope objective. In comparison to wild type, the number
of ACh-induced Ca2+ events during “plateau” responses (predominant TRP channel activity) are
reduced by≥60% in genetic elimination of IK1 (IK1−/−), whereas basal Ca2+ dynamics are similar [95].
In tandem with elimination of IK1, genetic SK3 suppression (IK1−/−/SK3T/T + DOX) or SK3
overexpression (IK1−/−/SK3T/T − DOX) has minimal effects on the occurrence of Ca2+ events
under both basal and ACh-stimulated conditions [95]. In addition to removal of extracellular Ca2+,
pharmacological corroboration of these findings was demonstrated with a block of SKCa and IKCa

channels (apamin + charybdotoxin) or TRPV4 channel block with HC-067047, whereby ACh Ca2+

dynamics in wild-type arteries were reduced to the level of mice genetically deficient for both SK3 and
IK1 (IK1−/−/SK3T/T + DOX) [95]. A follow-up study characterized endothelial dynamic Ca2+ signals
during basal and conditions of Substance P-stimulated vasorelaxation in swine coronary endothelial
cells. This investigation detected endothelial spatial and temporal events governing arterial tone
that were not apparent using averaged, whole-field measurements of [Ca2+]i [96]. With the use of an
endothelium-specific SK3 knock-out mouse model, it was found that the coupling of SK3 and TRPV4
channels in mesenteric arteries appears to elicit large-amplitude and slow-decay Ca2+ kinetics that may
be consistent with relatively long-term physiological delivery of blood flow in response to metabolic
demand of active tissues [55].

Another foundational study demonstrated how small (diameter: ~100 µm) mesenteric endothelial
TRPV4 channel-mediated Ca2+ “sparklets” activate SKCa and IKCa channels using wild-type,
endothelial genetic Ca2+ sensor (GCaMP2Cx40) and TRPV4−/− mice and customized Ca2+ event
detection software; only a few open TRPV4 channels are required for maximal vasodilation [83].
Later, it was found that this coupling between endothelial KCa and TRP channels was due, at least in
part, to the presence of protein kinase C (PKC) and PKC-anchoring protein AKAP150 or, otherwise,
hypertension would ensue [12]. However, this scenario can change depending on vessel type as, in
mouse pulmonary arteries, TRPV4 Ca2+ “sparklets” preferentially activate eNOS in a negative feedback
manner, whereby NO-activated PKG inhibits cooperative opening of TRPV4 channels [66] (Figure 2A).
Remarkably, a decrease in intralumenal pressure on its own (from 80 mmHg to ≤50 mmHg of rat
cremasteric arterioles) can significantly increase TRPV4-mediated Ca2+ events that selectively activate
IKCa vs. SKCa channels, leading to a loss of myogenic tone and blood flow autoregulation [10]. Also,
using a novel gradient index (or GRIN) fluorescence microendoscopy method positioned inside of rat
carotid arteries, ACh-induced widefield Ca2+ events (summation of IP3R release and TRP Ca2+ influx)
decreased with increasing pressure (60, 110, and 160 mmHg), an effect that was diminished during
late middle age (18 mo) vs. youth (3 mo) [97].

Although studied to a lesser extent vs. TRPV4 channels, the activation of SKCa and IKCa channels
occurs downstream of other novel families and/or isoforms of TRP channels as well. In particular,
TRPV3 channels contain ~2-fold the unitary conductance and Ca2+ permeability (~150 to 200 pS,
PCa/PNa ~12:1; [98]) of TRPV4 channels [87] and, thus, may be more pertinent for activating eNOS
and/or EDH. With use of total internal fluorescence (TIRF) microscopy and the oregano monoterpenoid
carvacrol (TRPV3 activator; [99]), TRPV3-to-SKCa/IKCa channel coupling was characterized in rat
cerebral parenchymal arterioles [100]. Notably, carvacrol-induced vasodilation was not sensitive to
block of NO and cyclooxygenase signaling and was almost completely abolished upon conditions
of either SKCa or IKCa block alone [100]. Another TRP channel of the ankyrin family (TRPA1;
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activated by mustard oil, PCa/PNa ~1:1; [101]) was found to contribute to endothelial SKCa and
IKCa channel activation as well and in a manner insensitive to NO and cyclooxygenase signaling [102].
Despite very modest Ca2+-permeant properties vs. TRPV3- and TRPV4-containing channels, TRPA1
channel function may be involved in microdomain myoendothelial signaling for activation of KCa

channels during physiology [103] and conditions of enhanced oxidative signaling [104]. Finally,
in similar fashion to TRPV3, TRPV4, and TRPA1, the role of TRPC3 (~70 pS, PCa/PNa ~1.5:1; [105])
was thoroughly characterized for its coupling to SKCa/IKCa channels in mouse cerebral arteries [71]
and rat mesenteric arteries [106] using a selective antagonist as the pyrazole compound Pyr3.

When interpreting studies on TRP channel expression and function, it is important to bear in
mind that TRP channels are tetrameric in their physiological form and may contain only one isoform
(homotetrameric) or two to four different isoforms (heterotetrameric). Parameters of conductance and
Ca2+ permeability are primarily determined in heterologous cell culture systems that only express
homotetrameric TRP channels to determine parameters of individual TRP isoforms. Furthermore,
genetic tools (e.g., TRP knock-out animals) do not necessarily manifest results consistent with
pharmacological agents (e.g., TRP blockers) [3,107], as the former method prevents genetic expression
of the TRP isoform and perhaps decreases the total number of functional TRP channels overall, whereas
the latter strategy modulates a post-translational TRP channel product. Again, for pharmacological
interventions, heterotetrameric TRP channel configurations were considered and, thus, potential
insensitivity to agonists or antagonists were demonstrated to be effective for homotetrameric channels
formed in a heterologous system.

4. Impact of Adrenergic Tone on SKCa/IKCa and TRP Channels & Significance of In Vivo vs.
Ex Vivo Observations

A central (and extremely complex) research topic entails how the stimulation of smooth muscle
α-adrenergic receptors (α1ARs) influences the interaction between endothelial KCa and TRP channels
during “myoendothelial feedback” [24,30,31]. In isolated mouse mesenteric arteries, activation of smooth
muscle α1ARs elicits vasoconstriction for ~2 min followed by a slow dilation induced by increases in
endothelial TRPV4-mediated Ca2+ influx and activation of KCa channels, a mechanism that may cease
prolonged vascular resistance and hypertension as observed in TRPV4−/− mice [108]. Whether the ionic
species directly passing from smooth muscle to endothelial cells through gap junctions is in the form
of IP3 (activator of IP3Rs and Ca2+ release from endothelial ER) [109], Ca2+ [14], or perhaps both [110],
in the context of animal species (e.g., rat vs. mouse), blood vessel type (e.g., mesenteric vs. skeletal
muscle) and/or experimental conditions (e.g., ex vivo vs. in vivo) remains a topic of active investigation.
In addition, there is a complex interplay among the relative contributions of endothelial NO, SKCa

channels, and IKCa channels as it pertains to the coordination of local and conducted vasodilation
signaling. As a key example, a recent study demonstrated that isolated rat mesenteric arteries in the
presence of norepinephrine mediate myoendothelial feedback primarily through activation of IKCa

channels, whereas, with ongoing physiological sheer stress to blood flow, feedback is in the form of SKCa

channel activation and NO production in the intact mesenteric network [111].
Despite efforts for experimental controls and proposals for simplified working models across

vascular types and methods of pre-constricted tone, studies of myoendothelial feedback remain
empirically convoluted by nature. To begin with, it is inherently difficult to delineate Ca2+ signaling
events among respective smooth muscle and endothelial cell layers with common molecular targets
(e.g., TRP channels and ER IP3Rs) of interest. Next, there are factors of interventional drug delivery
(ablumenal vs. lumenal), permeability (cell-permeant vs. extracellular), and target selectivity to contend
with. In addition, whether via means of a chemical fluorescent dye or genetic sensor, compaction or
dilution of Ca2+ sensor molecules can alter with cellular mechanical movement regardless of distinct
stimuli or pharmacological interventions. Also, as in the case of in vivo experiments, halogenated
(e.g., isoflurane) or injectable (e.g., pentobarbital) anesthetics can influence vascular function on
their own toward the alteration of endothelial function [112,113]. Furthermore, even agents that are
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commonly used for cell/tissue-specific genetic manipulations (e.g., tamoxifen (estrogen receptor partial
agonist/antagonist) and DOX (tetracycline antibiotic)) and, interestingly, the choice of vehicle solvent
(e.g., sunflower vs. peanut oil) [114] may introduce experimental artefacts. Thus, scientific corroboration
among complementary methods such as a vascular co-culture method [115], pressure myography [116],
microendoscopy imaging [117], and intravital microscopy [118] helps to clarify myoendothelial signaling
events during health and disease.

5. Role of Familial Mutations in KCa and TRP Channels in the Emergence of Cardiovascular Disease

The cardiovascular consequences of deliberate experimental mutations of major components
of EDH (KCa and TRP channels, and gap junction Cxns) were discussed, but genetic mutations are
also present during inheritable diseases. A single autosomal dominant mutation in KCNN3 (guanine
(mutant) substitution for cytosine (wild type) at nucleotide 1348 in coding DNA (or c.1348 C>G)
and the KCa2.3 channel subunit (leucine (mutant) substitution for valine (wild type) at amino acid
450 (or V450L)) underlies development of idiopathic non-cirrhotic portal hypertension [119]. Also,
a variety of single-nucleotide polymorphisms for KCNN3 (chromosome 1q21 locus) are involved in
lone atrial fibrillation [120], presumably due to dysregulation in the repolarization of action potentials
in cardiac atria. As cardiac myocytes are also rich in gap junctions for coordinating electrical activity,
it is not surprising that germline heterozygous missense mutations in GJA5 (Cx40; e.g., phenylalanine
for isoleucine, I75F [121]) also underlie lone atrial fibrillation. Autosomal dominant KCNN4 (KCa3.1;
“Gardos” channel) mutations on chromosome 19 lead to decreases in erythrocyte production ([122];
Diamond–Blackfan anemia) and health ([123]; xerocytosis, dehydration due to excess K+ and H2O
loss). TRP “channelopathy” mutations are linked to an assortment of disorders throughout the entire
body, including cardiovascular maladies of ischemic heart disease, hypertension, and atherosclerosis
(see review [124]). However, there are a few adequately described cases of familial mutations
accompanying cardiovascular pathology, including TRPC3 (Williams–Beuren syndrome, deletion
of 26 to 28 genes in 7q11.23; blood vessel stenosis [125]) and TRPM4 (progressive familial heart block
type I, missense mutations in 19q13.32, and gain of function; atrioventricular block [126]).

Although not discussed here, inheritable mutations in KCa channels, TRP channels, and Cxns
also involve prominent neurological (e.g., Parkinson’s) and developmental (e.g., skeletal dysplasia)
disorders. Further investigation is needed to delineate de novo germline mutations from post-zygotic
mutations that arise and provide susceptibility to development of cardiovascular pathology (e.g.,
arrhythmias or hypertension) with advancing age and select conditions of environmental exposure.
In addition, albeit indirectly, the functional efficiency of EDH may also be affected by germline and
somatic mutations of the upstream (e.g., CHRM3; muscarinic type 3 GqPCR, M3R [127]) and/or
downstream (e.g., MYLK; myosin light-chain kinase, MLCK [128]) signaling components of vascular
function. As of the present, human genetic mutations in key components involved in EDH appear
extremely rare while not selective toward cardiovascular impairments alone. As a clearer foundation
for understanding mammalian cardiovascular function and pathology, focus on the impact of aging
and associated pathology (primarily using rodent models) is discussed next.

6. Endothelial SKCa and IKCa during Aging and Chronic Pathology

The leading cause of death in the United States is cardiovascular disease [129] with aging [130,131]
and age-related vascular endothelial dysfunction [132,133] as key risk factors. A central mechanism
of endothelial function for vasodilation and coordination of blood flow along and among vascular
networks is EDH [8,134]. The physiological consequences of enhancement or diminishment of EDH
during development of disease relative to young, healthy cardiovascular conditions remain altogether
unclear. It is worth noting that IKCa function was found to increase in coronary arteries [135] and
saphenous arteries [136] of obese rats, and mesenteric arteries of hypertensive [137] and diabetic [138]
rats. At least in part, EDH compensates for reduced NO bioavailability during diabetic conditions in
coronary arteries of dogs [139] and subcutaneous arteries of humans [140]. In aortae of apolipoprotein
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E knock-out mice, basal KCa channel function appears to be reduced with enhancement of peak
hyperpolarization to indirect (ACh) and direct (SKA-31 or NS1619) stimulation of the channels [141].
Remarkably, EDH may also emerge as a prominent contributor to the dilation of cremaster arterioles in
developing mice of 15 weeks of age fed a high-fat diet continuously, beginning from at least four weeks
prior to conception vs. control or temporally split control/high-fat diet treatments [142]. With respect
to aging, increased enhanced IKCa function was observed in the aortae of 75- to 100-week-old mice [143]
and skeletal muscle feed arteries of 24- to 26-month-old mice [38,144]. Remarkably, large-conductance
Ca2+-activated K+ (BKCa) channels also emerge in vascular endothelium as a result of conditions
associated with chronic hypoxia (48 h), forming microdomain arrangements among Caveolin-1, TRPV4
channels, and BKCa channels (rat gracilis arteries) [145]. It is worth noting that, either on its own or in
combination with deficient gap junction transmission, KCa over-activation may significantly diminish
conducted hyperpolarization and/or vasodilation during old age (≥24-month-old mouse skeletal
muscle arteries [38], and ≥64-year-old human coronary arteries; [63]), hypertension (Cx40-deficient
mice [146]), hyperhomocysteinemia (cystathionine β-synthase mouse gluteus maximus arterioles [147]),
and chronic hyperglycemia (diabetic mouse mesenteric arteries [148]). Currently, the upregulation of
EDH during aging and development of chronic pathology is best explained by enhanced oxidative
signaling (Figure 3). In brief, superoxide (O2

•−) production emerges from a variety of intracellular
sources (NADPH oxidases, mitochondria, uncoupled NO synthase, and xanthine oxidase) which
inactivates NO to peroxynitrite (ONOO−) [149,150] and, via superoxide dismutase, O2

•− is rapidly
converted to H2O2 with spontaneous breakdown products such as hydroxyl radicals (OH•) [151]
which increase EDH [8,38,152]. Thus, with this mechanistic basis in mind, SKCa/IKCa channel function
may “compensate” for sustaining local vasodilation [153] at the expense of a restricted spatial domain
of the spread of coordinated blood flow due to “leaky” endothelial plasma membranes [8].
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Figure 3. Working model for the upregulation of endothelium-derived hyperpolarization during aging
and development of chronic pathology per enhanced oxidative signaling. Cardiovascular aging and
the development of chronic disease is associated with a progressive increase in endothelial oxidative
signaling. Mitochondrial respiration is a primary source of superoxide (O2

•−) which inactivates
NO to peroxynitrite (ONOO−) and, via superoxide dismutase, O2

•− is rapidly converted to H2O2.
H2O2/OH• activates SKCa and IKCa (primarily IKCa) channels directly and/or indirectly (Ca2+ influx
through TRP channels). Thus, SKCa/IKCa channel function may “compensate” for decreased NO
bioavailability to sustain local vasodilation. The (−) symbol indicates Vm hyperpolarization while the
respective color of lines corresponds to O2

•− (black), H2O2 (orange), or Ca2+ (red) signaling.
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On the flip side, there is support that the contribution of EDH may also decrease during conditions
of cardiovascular disease. In rats, respective contributions of NO and EDH to the dilation of mesenteric
arteries are reduced during diabetes [154] or of kidney arterioles at 18 months of age relative to
3 months [155]. It was also determined that physiological contribution of SKCa/IKCa channel function
of saphenous arteries was less in 34- and 64-week-old (vs. 12-week-old) mice [156]. Finally, recent
reports also conclude that EDH-dependent dilation of mesenteric arteries decreases in genetically
hypertensive rats [157] or in 32-week-old rats fed a high-fat and/or high-fructose diet beginning at
four weeks of age [158]. Discrepancies in conclusions for remodeled EDH function can be attributed to
several differences among studies (e.g., diet application protocol or vascular study model). However,
with consideration for “healthy” aging alone, perhaps impaired vascular IKCa channel function is not
a consistent observation for rodents >20 months of age.

Recent support of SKCa/IKCa and TRP channel function as a “double-edged sword” that promotes
the gain or loss of blood flow control is intriguing and important for a modern understanding of
acute and chronic cardiovascular disease. The extent of SKCa/IKCa channel activation coincident
with Vm ≥−60 mV may be excessive [3,38] as it pertains to the loss of myogenic tone and significant
impairment of blood flow control [10]. Remarkably, pharmacological block or genetic deletion of IKCa

channels may actually serve as protection as demonstrated in KCa3.1−/− mice that avoid an otherwise
fatal pulmonary circulatory collapse in response to the activation of Ca2+-permeant TRPV4 channels
with GSK1016790A (high dose: 10 nM [159]; see Reference [160] for a thorough review on the interaction
of pulmonary KCa and TRPV4 channels). Furthermore, direct genetic or pharmacological inhibition of
TRPV4 prevents inflammatory cytokine signaling and endothelial dysfunction in septic mice (via cecal
ligation and puncture or injection of tumor necrosis factor α or lipopolysaccharide) [161] and cardiac
left ventricular cell/tissue damage in aged mice (24 to 27 months) exposed to hypoosmotic conditions
(250 mOsm vs. physiological, ~300 mOsm) representative of ischemia–reperfusion injury [162].
Theoretically, enhanced smooth muscle α-adrenergic receptor activation via perivascular sympathetic
nerves during aging and chronic vascular disorders (e.g., hypertension) may further overstimulate
endothelial IKCa channels in response to high IP3 and Ca2+ concentrations transmitted from smooth
muscle through myoendothelial gap junctions [1,21]. Thus, in conditions of excessive stimulation of
GqPCRs, such as adrenergic receptors or TRPV4 channels that ultimately cause supraphysiological
increases in vascular wall [Ca2+]i, a deleted or diminished role for endothelial IKCa channels may
actually alleviate the consequences of pathological burden of [Ca2+]i associated with the development
of acute and chronic disease.

7. What May Be Next for Investigative Studies of Endothelial Function: Novel Physiological and
Pharmacological Molecular Signaling Pathways

The number of “endothelium” publications recognized by the National Library of Medicine
significantly increased from ~5000 in the early 1990s [163] to the present with >150,000. Under this
heading, studies of EDH as they relate to the interaction of KCa and TRP channels are a rapidly growing
research landscape for resolving cardiovascular physiology (rest and exercise) and the development
of chronic disease. In general, characterizations of the essential components of EDH (GqPCRs, IP3Rs,
KCa, and TRP channels) were thoroughly investigated across animal species and blood vessel types
as discussed in this review. Finally, as a key intracellular organelle for the integration of Ca2+ and
oxidative signaling in the vasculature, a physiological role for endothelial mitochondria is being
investigated during ATP-dependent control of Ca2+ homeostasis [164], enhanced EDH during vascular
aging [144], and metabolic stress during conditions of hyperglycemia [165] as a few recent examples.
Also, additional clarification regarding endothelial mitochondrial KATP channels [166] and BKCa

channels [167], and delineation of their actions of depolarization of the inner mitochondrial membrane
vs. the well-characterized plasma membrane K+ channels (hyperpolarization of the plasma membrane)
is required.
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In addition to NO, there are other gases now recognized to play a role during blood flow control
including hydrogen sulfide (H2S) and carbon monoxide (CO). As a reducing agent (vs. oxidizing
H2O2), H2S is generated from substrates homocysteine (via cystathionine β-synthase), cysteine
(3-mercaptopyruvate sulfurtransferase), and thiosulfate (cystathionine γ-lyase), [168]. Overall evidence
supports H2S as a vasodilator that increases TRPV4 channel-dependent Ca2+ events and activation
of endothelial BKCa channels of rat mesenteric arteries [169]. H2S generated by cystathionine γ-lyase
in particular may activate endothelial SKCa and IKCa channels for vasodilation of mouse mesenteric
arteries [170]. CO is produced from heme via the actions of heme oxygenase [171]. Although there
is some evidence to suggest that CO is integral to endothelial function [167] and vasodilation [172],
further investigation is needed.

There are several other endogenous and therapeutic molecules (lipids and polyphenols)
that operate via endothelium-dependent vasodilation. In particular, legalization and social
acceptance for the recreational and medicinal use of cannabis among American populations
increased since 2007 [173]. Thus, the investigation of cannabinoids is perhaps currently among
the highest of priorities in biomedical research. Although reports are presently scarce, there is
evidence to support that the endocannabinoid 2-arachidonoylglycerol induces vasorelaxation of
rat mesenteric arteries as dependent on KCa and TRPV channels [174]. In human mesenteric
arteries, this vasodilation appears to be dependent on cyclooxygenase metabolism and prostanoid
signaling [175]. Recent evidence also suggests that endothelial cannabinoid receptors are not
existent, and vasodilatory effects are directly mediated via BKCa channels [176]. As representative of
studies testing cannabis ∆9-tetrahydrocannabinol (THC; CB1 receptor agonist) on vasoreactivity,
there is evidence demonstrating the opposite as well, whereby the application of THC reduces
EDH-dependent vasorelaxation in mouse arteries [177]. Regardless, a consensus is presently lacking
across the mechanisms of action of various cannabinoids, respective pharmacological kinetics,
presence/classification of vascular cannabinoid receptors, and contribution of KCa channels vs. NO
vs. cyclooxygenases among animal species and blood vessel types. Other studies support the role of
endothelial KCa channel function during arterial treatment with omega-3 polyunsaturated acids [178],
fruit-derived polyphenols [179], Rhododendron flavonoids [180], or sex hormones (testosterone [181]
and estrogen [182]). All of such studies and therapeutic strategies that are either ancillary to,
or perhaps circumvent, classical GqPCR pathways (e.g., purinergic and muscarinic) are in need
of further investigation.

8. Summary and Conclusions

Cardiovascular disease is the number one killer of Americans [129] with age-related vascular
endothelial dysfunction at the center [132,133]. Coordinated blood flow and the perfusion of
organs depend on the endothelial lining of major arteries and respective microcirculatory networks
(arterioles and capillaries) that travel ≥100 km throughout the body [183,184]. The signaling pathway
integral to the promotion of blood flow is endothelium-derived hyperpolarization (EDH). EDH
sequentially entails Gq-protein-coupled receptor stimulation in intracellular Ca2+ release from the
endoplasmic reticulum and Ca2+ influx through transient receptor potential (TRP) channels to activate
Ca2+-activated K+ (KCa) channels and produce hyperpolarization [8]. The structural and functional
arrangement among TRP and KCa channels in the blood vasculature is diverse across animal species,
vessel type, and modes of local vs. conducted signaling to tune blood flow. Under- or over-activation
of EDH is associated with aging and/or the development of chronic cardiovascular disease.

The future of cardiovascular physiology will likely entail progressive recruitment of
state-of-the-art methods in the form of genetics, pharmacology, and engineering (e.g., stem-cell
therapy [185], nanoparticle delivery of antioxidant molecules [186], and “blood–brain barrier
on a chip” [187]) to examine classical components of genetics, structure, and function using
cell/tissue/animal models of aging and disease. However, a present priority includes comprehensively
defining a role of endothelial mitochondria as a nexus for vascular Ca2+ and oxidative signaling and
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modulatory input of novel molecules in the form of gases, lipids, hormones, and phytochemicals.
Regardless of physiological examination and therapeutic strategies, we anticipate that fully
understanding mechanisms underlying blood flow regulation as it relates to the aging cardiovascular
system will ultimately lead to the prevention of chronic disease.
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