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Alignment-free Transcriptomic and 
Metatranscriptomic Comparison 
Using Sequencing Signatures with 
Variable Length Markov Chains
Weinan Liao1,*, Jie Ren2,*, Kun Wang1, Shun Wang1, Feng Zeng1, Ying Wang1 & Fengzhu Sun2,3

The comparison between microbial sequencing data is critical to understand the dynamics of microbial 
communities. The alignment-based tools analyzing metagenomic datasets require reference sequences 
and read alignments. The available alignment-free dissimilarity approaches model the background 
sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of 
microbial communities. However, in FOMC, the number of parameters grows exponentially with 
the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters 
might not be accurately estimated owing to the limitation of sequencing depth. In our study, we 
investigate an alternative to FOMC to model background sequences with the data-driven Variable 
Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long 
sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate 
the corresponding parameters were developed. The flexible number of parameters in VLMC avoids 
estimating the vast number of parameters of high-order MC under limited sequencing depth. Different 
from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity 
measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic 
datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in 
transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.
codeplex.com.

Understanding the factors affecting microbe composition and the relationship between microbes and hosts 
depends on accurate comparison of microbial communities1. The high-throughput sequencing data of microbial 
communities harbor the whole DNA/RNA information for elaborate and comprehensive comparison. Generally, 
alignment-based sequencing comparison methods, such as the Smith-Waterman algorithm2 and BLAST3, have 
been extensively used to compare microbial communities based on short read data. The reads are usually mapped 
to known genome or pathway databases, followed by estimation of the abundance levels of genomes and/or gene 
families. Microbial communities are then compared based on the abundance levels. Recently, several compu-
tational tools including Kraken4, Clark5 and Kaiju6, have been developed for fast taxonomic classification of 
sequencing reads using hash-based k-mer indices built from reference sequences. These methods achieved com-
parable accuracy as that of the traditional BLAST programs, yet they are up to ~900 times4 faster than Megablast 
and ~10 times4 faster than MetaPhlan7. In addition, MetaPhlan7 uses only known marker genes. If communities 
do not share any marker genes included in MetaPhlan, the program will not be able to report the relationships 
among the communities. On the other hand, Kraken4, Clark5 and Kaiju6 do not have such limitations. However, 
the reference-based comparison approaches have several limitations: (1) Dependency on sequences of reference 
genomes or genes. However, a large amount of microbial genomes and gene families are unknown or incomplete, 
which affects the accuracy and completeness of the analysis. According to current publications, for metatran-
scriptomic data, there were about 19–42% unassigned reads in marine water samples8, about 10–20% unassigned 
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reads in human small intestine microbiota9, and up-to 50% reads that cannot be assigned to reference databases 
in oceans with large phytoplankton10. Therefore, alignment-based methods are not applicable for microbial com-
munities with a large amount of dark matters. (2) Current tools analyzing the microbial communities were mostly 
designed for metagenomics based on mark genes, such as 16S rRNA. However, for the metatranscriptomic data-
set, ribosomal RNA (rRNA) transcripts are often required to be depleted in order to maximize mRNA recovery8,9. 
Therefore, the metagenomic tools based on 16S rRNA marker genes are not suitable to analyze metatranscrip-
tomic data. Among the limited metatranscriptomic analytic tools, some were designed for Illumina paired-end10 
or single/paired-end data11, or only used to evaluate the gene expression level12. A previous study11 compared four 
taxonomical classification tools based on a common metatranscriptomic data and obvious differences among the 
taxonomical analytic results were observed, which was the second figure in original paper11. (3) Sequence assem-
bly is time-consuming and challenging especially for metagenome/metatranscriptome when organisms share a 
high volume of homologous sequences. Different assembled contigs were obtained for the same reads when using 
different assembly tools. Therefore, alignment-free methods provide a promising alternative for microbial com-
munity comparison, eliminating the requirements of reference sequences and assembly.

One type of alignment-free methods is based on the frequencies of k-tuples (k-words, k-mers or k-grams)13. A 
k-tuple is a contiguous sequence of length k. Previous studies indicate that relative k-tuple frequencies are similar 
across different regions of the same genome, but differ between genomes14. One of the earliest similarity measures 
between two sequences is D2 which measures the total number of matched k-tuples between two long sequences13. 
However, theoretical studies have shown that the distribution of D2 is dominated by the variance in the number 
of occurrences of k-tuples along individual sequences and less by the relationship between sequences15. 
Consequently, other similarity measures have been developed with different normalization, centralization and 
background models in an attempt to modify D2, including D Z

2
16, D S

2
15, ⁎D2

17, S2
18,19 and CVTree measures. 

Subsequently, normalized dissimilarity measures20 based on D2, D S
2 and ⁎D2 , including d2, d S

2  and ⁎d2
1,21 with 

range between 0 and 1, were developed for high-throughput sequencing data. Indeed, previous studies22 showed 
that k-tuple-based dissimilarity measures are effective in revealing group relationships and gradient relationships 
among metagenomic and metatranscriptomic samples and that d S

2  and ⁎d2  achieved the best performances in 
most comparisons of microbial communities.

However, the utility of d S
2 and ⁎d2  depends on a proper probability model for background genomes. To 

address this gap, Fixed Order Markov Chains (FOMC) were used to model the background genome sequences, as 
reported in previous studies22,23. There are several limitations during the applications of FOMC: (1) The order of 
Markov Chain (MC) needs to be set manually. However, for most microbial communities, there is no prior 
knowledge available for setting the MC order. (2) Furthermore, it is hard to model probabilities of different tuples 
using a single fixed order MC, and FOMC is not structurally rich. There are nr ×​ (n − 1) independent parameters 
for an r-th order MC, where n is the number of states, that is, n =​ 4 for DNA or RNA sequences. When the order 
r equals 2 or 3, the number of parameters for the model is 48 or 192, respectively. There are no FOMCs with num-
ber of parameters between 48 and 192. (3) Thus, the number of parameters grows exponentially with the increase 
of order r. When sequencing depth is relatively low, the parameters, with their number growing exponentially 
with the increase of MC order in FOMC models, cannot be accurately estimated.

With this in mind, we introduced Variable Length Markov Chains24 (VLMC) as an alternative for FOMC to 
model the background genomes of microbial community in this study. VLMC adaptively determines the order of 
MC based on the sequence data, thus eliminating manual selection. Additionally, the number of variables in 
VLMC is flexible. VLMC was originally designed for modeling one long sequence and was represented as a con-
text tree structure24,25. For high-throughput sequencing of short reads, the likelihood of underlying, or unob-
served sequences cannot be calculated. As a result, the rules for pruning the tree are not clearly defined. Therefore, 
we first developed strategies to determine the parameters for building a context tree and then extended VLMC for 
high-throughput sequencing of short reads. Thus, the complete context tree is constructed from these short reads, 
which typically overfits the data. The number of independent parameters is Num(nodes) ×​ 3, where the 
Num(nodes) is the total number of nodes in the context tree except the root-node. The tree is then pruned 
according to a local decision rule. Using VLMC for background modeling, d S

2  and ⁎d2  measures were then 
applied to compare transcriptomic or metatranscriptomic datasets. From the obtained dissimilarities among sam-
ples, the clustering trees were evaluated based on the triples distance26 between the reference and resulting trees. 
Experimental results show that VLMC models the position dependency in the nucleotide sequences better than 
FOMC, and since it is free from order selection required by FOMC, VLMC is easier to apply. Our studies also 
show that VLMC probability models combined with d S

2  and ⁎d2  measures exhibit superior performance in clus-
tering metatranscriptomic samples when compared to previous approaches.

Results
Design of experiments.  In order to explore the performance of d S

2  and ⁎d2  with VLMC, we designed 
experiments with one simulated dataset and four real datasets. The simulated metatranscriptomic dataset is com-
posed of 90 samples belonging to 3 different groups with 5,000 genes from 5 microbes. Real dataset 1 consists of 
18 and 22 RNA-Seq datasets from marine microbial eukaryotes. For 18 RNA-Seq datasets, the molecular phylog-
eny27 was reconstructed based on the 18S rRNA genes with maximum likelihood (ML) method. The ML phyloge-
netic tree was then used to evaluate the ability of VLMC as background model, combined with d S

2  and ⁎d2  
measures to compare their relationships based on the high-throughput sequencing data of individual species. For 
22 RNA-Seq datasets, phylogenetic tree was built with Bayesian inference using MrBayes28 program. Dataset 2 
contains 88 metatranscriptomic samples collected from the Global Ocean Sampling Expedition (GOSE), and they 
were used to study the effect of VLMC-based measures in identifying group relationships. Dataset 3 consists of 8 
metagenomic and 8 metatranscriptomic samples from ocean depths of 25 m, 75 m, 125 m and 500 m. Dataset 4 
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consists of 14 metatranscriptomic samples from depths of 0.03 m and 0.08 m within a typical iron-rich microbial 
mat. Datasets 3 and 4 were used to study the performance of VLMC-based measures in revealing environmental 
gradient relationships. The triples distances were applied to evaluate the consistency between the reference and 
clustering trees from alignment-free measures.

There is no rigorous criterion to decide the optimal length k for k-tuples. However, according to our previous 
experiments, generally the optimal k is 6–9. For comparison, d S

2  and ⁎d2  with 0–4th order FOMC, three Lp-norm 
measures and d2 were also applied.

Experiment 1: Detecting group relationships among simulated metatranscriptomic data-
sets.  Using a similar simulation strategy as developed in Martinez et al.11, we simulated three groups of syn-
thetic mock communities with different expression levels using Polyester12, an RNA-Seq simulation tool. Five 
most abundant microbial genomes in human gut were selected based on Qin et al.29: Bacteroides vulgatus ATCC 
8482, Ruminococcus torques L2−14, Faecalibacterium prausnitzii SL3/3, Bacteroides thetaiotaomicron VPI-5482 
and Parabacteroides distasonis ATCC 8503. For each bacterium, a subsample of 1000 genes was randomly selected 
without replacement. Based on the mock community consisting of 5,000 genes from the five bacteria, we set three 
group centers with different gene expression levels as follows:

(1)  Among the 5000 genes, 20% showed 4-fold overexpression, 20% showed 4-fold under-expression, and 60% 
were normally-expressed. The simulation tool Polyester12 uses a fold change vector to specify the different 
expression levels among transcripts. Polyester generates the baseline read numbers from a negative bino-
mial distribution with a preset mean value (default mean =​ 300), and then multiply the baseline numbers 
by the fold changes to simulate the transcripts with different expression levels. As shown in equation (1), A 
is the basic fold change vector, and 20% of the elements equal 1

4
, 20% equal 4, and the others equal 1.
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We then generated 90 samples belonging to 3 groups each containing 30 samples using the simulation 
strategy as in Jiang et al.22, shown in steps (2) and (3).

(2)	The three group centers A1 A2 and A3 were generated as equation (2). Norm(μ,σ2) indicates the normal 
distribution with mean μ and variance σ2.
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(3) For the qth sample Ai
q within group Ai, the expression level vector Ai

q were generated using equation (3).
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Based on the generated 90 expression level vectors, 90 metatranscriptomic sequencing data were simulated 
and the read length was 76 bp.

The best hierarchical clustering trees with VLMC and FOMC are shown in Fig. 1, and the corresponding tri-
ples distances are shown in Table 1. Clear groups of three simulated datasets among samples can be observed for 
both VLMC and FOMC. The best clustering trees with the smallest triples distance for VLMC and FOMC are 
both obtained in k =​ 9 and using d S

2  dissimilarity measure. From the clustering tree in Fig. 1, it is clear that the 
tree built based on VLMC is more similar to the true tree than that build based on FOMC. Quantitatively, the 
smallest triples distance for VLMC and FOMC are 42,973 and 43,043, respectively, where VLMC outperforms 
FOMC with less misclassification.

Experiment 2: Comparison based on RNA-Seq data of Marine Microbial Eukaryotes.  RNA-Seq 
data of 18 marine eukaryotes were downloaded from “The Marine Microbial Eukaryote Transcriptome 
Sequencing Project”30. The 18 eukaryotes are from the Phylum Chlorophyta, and the sample information is listed 
in Table S1 in Supplementary Section 1.1. The reference tree of the eukaryotes was extracted from the molec-
ular phylogenetic tree built from a previous study27 that reconstructed the tree by maximum likelihood (ML) 
based on the 18S rRNA gene from a genome sequence or RNA-seq-based transcriptome assembly, shown in 
Supplementary Figure 1 of their paper27. Figure 2a shows the resulting ML of the 18 eukaryotes and it is used as 
a reference tree in our study. The bootstrap supports for the nodes in the phylogenetic reference tree are higher 
than 65%. The bootstrap support values of the nodes were calculated based on 1,000 replicates of the data with 
the same substitution model. The Bayesian posterior probabilities of the nodes in the tree were higher than 90%. 
The Bayesian analyses were performed with two independent runs with 1,000,000 generations per run. After a 
burn-in of 350,000 trees (that were discarded) per run, the remaining trees were used to reconstruct a consensus 
tree and to obtain posterior probabilities for node supports27.

Table 2 shows the triples distance between the reference and clustering trees using various dissimilarity meas-
ures and tuple length. The best clustering result with the smallest triples distance of 177 is obtained by VLMC 
using the dissimilarity measure d S

2  and tuple length k =​ 6, as shown in Fig. 2b. The topological structure is similar 
to that of the reference phylogenetic tree which basically includes three groups. The smallest triples distance for 
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FOMC is 318, which was achieved by using ⁎d2  with 0-order MC and k =​ 2, as shown in Fig. 2c. Its overall topo-
logical structure of the clustering results is different with the phylogenetic tree in Fig. 2a. The clustering result 
based on VLMC is obviously better than the result based on the FOMC model.

We also analyzed RNA-Seq data from another set consisting of 22 Marine Microbial Eukaryotes from the 
Phylum Bacillariophyta, Chlorophyta, and Cryptophyta. The phylogenetic tree was built using MrBayes28 based 
on multiple alignments of 18S rRNA sequences using the default settings, and it was used as a reference tree for 
evaluations. The score for each branch is the Bayesian posterior probability of each partition or clade in the tree. 
It is the fraction of times that the partition or clade appears in the set of sampled posterior trees. The total num-
ber of samples generated from the posterior probability distribution is 1,000,000, and the beginning 25% of the 
samples were treated as burn-in and were discarded. The three groups Ch, Cr and Ba were clearly clustered to 
different groups with 100% posterior probabilities. Two internal branches in group Ba have Bayesian posterior 
probabilities less than 100%. The corresponding results for clustering the 22 species based on transcriptome data 
using FOMC and VLMC were shown in Supplementary Section 1.2. The experiment also shows the superior 
performance of VLMC over FOMC.

Figure 1.  The clustering trees based on different models for the 90 simulation samples in Experiment 1. 
(a) The best clustering tree on VLMC. (b) The best clustering tree when using FOMC and lp-norm measures. 
*Samples are divided into three groups A–C. Each group has 30 samples numbered from 0 to 29.

k 2 3 4 5 6 7 8 9

VLMC
d S

2 91845 90796 91209 90583 89748 74759 54841 42973
⁎d2 92398 91368 91967 91557 90858 91088 92198 91266

FOMC

d MS
2 0 91737 91317 90938 89990 89176 73161 64770 58339

d MS
2 1 91845 90825 89631 89432 86202 74615 66449 63143

d MS
2 2 NA 91215 90772 89205 88783 77420 61034 46369

d MS
2 3 NA NA 91244 90672 89128 67519 62031 43047
⁎d M2 0 91799 91887 90788 90149 89170 83466 64932 56770
⁎d M2 1 92398 90617 88314 90011 86425 73498 63022 59554
⁎d M2 2 NA 90684 90589 87693 86522 75092 58091 50969
⁎d M2 3 NA NA 91002 89840 89773 62601 55456 50293

Lp -Norm and d2 
measures

d2 90569 89957 88967 88062 84338 72034 65577 63569

Ch 89553 89271 90366 89440 91424 90956 90456 90913

Eu 90800 90930 89777 88271 86178 74766 67672 66107

Ma 90338 90835 88814 89461 85528 71241 50671 47623

Table 1.   The triples distance between the reference and the clustering trees using various background 
models with k = 2–9 for the simulation dataset of Experiment 1. “Mi” indicates that the expected counts are 
calculated based on an i-th order Markov model for the background sequences. The p-values are estimated 
by comparing the observed triples distance to the triples distance in 3000 randomly-joined trees: for triples 
distance <​ 8000: p <​ 0.001.
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Experiment 3: Comparison based on 88 global ocean metatranscriptomic samples.  In this 
experiment, 88 metatranscriptomic samples collected from different global ocean locations were analyzed. These 
samples were downloaded from 12 different projects from Microbe (http://data.imicrobe.us/, originally belong-
ing to CAMERA) and NCBI with 454 pyrosequencing. The descriptions and dataset IDs are given in Table S4 in 
Supplementary Section 2. Figure 3a shows the locations of these 88 samples. Twenty-three samples are from the 
subtropical north Pacific (Hawaiian), 4 from the Mexican Gulf, 4 from the California Gulf, 4 from the Norwegian 
Fjord, 6 from Sapelo Island (Georgia), 8 from the North Atlantic Ocean (West English Channel), 8 from North 
Pacific Subtropical Gyre (NPSG), and 19 from Eastern Equatorial Atlantic Ocean mixed with Amazon River 
plume. In addition, 12 samples were collected from different locations of Equatorial North Atlantic Ocean and 
South Pacific Subtropical Gyre. The map for the distribution of collecting locations was based on OpenStreetMap, 
and the cartography in the OpenStreetMap map tiles is licensed under CCBY-SA (www.openstreetmap.org/cop-
yright). The license terms can be found on the link: http://creativecommons.org/licenses/by-sa/2.0/.

The clustering trees with 6-tuples based on d S
2  using VLMC and d2 using FOMC are shown in Fig. 3c. In 

VLMC, clear groups of different locations among samples can be seen. Except for the two samples from “SWGE”, 
all other samples are consistently grouped with the marine locations. The communities with proximate latitudes, 
including Eastern Equa, Atlan_Amazon and SWGE, are clustered first, which is consistent with our understand-
ing that these communities should have greater similarity of gene expression profiles. For FOMC, samples from 
SWGE and the Amazon River are both scattered into several parts of the clustering. VLMC-based measures reveal 
location relationships of these 88 global ocean metatranscriptomic samples.

Figure 2.  The reference tree and the best clustering trees based on VLMC and FOMC models for 18 
RNA-Seq data in Experiment 2. (a) The molecular phylogenic tree of the 18 RNA-seq built with Maximum 
likelihood method on the 18S rRNA genes. (b) The best clustering tree with VLMC. (c) The best clustering 
tree when using FOMC and Lp-norm measures. *Samples are labeled as the Organisms-Strain-18S rRNA. For 
example, Micromonas pusilla CCAC1681 [FN562452] represents the organism Micromonas pusilla from strain 
CCAC1681 and the 18S rRNA used to construct this ML tree is FN562452. Details about sample labels can be 
found in Supplementary Table S4 in section 2.

k 2 3 4 5 6 7 8 9

VLMC
d S

2 354 375 415 193 177 241 227 219
⁎d2 359 421 236 187 240 293 291 279

FOMC

d MS
2 0 336 327 407 407 403 428 428 428

d MS
2 1 550 582 504 518 518 518 456 487

d MS
2 2 NA 561 515 533 518 506 489 476

d MS
2 3 NA NA 534 581 577 509 500 440
⁎d M2 0 318 326 410 415 456 526 521 548
⁎d M2 1 537 557 565 568 592 592 585 541
⁎d M2 2 NA 561 533 535 566 570 535 500
⁎d M2 3 NA NA 554 573 564 545 526 506

Lp -Norm and d2 
measures

d2 466 475 470 480 480 504 492 553

Ch 491 490 499 523 546 579 556 567

Eu 470 474 474 479 494 564 564 530

Ma 495 473 473 480 472 474 478 480

Table 2.   The triples distance between the reference and the clustering trees using various background 
models with k = 2–9 for the 18 RNA-Seq data in Experiment 2. “Mi” indicates that the expected counts are 
calculated based on an i-th order Markov model for the background sequences. The p-values are estimated 
by comparing observed the triples distance to the triples distance in 3000 randomly-joined trees: for triples 
distance in 300~400: p <​ 0.006; for the triples distance <​ 300: p <​ 0.001.

http://data.imicrobe.us/
http://www.openstreetmap.org/copyright
http://www.openstreetmap.org/copyright
http://creativecommons.org/licenses/by-sa/2.0/
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Experiment 4: Comparison of gradient relationship based on metatranscriptomic samples from 
different ocean depths.  The gene expression profile of microbes can be affected by environmental factors, 
such as ocean depth, temperature, or pH. To evaluate the performance of the different dissimilarity measures 
and background sequence models in recovering the gradient relationships of microbial communities, we studied 
8 metagenomic and 8 metatranscriptomic samples from depths of 25 m, 75 m, 125 m and 500 m (two replicate 
samples for each depth) of North Pacific Subtropical Gyre (NPSG) in ALOHA stations31 (dataset 12 in Table S4 
in Supplementary Section 2).

Table 3 shows the triples distance between the reference tree and the derived clustering trees using different 
dissimilarity measures and background sequence models. Using the VLMC background sequence model, both 
d S

2  and ⁎d2  can recover the reference tree. The best results from both VLMC and FOMC background sequence 
models show clear separations between metagenomic and metatranscriptomic groups, as shown in Fig. 4b,c, 
respectively. For both background sequence models, samples from the same depth are clustered first, then the 
samples belonging to the photic zone (25 m, 75 m and 125 m) are merged, and, finally, samples belonging to the 
mesopelagic zone (500 m). However, for the FOMC background sequence model, the metatranscriptomic sam-
ples from 25 m and 125 m are clustered first, which is inconsistent with gradient relationships. In contrast, VLMC 
background sequence model produces clustering of metagenomic and metatranscriptomic samples as expected 
with 25 and 50 m first and then 125 m.

Experiment 5: Comparison of gradient relationships based on metatranscriptomic samples 
from different iron-rich microbial mats.  A microbial mat is a multilayered sheet of microorganisms, 

Figure 3.  Locations of the 88 metatranscriptomic samples from global ocean, the reference tree, and the 
clustering trees based on different dissimilarity measures and background sequence models in Experiment 3. 
(a) The distribution of the collecting locations. The map is based on OpenStreetMap and the cartography in the 
OpenStreetMap map tiles is licensed under CCBY-SA (www.openstreetmap.org/copyright). The license terms can 
be found on the link: http://creativecommons.org/licenses/by-sa/2.0/. The location labels are marked with the 
coordinates of sample-collecting locations in Supplementary Table S4 in section 2. (b) The clustering tree with 
VLMC using d S

2  and k =​ 6. (c) The clustering tree with FOMC using d S
2  and k =​ 6. *‘SWGE’ (Dataset 10 in 

Supplemental Table S4 in section 2) samples were collected from different locations with two research cruises in 
the Equatorial North Atlantic Ocean and South Pacific Subtropical gyre.

http://www.openstreetmap.org/copyright
http://creativecommons.org/licenses/by-sa/2.0/
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mainly bacteria and archaea. Previous studies32 found clear phylogenetic stratification between the surface and 
the deeper regions of the microbial mat where iron-oxidizing bacteria dominated the community in the upper 
layers, and methanothrophs contributed to the majority of sequences in the deeper layers. Therefore, in this 
experiment, we used our methods to study 14 metatranscriptomic samples32 to evaluate gradient relationships at 
different depths of the microbial mat. As shown in Figure S2 in Supplementary Section 3, the sampling site is a 
slow-flowing stream where two collection sites (S1, S2) are placed at 1 cm in depth (surface water), and three col-
lection sites (D1, D2.D3) are placed in deeper regions of 7–9 cm. Three samples were collected at every collection 
site, except D3, where only two samples were harvested. The descriptions and dataset IDs of these samples can be 
found in Table S5 in Supplementary Section 3. Figure 5a shows the reference tree of the 14 microbial mat samples. 
Samples from S1 and S2 are marked in red, and samples from D1, D2 and D3 are marked in black. Samples at 
three different locations were respectively represented as squares, triangles and circles.

Table 4 shows the triples distance between the reference and the clustering trees. The best clustering tree was 
achieved by VLMC with d S

2  when k =​ 8 as shown in Fig. 5b, and the smallest triples distance is 76. Samples from 
surface water (S1, S2) and from deeper regions (D1, D2 and D3) are clearly separated. In contrast, the best result 

k 2 3 4 5 6 7 8 9

VLMC
d S

2 131 8 16 16 0 4 30 131
⁎d2 123 24 16 0 0 12 156 123

FOMC

d MS
2 0 32 24 32 16 16 16 16 32

d MS
2 1 131 40 32 16 16 16 8 131

d MS
2 2 NA 40 16 8 8 8 8 40

d MS
2 3 NA NA 34 8 8 8 8 34
⁎d M2 0 40 32 32 32 24 24 24 40
⁎d M2 1 123 16 16 16 8 8 8 123
⁎d M2 2 NA 24 8 8 8 8 8 24
⁎d M2 3 NA NA 16 8 8 8 8 16

Lp –Norm and d2 
measures

d2 112 32 32 32 32 32 32 112

Ch 32 128 128 128 136 136 128 32

Eu 112 32 32 32 32 32 40 112

Ma 112 112 16 16 16 16 16 112

Table 3.   The triples distance between the reference and the clustering trees using various background 
models with k = 2–9 to identify the gradient relationships of metagenomic and metatranscriptomic 
samples at different ocean depths in Experiment 4. “Mi” indicates that the expected counts are calculated 
based on an i-th order Markov model for the background sequences. The p-values are estimated by comparing 
observed the triples distance to the triples distance in 3000 randomly-joined trees: for all triples distance in 
table, p <​ 0.001.

Figure 4.  The reference and clustering trees based on various models for different depths of metatranscriptomic 
marine samples in Experiment 4. (a) Reference tree of different depths of metatranscriptomic samples from the 
ocean. (b) The best clustering tree with VLMC background sequence model. (c) The best clustering tree when using 
FOMC and lp-norm measures.
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based on the FOMC background sequence model showed that surface samples were merged with deeper samples 
successively, as shown in Fig. 5c.

The two-dimension Principal Component Analysis (PCA) plots based on the optimal results from FOMC 
and VLMC when k =​ 8 are shown in Fig. 6a,b, respectively. The PCA plot based on VLMC reflects the gradient 
information for collection depths and sites as the first and second principal component. We also plotted the PCA 
figures for k =​ 7 and 9, shown in Figure S3 in Supplementary Section 4. Although k =​ 7 and 9 are not the optimal 
value for VLMC, they still can separate the different depths and collecting sites. In comparison, the PCA ordinates 
based on FOMC did not show clear separations, and some points are shown as outliers.

Discussion and Conclusions
In this study, we developed theoretical and computational approaches to model background sequences using 
VLMCs based on short reads from high throughput sequencing. We compared the performances of VLMC and 
FOMC with ⁎d2  and d S

2 , as well as d2 and three Lp-norm measures, to model the background sequence with one 
simulated dataset, three real metatranscriptomic datasets, and one real RNA-seq dataset. VLMC outperformed 
FOMC in all experiments; and d S

2  together with VLMC, as background sequence model, outperformed FOMC in 
all experiments. Experiments show that VLMC builds the model with adaptive and variable MC according to the 

Figure 5.  Reference and clustering trees based on different background sequence models for the 
metatranscriptomic mat samples in Experiment 5. (a) Reference tree of the microbial mat data in experiment 5. 
(b) The best clustering tree with the VLMC background sequence model. (c) The best clustering tree with the FOMC 
background sequence model and lp-norm measures.

k 2 3 4 5 6 7 8 9

VLMC
d S

2 251 251 283 274 245 195 76 76
⁎d2 251 274 273 263 228 210 76 262

FOMC

d MS
2 0 218 189 189 202 202 178 201 189

d MS
2 1 251 248 159 202 201 178 201 189

d MS
2 2 NA 276 154 197 201 178 201 189

d MS
2 3 NA NA 272 201 118 164 170 189
⁎d M2 0 251 222 221 159 202 178 178 148
⁎d M2 1 251 218 159 202 195 178 148 148
⁎d M2 2 NA 274 154 154 195 178 148 148
⁎d M2 3 NA NA 268 201 195 148 148 148

Lp -Norm and d2 
measures

d2 264 218 213 159 198 178 178 148

Ch 264 247 256 260 241 207 232 238

Eu 264 218 213 159 198 165 162 162

Ma 264 218 213 159 198 206 206 202

Table 4.   The triples distance between the reference and the clustering trees using various background 
models with k = 2–9 to identify the gradient relationships of metatranscriptomic samples of microbial mats 
in Experiment 5. “Mi” indicates that the expected counts are calculated based on an i-th order Markov model 
for the background sequences. The p-values are estimated by comparing the observed triples distance to the 
triples distance in 3000 randomly-joined trees: for the triples distance <​ 155:p <​ 0.001.
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metatranscriptomic data, exempting from manual selection of a fix MC order. Compared with FOMC, VLMC are 
more structural rich and easy to use. Based on the experimental results, we show that ⁎d2  and d S

2  dissimilarity meas-
ures combined with VLMC background model can identify the underlying relationships among samples from 
different microbial communities. They can also reveal the gradient relationship among the samples. Therefore, 
such dissimilarity measures should be adopted in comparative transcriptomic and metatranscriptomic studies.

In this study, we only applied VLMC to RNA-Seq or metatranscriptomic datasets. We also attempted to apply 
VLMC to metagenomic datasets, but here, VLMC does not achieve obvious improvements compared with the 
results of FOMC. For instance, we applied VLMC to analyze a real mammalian gut metagenomic dataset33. It 
includes 21 samples from mammalian species of herbivores and 7 samples from species of carnivores. As shown 
in Figure S4 in Supplementary section 5, results indicate that VLMC is less effective than FOMC in distinguish-
ing between the two mammalian sample types. This could be attributed to the inclusion of both expressed and 
non-expressed regions in the whole genomes, making them heterogeneous. One model cannot fit the data well 
resulting in a simple independent identically distributed yielding the most meaningful results in most cases. Since 
the transcriptome only includes expressed regions, they will most likely be homogeneous, and a Markov model 
may fit better. Thus, while VLMC can improve performance for metatranscriptomic datasets, it does not show 
obvious improved performance for metagenomic datasets.

Alignment-free method avoids the complications of alignment-based approach, and is able to process the 
microbial community with a large amount of dark matters. However, it does not provide detail insights of micro-
bial communities and further biological interpretation. To answer such questions, alignment-based methods are 
still needed.

Methods
Processing flow chart.  The processing procedure consists of three main steps: (1) calculating k-tuple fre-
quency; (2) calculating the probability of each tuple based on VLMC and applying various dissimilarity measures 
to k-tuple frequencies; and (3) evaluating different dissimilarity measures and models for background sequences. 
We used UPGMA34 for hierarchical clustering based on dissimilarity matrix and applied the triples distance26 to 
evaluate consistency between the reference tree and the clustering tree. We extended the VLMC algorithm to 
make it suitable for high-throughput sequencing data and then applied VLMC to model the underlying back-
ground genomes in d S

2  and ⁎d2 dissimilarity measures. Figure 7 shows the flow chart, and the details of these steps 
are given below.

Calculating k-tuple frequency.  Alignment-free methods use k-tuple frequencies as sequence signatures to 
represent each metatranscriptomic datum. In our study, k-tuple frequencies from k =​ 1 to a maximum k value are 
calculated with our developed pipeline, taking complementary strands into consideration. The maximum k value 

Figure 6.  PCA ordinates of samples in Experiment 5. (a) Two-dimensional PCA plot based on FOMC.  
(b) Two-dimensional PCA plot based on VLMC.
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is d +​ 1, where d is the depth of the full prefix tree constructed in step (1). In our study, the depth of the prefix 
tree is 10. The k-tuple frequencies are used in constructing prefix tree, calculating the transition probabilities and 
compute dissimilarity measures.

Dissimilarity measures based on k-tuple frequency.  The dissimilarity between two samples is calcu-
lated based on the frequency vectors using various measures, including measures with background model nor-
malization such as d S

2  and ⁎d2  with VLMC/FOMC background sequence models, and measures without 
background model normalization such as d2, Ma, Ch and Eu in our study. The calculation of d S

2  and ⁎d2  is 
described briefly as follows21:

Let = …C C C C( , , , )X X X X,1 ,2 ,4k  and = …C C C C( , , , )Y Y Y Y,1 ,2 ,4k  represent the k-tuple frequency vectors of 
sequencing data X and Y, Let = ∑ ==n C S X Y, ,S i S i1

4
,

k
 be the sum of the counts of all k-tuples. The d S

2  and ⁎d2  
dissimilarity measures are defined in equations  (1) and (2), where = −C C n PX i X i X X i, , ,  and 

= −C C n PY i Y i Y Y i, , , . The ranges of d S
2  and ⁎d2  are between 0 and 1.
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where PX,i and PY,i are the probability of the ith k-tuple based on X and Y, respectively. The probabilities are calcu-
lated based on a specific probabilistic model. For example, consider a 5-tuple “GCTAC”. Then P(GCTAC) can be 
calculated as:

Figure 7.  Flow chart of our approach:  (1) The frequency vector of 1–10 tuples is generated from the 
sequencing data. (2) Markov transition probability of each tuple is calculated based on VLMC, and different 
dissimilarity measures are applied to k-tuple sequence signature. (3) Measured dissimilarities are evaluated. 
We used UPGMA for hierarchical clustering based on dissimilarity matrix and applied the triples distance to 
evaluate the consistency between the reference and the clustering trees.
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= × × × ×GCTAC G C G T GC A GCT C GCTAP( ) P( ) P( ) P( ) P( ) P( ) (6)

In previous studies1, FOMC was used to compute transition probability with fixed order r. For example, when 
r =​ 2,

= × × × ×GCTAC G C G T GC A CT C TAP( ) P( ) P( ) P( ) P( ) P( ) (7)

In application, the order of MC needs to be set manually. But for most microbial communities, there is no 
prior knowledge available for MC order. Furthermore, it is hard to model probabilities of different tuples using a 
single fixed order MC. Variable Length Markov Chains24 (VLMC) model the background genomes selecting the 
MC order adaptively in a data-driven way. For example, the probability (3) might be represented as formula (8) 
after determining the order in VLMC:

= × × × ×GCTAC G C G T C A T C TAP( ) P( ) P( ) P( ) P( ) P( ) (8)

Thus VLMC is more structurally rich and the number of variables is flexible. VLMC was originally designed 
to model long sequences24,35 and was represented as a context tree structure25. In our study, VLMC was extended 
to model the background genomes based on short reads from high throughput sequencing.

VLMC for modeling background genomes with high-throughput sequencing data.  The VLMC 
for high-throughput sequencing data is implemented with the following three steps: (1) A full prefix tree is built 
based on 1, 2, …, 10-tuple frequency vectors, but the tree usually overfits the data. (2) The tree is subsequently 
pruned to remove redundant branches based on Kullback-Leibler divergence36, and the pruned tree is also called 
a context tree25. (3) Transition probabilities are calculated with respect to the MC orders from the context tree, 
and the probabilities of k-tuples are then computed accordingly. A specific example is given in Fig. 8. The three 
steps were inspired by the original VLMC method on a single genomic sequence proposed by Bühlmann P. and 
Wyner, A. J. in 199924.

Step 1: Generating a prefix tree τmax based on tuple frequency.  We first generate a tree τmax to store 
tuples in the frequency vector. The tree τmax is actually a prefix tree growing downwards, where each node in the 
tree represents a tuple. The lth level nodes represent tuples of length l. In our study, the maximum depth of the tree 
τmax is up to 10. The following logic determines the relationships connecting nodes. If a node represents the l-tuple 
ω ∈​{A,C,G,T}l, l =​ 1, 2, …, 9, then its offspring represents the (l +​ 1)-tuple word μω (μ is a character in front of 
ω, μ ∈​{A,C,G,T}. For a node representing ω, the transition probability is calculated as PX(X|ω) =​ CX,ωX/CX,ω and 
saved at the node. In practice, the construction of τmax based on 1, 2, …​, k-tuple frequency vectors is fast.

In Fig. 8A, τmax is generated based on frequency vector Cgg. Node N2(C) represents tuple C, and its offspring 
N21(GC) represents tuple GC. Additionally, each node is associated with the transition probability from corre-
sponding tuple to X (X∈​{A,C,G,T}). Node N2(C) is associated with P(X|C), and node N21(GC) is associated with 
P(X|GC).

Step 2: Pruning the tree τmax.  The next step involves pruning the tree τmax to remove redundant branches. 
If the probability P(X|μω) for a terminal node μω is the same as its parent node’s transition probability P(X|ω), 
meaning that the transition probability of μω can be replaced by that of ω, then the terminal node μω can be 
pruned from the branch. In our study, Kullback-Leibler divergence is a measure of the distance between two 
probability distributions P(X|μω) and P(X|ω). Accordingly, Kullback-Leibler divergence36 is applied to compare 
P(X|μω) and P(X|ω), which is denoted as DKL(P(X|μω)||P(X|ω)). A value of DKL(P(X|μω)||P(X|ω)) less than a 
threshold value K indicates that no information is lost when P(X|ω) is used to approximate P(X|μω), thereby 
allowing μω to be pruned. DKL(P(X|μω)||P(X|ω)) is given by formula (9), and N(*) is the frequency.
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Taking Fig. 8B as an example, the Kullback-Leibler divergence between N21(GC) and N2(C) is calculated to 
determine whether nodeN21(GC) should be pruned:

∑| | = |





|
|




∈

D X GC X C X GC X GC
X C

(P( ) P( )) P( )log P( )
P( ) (11)

KL
X A C G T{ , , , }

Suppose that threshold K is set to 5, then node N21(GC) should be pruned if

<D X GC X C(P( ) P( )) 5 (12)KL

The pruning is implemented for each terminal node until no branches can be pruned. K is the threshold that 
determines the degree of pruning. A larger K means greater conditional latitude in branch pruning, in turn pro-
ducing a smaller tree.
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Similar to the study of Mächler and Bühlmann35, the determination of K is implemented through the optimi-
zation of Akaike Information Criterion (AIC)37 designed for high-throughput sequencing data. AIC measures the 
relative quality of statistical models for a given set of data. AIC is originally defined as

= −n LAIC 2 2 ln( ) (13)

where L is the maximum value of the likelihood function for a statistical model, indicating the goodness of fit of 
the model, and n is the number of parameters in the model, indicating the complexity of the model.

Here we develop the AIC calculation algorithm for high-throughput sequencing data. Given high-throughput 
sequencing data with M reads of length β,

… = … = …βS S S S S S j M{ , , , }, , , , 1, , , (14)M j j j1 2 1

where Sj is the jth read, Sji is the ith nucleotide of jth read, and Sji ∈​ {A,C,G,T}. Then, AIC with pruning threshold K 
is defined as:

Figure 8.  Flow chart showing the construction of VLMC based on high-throughput sequencing data. 
(A) Construction of the prefix tree. (B) Pruning of the prefix tree. (C) Calculation of probability based on the 
pruned (or context) tree.
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where card (τĉK) denotes the number of nodes in the context tree τĉK, and Lln ( )K
R is the log-pseudo-likelihood 

under a fitted VLMC model with threshold K. The superscript R denotes the short read data. The 
log-pseudo-likelihood of the sequencing data is

∑ ∑= | …
β= … = …

+L P S S Sln( ) ln( ( ))
(16)

K
R

j M i
j i j ji

1, , 2, ,
( 1) 1

where P(Sj(i+ 1)|Sj1…​Sji) is the estimated transition probability from the high-throughput sequencing data. The 
optimal K is determined by minimizing the formula AICR(K).

The two steps of tree building and pruning for high throughput sequencing data is extended from the original 
algorithm for long sequences from Bühlmann et al.24. The pruning step starts from the terminal nodes and the 
procedure is repeated until no more pruning is possible. The algorithm is greedy, so it is possible that the final 
pruned context tree is not the global optimal one. The R-package for long sequences35 developed in 2012 follows 
the same greedy algorithm.

Step 3: Calculating probabilities of tuples based on the context tree.  The corresponding probabili-
ties of tuples are calculated based on the context tree. The number of independent parameters is Num(nodes) ×​ 3, 
where the Num(nodes) is the total number of nodes in the context tree except the root-node. Taking the context 
tree in Fig. 8C as an example, Node N21(GC) was pruned away; therefore, in tuple GCX, G has no effect on the 
transition probability from GC to state X. Thus, P(X|GC) can be replaced by P(X|C) and stored in node N2(C) of 
the context tree in Fig. 8C.

=X GC X CP( ) P( ) (17)

The tuples in the node of context tree can be of variable length, allowing the VLMC model to estimate the 
transition probability. The corresponding probabilities of tuples used in d S

2  and ⁎d2  are then computed based on 
the transition probabilities. For example in Fig. 8C, the probability of 5-tuple word “GCTAC”,

= × × × ×
= × × × × .

GCTAC G C G T GC A GCT C GCTA
G C G T C A GCT C TA

P( ) P( ) P( ) P( ) P( ) P( )
P( ) P( ) P( ) P( ) P( ) (18)

In the real data from marine metatranscriptome, there are ~103 nodes for the pruned context tree with 8 levels 
and ~102 nodes for the tree with 7 levels, which means that the number of parameters reduced from 48 × 3∼​2  
×​ 105 to ∼​103–4 for r =​ 8; and from 47 ×​ 3∼​5 ×​ 104 to ∼​102–3 for r =​ 7, at least 10-fold decrease in the number of 
parameters.

Using a heuristic approach to search for optimal K.  The value of K is determined by minimizing 
AICR(K). However, no simple analytical formula exists between K and AICR(K), making it a challenge to find 
the optimal K for all sequencing data. To solve this problem, we developed the following heuristic approach to 
determine the value of K. In our study, one branch is pruned when its Kullback-Leibler divergence is less than the 
threshold K. Therefore, K is meaningful only when it is within the value range of Kullback-Leibler divergence. 
In Experiment on 22 Marine Microbial Eukaryotes, the probability density distribution of the Kullback-Leibler 
divergence is shown as Fig. 9. The values of Kullback-Leibler divergence in most tuples are between 100 and 500. 
Optimal results are generally obtained with K setting around the peak points and the right two inflexions (point 
A, B and C in Fig. 9). Hence, we only implement local search around these three points for the optimal K that 
minimizes loss functionAICR(K).
Sample clustering with UPGMA34 (Unweighted Pair Group Method with Arithmetic Mean) is a hierarchical 
clustering method initially designed for classification problems. UPGMA is now widely used for hierarchical clus-
tering in bioinformatics based on dissimilarity matrices. The nearest two clusters are combined into a higher-level 
cluster. The distance between two clusters A and B is defined as the average of all distances between pairs of 
samples x in A and y in B. The calculation is presented in equation (14), where d (x,y) refers to the dissimilarity 

Figure 9.  Probability density distributions of 22 Marine Microbial Eukaryotes RNA-Seq data. 
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between sample x and sample y. This is repeated for each step. UPGMA is implemented with the function ‘upgma’ 
from the ‘phangorn’ toolbox of R.

∑ ∑
⋅ ∈ ∈A B

d x y1 ( , )
(19)x Ay B

The selection of proper evaluation metrics: Based on the dissimilarity matrix from different background mod-
els, the hierarchical clustering trees are produced. The consistency between the reference and the clustering trees 
offers the metrics to evaluate the performance of the various background models. There are several metrics to 
measure the difference of topological structures between two trees.
Parsimony score38,39 is the most common one to compare the topological structures of two trees. The parsimony 
score for a tree is the sum of the smallest number of substitutions needed comparing with the reference tree, 
which was implemented with toolbox Mothur in our study. When one tree is binary and one tree is not binary, the 
parsimony score is not suitable for comparison of the trees.
Symmetric difference40 was originally defined to compare two node sets. It has been used as a criterion to evalu-
ate the consistency between two trees38. Two trees A and B have the same leaves, and their node sets are 

= …
−

A n n n{ , , , }A A An1 2 1
 and = …

−
B n n n{ , , , }B B Bn1 2 1

. The symmetric difference between A and B is defined as

∩ ∪ ∩∆ =A B A B B A( ) ( ) , (20)

i.e., the set of nodes present in one tree, but not in the other tree, where |*| is the number of elements, and A and 
B are the complements of set A and set B, respectively. Compared with the parsimony score, symmetric difference 
does not use branch length information, only tree topologies. Moreover, symmetric difference has taken the order 
of hierarchical clustering into consideration, making the comparison more sensitive. Symmetric difference is 
calculated with Treedist from Phylip.
The triples distance26, another tree comparison metric to measure the distance between binary26 or non-binary 
trees41, is also used. In our study, some reference trees are rooted non-binary trees. The measures are based on the 
topologies of the input trees induce on triplets; that is, on three-element subsets of the set of species. Triplet based 
distances provide a robust and fine-grained measure of the similarities between trees41, which was developed as 
toolbox TreeCmp42.

The above three metrics have different characteristics and application scopes of their own. In Supplementary 
Section 7, we constructed example trees and measure their distances with the three metrics. Table S6 shows the 
three metrics for experiment 5, and the three metrics reflect general consistent tendency of tree distance. These 
two experiments show that the triples distance is most suitable and has high accuracy to evaluate the consistence 
of topologies of two trees.
Principal component analysis (PCA)43 is an important tool to analyze a multivariate data table in which observa-
tions are described by several inter-correlated quantitative dependent variables. Its goal is to extract the important 
information from the table and to represent the information as a set of new orthogonal variables called principal 
components. In R ‘ape’ toolbox, the functions princomp and prcomp can be used for principal component analysis.
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