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Abstract

Breast cancer (BC) is increasing in incidence and resistance to treatment worldwide. The

challenges in limited therapeutic options and poor survival outcomes in BC subtypes persist

because of its molecular heterogeneity and resistance to standard endocrine therapy.

Recently, high throughput RNA sequencing (RNA-seq) has been used to identify biomark-

ers of disease progression and signaling pathways that could be amenable to specific thera-

pies according to the BC subtype. However, there is no single generally accepted pipeline

for the analysis of RNA-seq data in biomarker discovery due, in part, to the needs of simulta-

neously satisfying constraints of sensitivity and specificity. We proposed a combined

approach using gene-wise normalization, UQ-pgQ2, followed by a Wald test from DESeq2.

Our approach improved the analysis based on within-group comparisons in terms of the

specificity when applied to publicly available RNA-seq BC datasets. In terms of identifying

differentially expressed genes (DEGs), we combined an optimized log2 fold change cutoff

with a nominal false discovery rate of 0.05 to further minimize false positives. Using this

method in the analysis of two GEO BC datasets, we identified 797 DEGs uniquely ex-

pressed in triple negative BC (TNBC) and significantly associated with T cell and immune-

related signaling, contributing to the immunotherapeutic efficacy in TNBC patients. In con-

trast, we identified 1403 DEGs uniquely expressed in estrogen positive and HER2 negative

BC (ER+HER2-BC) and significantly associated with eicosanoid, notching and FAK signal-

ing while a common set of genes was associated with cellular growth and proliferation.

Thus, our approach to control for false positives identified two distinct gene expression pro-

files associated with these two subtypes of BC which are distinguishable by their molecular

and functional attributes.
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Introduction

Breast cancer (BC) is the most commonly diagnosed cancer in women throughout the world

[1–3], accounting for 23% of all female cancers [4–6]. BC is a growing health problem world-

wide, increasing both in incidence [3] and resistance to treatment. Although significant prog-

ress has been made in the clinical treatment of BC, challenges persist because of its molecular

heterogeneity, resistance to standard endocrine therapy and the risk of late recurrence. These

challenges are driving intense research efforts to identify new biomarkers of disease progres-

sion and signaling pathways to aid in diagnosis or treatment.

Since BC exhibits heterogeneity, the identification of molecular markers, gene expression

profiles and patterns of genomic alteration used as analytic tools is essentially required for pre-

dicting clinical outcomes and selecting appropriate therapies [7]. In particular, the presence of

estrogen and progesterone receptors (ER and PR), and the human epidermal growth factor

receptor 2 (HER2) have become standard biomarkers for defining BC subtypes which can be

targeted by hormone modulation therapy. Approximately 75% of all BC are ER+ and of these,

only half respond to anti-estrogen therapy [8,9]. ER+ patients ultimately comprise the majority

of deaths attributable to BC. Therefore, finding new putative targets for chemotherapy is an

urgent need [10–12]. Studies of ER+BC have demonstrated that ER signaling engages in com-

plex cross-talk encompassing multiple signaling pathways with both genomic and non-geno-

mic involvement [8,13]. ER+BC is associated with enhancing cellular proliferation either by

increasing cell division and/or decreasing apoptosis [13,14]. On the other hand, tumors lack-

ing ER and PR as well asHER2 (triple negative breast cancers, TNBC) are not amenable to

these targeted therapies. Studies report that TNBC is more sensitive to chemotherapy than

hormone positive BC [7,15–17]. However, TNBC is associated with poorer survival than non-

TNBC due to frequent relapse, and only about 31% of patients are completely responsive to

chemotherapy [15,16,18].Therefore, a better understanding of the cellular and molecular path-

ways underlying BC initiation and progression remains necessary for improving therapeutic

options and clinical outcomes.

High throughput RNA sequencing (RNA-seq) has been increasingly used in clinical studies

for defining changes in gene expression [19,20]. Indeed, RNA-seq-based gene expression pro-

filing for the identification of global gene-expression patterns is commonly used to integrate

the multiple molecular events and mechanisms associated with the development of cancer

[5,21]. The mechanisms of oncogenesis involve the disruption of diverse biological functions

and cellular pathways including cell cycle, proliferation, survival and apoptosis [5]. However,

the development of a standard approach for the analysis of DEGs has been problematic due to

the multiple analytical steps required in typical RNA-seq workflow. Of these steps, normaliza-

tion is critical for appropriately comparing different sets of samples [22].

Studies comparing normalization methods and statistical testing packages have shown that

normalization methods have a strong impact on the outcomes of analysis [22–28]. Using simu-

lated data, it was found that normalization methods such as TC (Total Counts), UQ (Upper

Quantile), Med (Median), FQ (Full Quantile) and RPKM normalization methods failed to

control the false positive rate for genes with high read counts[22,23]. In contrast, the DESeq

(DESeq and DESeq2) [29,30] and TMM (edgeR) [31] methods performed better overall than

other methods in terms of detection power and control of false positives in data at a specified

false discovery rate (FDR) [23,24]. However, these studies reported that an observed type I

error rate was higher than the nominal FDR, leading to an inflated type I error rate. More

recently, gene-wise normalization methods following per sample globally scaled normalization

(UQ-pgQ2 and Med-pgQ2) were proposed [28]. A comparison of these methods with DESeq
normalization from DESeq2 and TMM normalization from edgeR using the benchmark
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Microarray Quality Control Project datasets (MAQC2) [22] reported that Med-pgQ2 or UQ-

pgQ2 performed slightly better for genes with high read counts by improving the specificity

for skewed RNA-seq data given a FDR of 0.05. However, these gene-wise normalization meth-

ods showed a slightly higher FP (false positive) rate for genes with a mean read counts below

the 25th percentile compared to DESeq2 and edgeR [28].

In this study, a new approach was used to perform within-group comparison analysis using

publicly available RNA-seq datasets including GEO ER+HER2-BC, TNBC [32] and The Cancer

Genome Atlas (TCGA) BRCA datasets (https://cancergenome.nih.gov/publications). We

observed that the normalization with the DESeq and UQ-pgQ2 methods followed by a Wald

test from DESeq2 performed better than TMM from edgeR based on the type I error rate or

specificity. We found edgeR identified a higher number of FP genes using RNA-seq datasets.

To further minimize the FP rate and maximize the true positive DEGs, we integrated the

results from these two methods by robustly selecting an optimal |logFC| cutoff at which the

observed FP rate from the within group comparison is minimized and a reasonable number of

true DEGs identified. With this combined approach, we performed the analysis of DEGs on

the GEO TNBC and ER+HER-BC data by comparing BC versus normal control. Three sets of

DEGs were identified, including two DEG sets uniquely expressed in either of the TNBC or

ER+HER-BC groups and one common DEG set identified in both BC subtypes. These DEGs

were further analyzed for biological functions and pathways with the aid of the Ingenuity Path-

way Analysis software (IPA). These gene expression profiles are distinguishable by their

molecular and functional attributes associated with distinct functions and signaling pathways.

Materials and methods

Normalization methods

Three normalization methods (DESeq, TMM and UQ-pgQ2), and two software packages for

determining differential expression (DESeq2 and edgeR)were used in our study [28–31].

DESeq and TMM normalization methods were implemented using the DESeq2 and edgeR
packages, respectively (Table 1). UQ-pgQ2 normalization was implemented using R.

Data sources

The publicly available RNA-seq datasets contain forty-two TNBC primary tumors; twenty-one

uninvolved breast tissue samples adjacent to TNBC primary tumors (ctr1); forty-two Estrogen

Receptor positive (ER+) and HER2 negative (HER2-) breast cancer (ER+HER2-BC) primary

tumors and 30 uninvolved breast tissue samples adjacent to ER+HER2-BC primary tumors

(ctr2). The RNA-seq raw data files were downloaded from NCBI GEO and SRA (series ID

GSE58135) [32].

The third paired breast cancer data with raw gene read counts contains 117 primary tumors

and 112 uninvolved breast tissue samples adjacent to the primary tumors (ctr) which were

Table 1. Summary of normalization methods and software packages used.

Normalization method Description of normalization Distribution Statistical test Software packages

UQ-pgQ2 Per sample scaled by upper quantile and per gene by medium across samples NB Wald test DESeq2 (v1.6.3)

DESeq Per sample scaled by medium of ratio NB Wald test DESeq2 (v1.6.3)

TMM Per sample by Trimmed Mean M values NB Exact test edgeR (v3.8.6)

NB: a negative binomial distribution.

https://doi.org/10.1371/journal.pone.0201813.t001
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downloaded from The Cancer Genome Atlas website: http://portal.gdc.cancer.gov/projects/

TCGA-BRCA. The 117 tumor samples paired with 112 normal controls were extracted from

1098 TCGA-BRCA cases. To confirm our findings, an additional 122 TNBC samples were

extracted from 1098 TCGA-BRCA cases and used for the within-group analysis (https://

cancergenome.nih.gov/publications).

Sequence mapping and extraction of gene read counts

The raw SRA sequencing files downloaded from GEO were first converted to .fastq files and

subsequently mapped to the human hg19 reference genome using STAR (v2.5.3a) [33]. The

mapped counts for 57,778 genes per sample were then extracted using HTSeq-scripts-count

(version 2.7). After filtering the genes with zero counts across all the samples with four groups,

35,203 genes per sample were left for downstream analysis.

The downloaded TCGA-BRCA data containing 56,963 genes with raw reads was prepro-

cessed by filtering out genes with zero read counts across 117 tumors and 112 normal samples.

Thus, a total of 35,113 genes were used for within and between group comparisons for identi-

fying the best method.

Software packages used for normalizing and testing DEGs

The normalization methods, software packages, and test statistics used for analysis are summa-

rized in Table 1. Briefly, edgeR (v3.8.6) [31] implements TMM normalization and has been

widely used for DEG analysis for RNA-seq data.DESeq2 [30], a successor toDESeq [29], imple-

ments DESeq normalization and a Wald statistical test for detection of DEGs. Following UQ-

pgQ2 normalization [28], DESeq2was used for identifying DEGs.

Normalization method for downstream analysis

In order to control for false positives, DEGs analysis of six within-group comparisons was per-

formed: 21 TNBC vs. 21 TNBC, and 11 ctr1 vs. 10 ctr1 (control for TNBC); 21 ER+HER-BC

vs. 21 ER+HER2-BC, and 15 ctr2 vs. 15 ctr2 (control for ER+HER2-BC); 59 TCGA-BRCA vs.

58 TCGA-BRCA, and 56 ctr vs. 56 ctr (paired control for TCGA-BRCA). Since the samples

originate from the same condition (within-group), it is expected there should be relatively few,

if any, true DEGs, and thus any detected DEGs can be treated as FP genes. All the samples in

each condition were equally and randomly divided into two groups. For each group, we

repeated the procedure 10 times by randomly sampling without replacement using an R script

to account for individual sample variances. We then determined the optimal |logFC| cutoff for

each normalization method to minimize FP genes with and FDR� 0.05. This cutoff was deter-

mined based on an observed false positive error rate (FPR)� 0.05%.

Identification of true DEGs for the comparisons of BC versus control

We performed DEGs analysis for two comparisons: TNBC versus control and ER+HER2-BC

versus control using the UQ-pgQ2 and DESeq2methods. DEGs were determined by DESeq2
using the optimal |log FC| cutoff that minimizes the FPR (as determined by the within-group

comparisons from the previous section). For each comparison, we assumed DEGs identified

in common using both methods were true positive (TP) DEGs. In addition, genes above the

optimal |logFC| cutoff value identified either by DESeq2 or UQ-pgQ2 were also considered as

TP DEGs. The TP DEGs identified from TNBC and ER+HER2-BC were further analyzed for

discovery of the common or unique genes in two BC subtypes (TNBC and ER+HER2-BC).
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Biological function and pathway analysis

We used IPA to identify the distinct biological functions and canonical signaling pathways giv-

ing the two sets of gene expression profiles uniquely expressed in TNBC and ER+HER2-BC

patients (QIAGEN, version 3355999, USA) as a manner of validating the functions of genes

determined to be differentially expressed.

Results

Comparison of normalization methods

DEGs identified from the within-group comparisons of the four BC datasets using UQ-pgQ2,

DESeq2 and edgeR are listed in Table 2, S1 and S2 Tables. The results with a varying |logFC|

cutoff show that UQ-pgQ2 is more conservative than the other methods, resulting in lower

FP rates. For the within-group comparisons (21 TNBC vs. 21 TNBC; 11 ctrl vs. 10 ctrl; 21

ER+HBR-BC vs. 21 ER+HBR-BC; 15 ctrl2 vs. 15 ctrl2), UQ-pgQ2 consistently has low FP rates,

with fewer than 10 FP DEGs determined at |Log(FC)| cutoff of 1.5, and no FP DEGs deter-

mined for higher cutoffs (Table 2). DESeq2 performs at a high level as well, with a FPR ranging

from 0 to 0.12%. edgeR yields higher numbers of FP DEGs, with an FPR up to 1.5%. Given the

results listed in Table 2 for both UQ-pgQ2 and DESeq2, a |logFC| of 2 was chosen as an opti-

mum cutoff value for the downstream analysis of DEGs since it minimizes the FPR within an

Table 2. DEG analysis performed via within-group and between-group comparisons from three methods. The DEGs from between–group comparisons in bold are

determined given a FDR� 0.05.

|Log(FC)| Comparison groups UQ-pgQ2 DESeq2 edgeR
�1.5 21TNBC vs. 21 TNBC 4±4 43±34 527±125

11ctr1 vs. 10 ctr1 1±2 0 6±14

21 ER+HER2-BC vs. 21 ER+HER2-BC 1±1 6±3 292±67

15 ctr2 vs. 15 ctr2 1±3 14±16 771±184

42 TNBC vs. 21 ctr1 7,474 8,969 9,585

42 ER+HER2-BC vs. 30 ctr2 4,999 6,308 7,448

�2 21TNBC vs. 21 TNBC 0 10±9 455±97

11ctr1 vs. 10 ctr1 0 0 6±12

21 ER+HER2-BC vs. 21 ER+HER2-BC 0 1±1 259±54

15 ctr2 vs. 15 ctr2 0 5±6 686±137

42 TNBC vs. 21 ctr1 3,706 5,201 5,854

42 ER+HER2-BC vs. 30 ctr2 2,169 3,176 4,161

�2.5 21TNBC vs. 21 TNBC 0 1±1 372±74

11ctr1 vs. 10 ctr1 0 0 5±10

21 ER+HER2-BC vs. 21 ER+HER2-BC 0 0 216±39

15 ctr2 vs. 15 ctr2 0 1±2 590±94

42 TNBC vs. 21 ctr1 1,701 2,888 3,586

42 ER+HER2-BC vs. 30 ctr2 869 1,499 2,326

�3 21TNBC vs. 21 TNBC 0 0 296±54

11ctr1 vs. 10 ctr1 0 0 4±7

21 ER+HER2-BC vs. 21 ER+HER2-BC 0 0 175±33

15 ctr2 vs. 15 ctr2 0 0 502±65

42 TNBC vs. 21 ctr1 767 1815 2,290

42 ER+HER2-BC vs. 30 ctr2 323 689 1,356

https://doi.org/10.1371/journal.pone.0201813.t002
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acceptable threshold. Increasing the |logFC| cutoff to 2.5 nearly eliminates the FPR for both

UQ-pgQ2 and DESeq2, while edgeRmaintains an FPR > 1%.

We also observed a high FPR from edgeR and a low FPR from UQ-pgQ2 for DEG analysis

of 117 paired TCGA-BRCA and 112 control samples using the within group approach (S1

Table), in this case, giving a |logFC| cutoff set at 1, 1.5, 2 or 3. For the 59 TCGA-BRCA versus

58 TCGA-BRCA comparison, the number of FP genes with a |logFC|�1 cutoff using UQ.

pgQ2, DESeq2 and edgeR is 70±97, 120±160 and 2019±789, respectively, with an observed FPR

of 0.20%, 0.34% and 5.75% for the 35,113 genes measured. The number of FP genes in the nor-

mal control comparison (56 control vs. 56 control) from UQ-pgQ2, DESeq2 and edgeR is 2

±3.3, 4±5 and 513±47, respectively, with a FPR of 0.006%, 0.011% and 1.45%. This indicates

the importance of using multiple cutoffs, since the number of FP DEGs increases significantly

when a |logFC| under 1.5 is used. Given a |logFC| of 2, the number of FP genes in TCGA-

BRCA for UQ.pgQ2, DESeq2 and edgeR is 8 ±10, 18±23 and 1,050±514, with an observed FPR

of 0.02%, 0.05% and 3.00% respectively, while the number of FP genes in the normal control

comparison is 0, 0 and 308±21, with a FPR of 0.003%, 0.006% and 1.13%, respectively.

For the TCGA datasets, a |logFC| cutoff of 2 was chosen as an optimum FC cutoff value for

identification of DEGs given a nominal FDR <0.05 and an observed error rate below or close

to 0.05% for UQ.pgQ2 and DESeq2with 2,148 and 2,208 DEGs identified, respectively.

Since the TCGA data yields higher FPR for all approaches comparing with the BC datasets

downloaded from GEO, indicating an increased variance for these samples, it may in part be

due to the lack of separation in BC subtypes. To address this concern, we further extracted 122

TNBC samples from TCGA-BRCA based on clinical information. A within-group comparison

(61 TCGA-TNBC and 61 TCGA-TNBC) was performed. The results in S2 Table consistently

showed that UQ.pgQ2 and DESeq2 outperformed edgeR in terms of the control of FPR.

In summary, an approach via the within-group analysis to identify FP genes can help to

achieve several goals. First, among three methods, we observe that UQ-pgQ2 and DESeq2 out-

performed edgeR for controlling type I error rate while UQ-pgQ2 was slightly better than

DESeq2 overall. This finding is consistent with the report from our previous study [28]. Sec-

ond, the results (Table 2, S1 and S2 Tables) suggest that UQ-pgQ2 is more conservative than

DESeq2 in most datasets while edgeR performs comparatively worst for all datasets. This obser-

vation is consistent with our previous findings while comparing normalization methods for

the analysis of DEGs within RNA-seq data [28]. Finally, the results (Table 3) helped to choose

an optimal |logFC| by taking into consideration of a FPR with a good detection power for a

reasonable number of DEGs.

Table 3. Determining an optimal |logFC|�� by observed FPR. An observed FPR based on all of 35203 genes is computed given a |logFC| cutoff in parenthesis.

Normalization DEGs FPR�

(|logFC|)

|logFC|��

given FPR�0

TNBC UQpgQ2 3,706 �0 (�2) �2

DESeq2 5,201 �0.03% (�2) �2.5

Common DEGs 3,610 - -

ER+HER2-BC UQpgQ2 4,999 �0.003% (�1.5) �2

DESeq2 6,308 �0.04% (�1.5) �2

Common DEGs 4,776 - -

FPR�: false positive rate

|logFC|��: maximum cutoff value.

https://doi.org/10.1371/journal.pone.0201813.t003
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2. DEGs identified between-group comparisons in human TNBC and

ER+HER2-BC from three methods

Gene expression profiles in two comparisons (42 human TNBC versus 21 controls (ctr1), and

42 human ER+HER2-BC versus 30 controls (ctr2)) were analyzed using three methods (UQ-

pgQ2, DESeq2 and edgeR).

DEGs are identified giving a nominal FDR�0.05 and an optimal |logFC| cutoff value

(Tables 2 and 3). The results in bold (Table 2) show that edgeR has a higher detection power

while having a tradeoff of a higher FPR given the same |logFC| cutoff according to the within-

group analysis. Although DESeq2 performs better in terms of FPR when compared to edgeR,

the actual type I error in DESeq2 is higher than the nominal FDR, particularly in high read

counts of genes based on previous studies using simulated data. With the aid of DESeq2, UQ-

pgQ2 has a much lower FPR while having a tradeoff of a fewer number of DEGs detected. In

order to maximize the detection power and minimize the type I error, we utilized UQ-pgQ2

and DESeq2 to identify the DEGs given a nominal FDR of 0.05 and an optimal |logFC| cutoff

(Table 3).

The results in Table 3 show that using UQ-pgQ2 method, 3,706 DEGs in TNBC and 4,999

DEGs in ER+HER2-BC are detected given an optimal |logFC| cutoff of 1.5 and 2 with an

observed FPR below 0.002%. Similarly, using DESeq2, 5,201 DEGs in TNBC and 6,308 DEGs

in ER+HER2-BC are detected given the same |logFC| cutoff as UQ-pgQ2 with an observed

FPR below 0.03%.

3. DEGs identified in human TNBC and ER+HER2-BC from UQ-pgQ2 and

DESeq2 based on 17,584 protein coding genes

Gene expression profiling is commonly used to identify disease biomarkers and biological

functions. In RNA-seq data, we have noted that the identified DEGs contain a mixture of

mRNA, miRNA, rRNAs and other non-coding RNAs that are present in the total RNA per

sample. These noncoding RNAs, especially about 10% of high abundant rRNAs with high read

counts are not completely eliminated and remain in each RNA-seq sample while using the

ribosomal depletion method in the library preparations. In this study, we focused on the

17,584 protein coding genes out of the 35,203 total genes. The results in Table 4 show that

using UQ-pgQ2 method, the number of DEGs detected for TNBC at a |logFC|�2 and

ER+HER2-BC at a |logFC|� 1.5 is 1,584 and 2,303, respectively; using DESeq2method with the

same cutoff values, the number of DEGs detected for TNBC and ER+HER2-BC is 1,913 and

2,649, respectively. The number of DEGs common in both analytical methods for TNBC and

ER+HER2-BC is 1,546 and 2,212, respectively. In addition, Table 4 also displays the number of

up and down-regulated DEGs per comparison.

Table 4. DEGs identified using DESeq2 and UQ-pgQ2. The DEGs from 17,584 protein coding genes are determined given a nominal FDR�0.05 and an optimal |

logFC| cutoff in Table 3.

Data Normalization DEGs Up Down

TNBC UQ.pgQ2 1,584 949 635

DESeq2 1,913 1099 814

Common DEGs 1,546 915 631

ER+HER2-BC UQ.pgQ2 2,303 1,161 1,142

DESeq2 2,649 1,195 1,454

Common DEGs 2,212 1,074 1,138

https://doi.org/10.1371/journal.pone.0201813.t004
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4. Robust identification of the true DEGs (protein coding genes) from UQ.

pgQ2 and DESeq2
Based on the DEG analysis of the 17,584 protein coding genes, we noted that the number of

DEGs identified by the UQ-pgQ2 and DESeq2methods varied for the two comparisons (42

TNBC versus 21 control and 42 ER+HER2-BC versus 30 control). The previous studies

observed that DESeq2 and edgeR were less conserved for the high read count genes using

MAQC2 data [28]. Therefore, in order to minimize the number of false positives and maxi-

mize the true DEGs, we used a combined approach to identify the true DEGs. The results were

listed in Table 3. For the TNBC comparison, we first identified the common DEGs between

UQ-pgQ2 and DESeq2 resulting in 1,546 DEGs. Similarly, for the ER+HER2-BC comparison,

2,212 DEGs were identified in common. We assumed the DEGs that were not in common, but

identified by either DESeg2 or UQ-pgQ2 with an observed FPR close to zero given a Max |

logFC| cutoff (Table 3), were also considered as true DEGs. With this approach, in the TNBC

comparison, 109 DEGs from DESeq2 at a |logFC|�2.5, and 38 DEGs from UQ-pgQ2 at a |

logFC|�2, were considered as true DEGs, and adding them to the common DEGs set resulted

in 1,693 true DEGs. For the ER+HER2-BC comparison, with a |logFC|�2, 84 DEGs from

DESeq2 and 3 DEGs from UQ-pgQ2 were considered as the true DEGs, and adding them to

the common DEG set resulted in 2,299 true DEGs. The results were listed in Table 5. A Venn

diagram (S1 Fig) illustrates the common and unique genes between 1693 DEGs in TNBC and

2299 DEGs in ER+HER2-BC.

The heatmaps (Fig 1) based on the DESeq2-normalized gene expression levels were con-

structed using hierarchical clustering from Partek software (Partek Genomics Suite 6.6). In

this figure, the up-regulated genes in red and down-regulated genes in green were convention-

ally chosen. Fig 1A illustrates the gene expression level of the 1,693 DEGs for the 42 TNBC ver-

sus 21 control samples. Fig 1B illustrates the gene expression level of the 2,299 DEGs for the 42

ER+HER2-BC versus 30 control samples.

Finally, the number of common and unique DEGs between the 1,693 DEGs in TNBC and

the 2,299 DEGs in ER+HER2-BC was examined (Table 5 and S1 Fig). The 896 DEGs common

in both include the top 10 up-regulated genes: IBSP, FRAME,COL10A1,HMX2,HIST1H31,

ASPM, KIF14,MMP11 and CENPF; and the top 10 down-regulated genes:MYOC, SLC22A12,

LEP, PLIN4, PLIN1, GLYAT, GPD1, ADIPOQ,HBB and CIDEC (S3 Table). There are 797

DEGs uniquely identified in TNBC including the top 10 up-regulated genes:MMP13,

VAX1, PSAPL1, LHX2,HORMAD1, CCKBR,KIF1A, COL22A1, SIX3, CXCL13 and POU4F1;

and the top 10 down-regulated genes: CES1,HSD17B13, PCK1, RBP4,AGTR1, CLSTN2,

MASP1, ACSM5, PTGER3, SLC5A7 (S4 Table). There are 1403 DEGs uniquely identified in

ER+HER2-BC including the top 10 up-regulated genes: CBLN2, SLC30A8,VSTM2A, GRM4,

FOX11, RIMS4, SERPINA12, SYT1, IGFL1 and EEF1A2; and the top 10 down-regulated genes:

FGFBP2, SPHKAP, XDH, SLC22A3, SLCO1B7,KCNB1, SERTM1, AKR1B15,ACSL1 and BMP3
(S5 Table). The DEGs were further used for the analysis of the cancer-related biological func-

tions and pathways with the aid of IPA (http://www.ingenuity.com/).

Table 5. An approach to select DEGs (protein coding genes) identified by UQ-pgQ2� and DESeq2.

Common UQ-pgQ2� DESeq2 Total

TNBC 1,546 38 (|logFC|�2) 109 (|logFC|�2.5) 1,693

ER+HER2-BC 2,212 3 (|logFC|�2) 84 (|logFC|�2) 2,299

UQ-pgQ2�: UQ-pgQ2 normalization and Wald test from DESeq2.

https://doi.org/10.1371/journal.pone.0201813.t005
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5. Identification of biomarker genes based on the presence or absence ER,

PR and HER2 to partially validate the DEGs analysis

We identified biomarker genes based upon the presence or absence of the molecular receptors

(Table 6). For the TNBC comparison, we found that ER (ESR1 and ESR2), PR (PGR) and

HER2 (EGFR) were significantly down-regulated using both UQ.pgQ2 and DESeq2methods

as expected. For the ER+HER2-BC comparison, we found that ER1 (ESR1) was significantly

up-regulated with a FC greater than 1.8 and ER2 (ESR2) was significantly down-regulated. PR

(PGR) expression level in ER+HER2-BC was not significantly different from the control

groups. However, HER2 (EGFR) was significantly down-regulated using both methods as

expected. Taken together, the expected results via the molecular markers can partially validate

the true DEGs using an integrated approach.

6. Top cancer-related biological functions and networks identified via IPA

IPA (http://www.ingenuity.com/) is a widely used tool for the partial validation, but mainly

used in identification of diseases and biological functions. The three sets of common and

unique DEGs (S1 Fig) were loaded to IPA and the results were obtained (Table 7 and Figs 2

and 3). We particularly focused on the cancer or immuno-related biological functions (Fig 2).

Fig 1. Hierarchical clustering heatmaps of BC based on the DESeq-normalized gene expression levels. The genes

with similar expression patterns are clustered together. The up-regulated genes are in red and the down-regulated

genes are in green. (A) A heatmap based on gene expression levels of 1,693 DEGs uniquely identified in TNBC data.

(B) A heatmap based on gene expression of 2,299 DEGs uniquely identified in ER+HER2-BC data.

https://doi.org/10.1371/journal.pone.0201813.g001

Table 6. Biomarkers identified for TNBC and ER+HER2-BC.

Comparison Symbol LogFC FDR

UQ.pgQ2 DESeq2

TNBC ERS1 -2.95 -3.25 �0.001

ERS2 -0.94 -1.01 �0.002

PGR -3.12 -3.56 �0.001

EGFR (HER2) -1.51 -1.65 �0.01

ER+HER2-BC ERS1 0.92 0.84 �0.005

ERS2 -1.84 -2.01 �0.001

PGR 0.23 -0.36 �0.59

EGFR (HER2) -3.23 -3.43 �0.001

https://doi.org/10.1371/journal.pone.0201813.t006
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Fig 2A illustrates the top diseases and biological functions significantly identified by the com-

mon set of DEGs. These are categorized as Cancer, Organismal Injury and Abnormalities, and

Cell Cycle. Fig 2B highlights the top biological functions from the set of DEGs uniquely

expressed in TNBC. These functions include Tissue Morphology, Cell Signaling, Immune Cell

Trafficking and Inflammatory Response, Humoral Immune Response, Cell-mediated Immune

Response, Cellular Movement and Development, Cellular Growth and Proliferation, Organis-

mal Development and Morphology, and Cell Death and Survival. T cell-mediated immune

response has been linked to the efficacy of immunotherapy in TNBC. In contrast, inflamma-

tory response has been shown to promote tumor development and metastasis. Fig 2C high-

lights the top biological functions uniquely expressed in ER+HER2-BC that are associated with

Cellular Movement and Development, Cellular Growth and Proliferation, Tissue and Organis-

mal Development, T-cell Signaling, Immune Cell Trafficking and Inflammatory Response. We

noted that the functions of Cellular or Tissue Movement, and Cellar Growth and Proliferations

Table 7. The DEGs are associated with cancer biology identified by IPA.

DEGs Cancer BC BC or the other ER-BC HER2- hormone negative BC

Common 896 389 128 198 (BC or CC) 159 (BC or OC) 31 ("9, #21) 31("9, #22)

TNBC 797 282 - 135 (BC or OC) - -

ER+HER2-BC 1403 460 - 223 (BC or CC) 172 (BC or OC) - 26("6, #20)

Note: Breast Cancer (BC), Colorectal Cancer (CC), Ovarian Cancer (OC), ER negative (ER-), HER2 negative (HER2-).

https://doi.org/10.1371/journal.pone.0201813.t007

Fig 2. Biological functions of DEGs for BC subtypes identified by IPA. (A) Illustrated are the biological functions

based on 896 DEGs commonly identified in TNBC and ER+HER2-BC. (B) Illustrated are the biological functions based

on 797 DEGs uniquely identified in TNBC subtype. (C) Illustrated are the biological functions based on 1403 DEGs

uniquely identified in ER+HER2-BC subtype.

https://doi.org/10.1371/journal.pone.0201813.g002
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identified from the unique set of DEGs in ER+HER2-BC were much more significant than the

functions categorized in Inflammatory Response and Immune Response. This observation

suggests these functions may play a dominant role during ER+HER2-BC cell development and

growth. In contrast, the functions categorized as Cell Signaling, Immune Cell Trafficking and

Inflammatory Response, Humoral Immune Response etc. identified from the unique set of

DEGs in TNBC were much more significant than the functions categorized as Cellar Growth

and Proliferations, and Cell Death and Survival. This observation suggests Inflammatory

Response or Cell-mediated Immune Response may play a dominant role for helping metasta-

sis, which may be as a potential mechanism to explain why the TNBC patients has a poor

survival rate. In addition, immune cell trafficking may play a critical role in TNBC immuno-

therapy. Indeed a recent clinical study revealed that immune checkpoint inhibitor therapy in

TNBC has achieved about 19% of the overall response rate with durable clinical responses

[34].

We further examined the cancer-related genes in each category. Among the 896 genes in

the common set, we observed 410 genes in Cancer, and 503 genes in Organismal Injury and

Abnormalities. We found 389 genes in these two categories were associated with cancer; 128

genes were associated with BC; and 31 genes were associated with estrogen negative BC, 30

genes were associated with HER2- hormone receptor negative BC and 31 genes were associated

with HER2-BC. The unique genes significantly associated with Cell cycle, Cellular assembly

and organization, DNA replication, recombination and repair are illustrated by a network in

Fig 3A.

Among the 797 genes uniquely identified in TNBC, 294 and 381 genes are categorized in

Cancer, and Organismal Injury and Abnormalities, respectively. We found 282 of these genes

are associated with cancer and 135 genes are associated with breast cancer or colorectal cancer.

The unique genes significantly associated with Cancer and Organismal Injury and Abnormali-

ties are illustrated by a network in Fig 3B.

Among the 1403 genes uniquely identified by ER+HER2-BC, we found 498 genes in Cancer,

609 genes in Organismal Injury and Abnormalities, and 278 genes in Cellular growth and pro-

liferation. We found 460 genes are associated with cancer; 223 genes are associated with BC or

colorectal cancer, and 172 genes are associated with BC or ovarian cancer. More interestingly,

we identified additional 26 genes besides 30 genes in common set that are also associated with

HER2- hormone receptor negative BC. These genes could be potential biomarkers for the diag-

nosis of ER+HER2-BC subtype. The unique genes significantly associated with Cancer and

Organismal Injury and Abnormalities are illustrated by a network in Fig 3C.

Fig 3. Top networks of DEGs identified by IPA. The networks are defined as Cancer, and Organismal Injury and

Abnormalities by IPA. The up-regulated and down-regulated genes are in red and green, respectively. (A) The top

network is based on 797 DEGs in TNBC. (B) The top network is based on 1403 DEGs in ER+HER2-BC.

https://doi.org/10.1371/journal.pone.0201813.g003
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7. Canonical pathways identified for TNBC and ER+HER2-BC

We further examined the canonical pathways and biomarkers based on the three sets of DEGs

from TNBC and ER+HER2-BC. For the common 896 DEGs, we identified the pathways

highlighted by Cell Cycle with the DNA damage, cAMP-mediated intracellular signaling and

Estrogen-mediated S-phase Entry (Fig 4A). For the 797 DEGs in TNBC, we identified four

cancer-related pathways highlighted by cAMP-mediated Signaling, Calcium Signaling and

LXR/RXR Activation (Fig 4B). These pathways play important roles in the regulation of cell

cycle, promoting cell growth and proliferation or survival and apoptosis, and cell signaling.

For example, cAMP-mediated intracellular signaling activates ERK via EPAC1, while Src and

Stat3 are activated by Gai and Gao. The persistent activation of these genes such as Stat3 also

mediates tumor-promoting inflammation. More interestingly, we identified several immuno-

related signaling pathways including T Helper Cell Differentiation, Complement System,

Agranulocyte Adhesion and Diapedesis and Intrinsic Prothrombin Activation Pathway (Fig

4B). These pathways play crucial roles in immune surveillance within the tumor microenvi-

ronment. Moreover, these pathways particularly T helper cell differentiation pathway may be

related to current immunotherapeutic efficacy such as immunocheckpoint blockade inhibitors

in TNBC.

For the 1403 DEGs in ER+HER2-BC, we identified many significant and cancer-related

pathways that were not found in TNBC including Notch Signaling, FAK Signaling, ILK Signal-

ing,HER2- Signaling in Breast Cancer, PAK Signaling, Paxillin Signaling, andWnt/Ca+

Fig 4. Canonical pathways identified by IPA. (A) Illustrated are the canonical pathways based on 896 DEGs

commonly identified in TNBC and ER+HER2-BC. (B) Illustrated are the canonical pathways ions based on 797 DEGs

uniquely identified in TNBC subtype. (C) Illustrated are the canonical pathways based on 1403 DEGs uniquely

identified in ER+HER2-BC subtype.

https://doi.org/10.1371/journal.pone.0201813.g004
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Signaling, ERK/MAPK Signaling, and PCP Signaling (Fig 4C). These signaling pathways are

associated with cellular growth, proliferation and organismal development. For example,Wnt/
Ca+ Signaling is involved in various aspects of cell development like cell differentiation, growth

and proliferation. Again, we noted that a fewer number of the pathways associated with cellu-

lar immune response were identified including Granulocyte Adhesion and Diapedesis and

Agranulocyte Adhesion and Diapedesis. Theses pathways may play a crucial role in helping

ER+HER2-BC to grow and penetration via an inflammatory response as the report in the

recent studies.

Discussion

Using three independent BC datasets, our study reveals important considerations in the analy-

sis of RNA-seq data. Because a type I error is usually considered to be a more serious error

which one would like to avoid [35], it is important to control this error while maintaining a

high sensitivity. Failing to do so can has a profound effect on the number of genes that are

claimed as DEGs, resulting in a misleading biological interpretation. Using a nominal FDR at

an acceptable level for controlling the type I error rate of α is the best approach for identifying

DEGs in the analysis of RNA-seq. Current methods use an FDR of 0.05 to correct p-values in

the presence of multiple genes. However, previous comparative analyses including the com-

monly used DESeq and edegRmethods reported that these methods failed to maintain the

actual FDR below the nominal value of 0.05, leading to an inflated type I error rate [23,36]. In

a comparison of normalization methods (DESeq in DESeq2, TMM in edgeR, FQ, Med-pgQ2

and UQ-pgQ2) using MAQC2, we recently showed that Med-pgQ2 and UQ-pgQ2 performed

best by achieving a smaller actual FDR and higher specificity while maintaining high sensitivity

[28]. In addition, we also reported that DESeq2 performed best in terms of achieving an actual

FDR, specificity and sensitivity at a quantile cutoff of the mean read counts below the 75th per-

centile. These studies suggest that Med-pgQ2 or UQ-pgQ2 are relatively conservative for high

gene read counts and DESeq2 is relatively conservative for gene expression below the 75th per-

centile. Taking into consideration sensitivity and specificity, in our analysis scheme, we pro-

posed a new and optimal approach to perform the DEG analysis of BC data. We utilized UQ-

pgQ2 and DESeq2methods and robustly identify DEGs for GEO TNBC and ER+HER2-BC

versus their controls. DEGs identified in this manner are deemed to be truly and differentially

expressed.

Since true DEGs are unknown, and sensitivity rate is unable to be calculated, our study is

mainly based on the discovery of false positives. Although this may be a limitation, we know

from the previous study that the sensitivity rates for DEG analysis of MAQC2 from DESeq2,

edgeR and UQ-pgQ2 methods were more than 90% given a 0.05 nominal FDR[28]. Based

upon this and the previous studies comparing the existing methods for DEG analysis, we

chose three methods (UQ-pgQ2, DESeq2 and edgeR) to perform a within-group analysis. We

demonstrated that UQ-pgQ2 normalization using a Wald statistical test from DESeq2 per-

formed best for the control of FP genes in the analysis of these BC dataset for any given |

logFC| cutoff and a nominal FDR of 0.05. We found DESeq2 is also a good method to analyze

these BC datasets in terms of the number of DEGs detected with slightly higher false positives

than UQ-pgQ2 method. As expected, these findings are consistent with previous studies. Fur-

thermore, based on the FPR obtained from within group analysis, an optimal |logFC| cutoff

was determined, which is further used to control FPR for the analysis.

Furthermore, Gene-expression profiling analysis has been used to dissect the heterogeneity

of BC into six subtypes: Luminal A (ER+, low grade), Luminal B (ER+; high grade), HER2 posi-

tive (HER2-amplification), basal-like (ER-; HR-; HER2-), normal-like and most recent “claudin
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low” subtypes [37–40]. The results of our analysis of gene expression profiles for two BC sub-

types (GEO TNBC and ER+HER2-BC) demonstrated that their gene signatures were signifi-

cantly different. We identified 1,693 protein coding genes with a |logFC|�2 from the 42

TNBC patients compared to 21 paired control samples and 872 unique protein coding genes

that were not identified in ER+HER2-BC. We also identified 2,299 protein coding genes with a

|logFC|�1.5 from the 42 ER+HER2-BC patients compared to 30 paired control samples and

1042 protein coding genes uniquely expressed in ER+HER2-BC. With the aid of IPA, these

DEGs were categorized in Cancer, and Organismal Injury and Abnormalities among the top

diseases and biological functions. For the pathway analysis, we also identified unique pathways

of each set that were associated with cancer cell growth, proliferation and development or

were involved in cellular immune responses.

Conclusions

Taken together, our combined approach with UQ-pgQ2 and DESeq2methods improves the

performance on the analysis of the BC RNA-seq data with a control of false positives below the

nominal level. With this approach, we have confidently identified two distinct gene expression

patterns during the analysis of two BC subtypes (TNBC and ER+HER2-BC) downloaded from

GEO. These cancer-related DEGs may serve as potential biomarkers for the diagnosis of BC,

BC subtype or potential targets for the immunotherapy treatment in BC.
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