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Over the past decade, our understanding of human diseases has rapidly grown from the rise of single-cell
spatial biology. While conventional tissue imaging has focused on visualizing morphological features, the
development of multiplex tissue imaging from fluorescence-based methods to DNA- and mass
cytometry-based methods has allowed visualization of over 60 markers on a single tissue section. The
advancement of spatial biology with a single-cell resolution has enabled the visualization of cell–cell
interactions and the tissue microenvironment, a crucial part to understanding the mechanisms underly-
ing pathogenesis. Alongside the development of extensive marker panels which can distinguish distinct
cell phenotypes, multiplex tissue imaging has facilitated the analysis of high dimensional data to identify
novel biomarkers and therapeutic targets, while considering the spatial context of the cellular environ-
ment. This mini-review provides an overview of the recent advancements in multiplex imaging technolo-
gies and examines how these methods have been used in exploring pathogenesis and biomarker
discovery in cancer, autoimmune and infectious diseases.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Visualizing human tissue has become increasingly important in
furthering our understanding of cellular mechanisms, pathogene-
sis, and treatment efficacy. In-depth analysis of the tissue land-
scape at a single-cell level is crucial in defining the pathogenesis
of many diseases, where complex local cellular environments
determine either the success or failure of the host response.
Single-cell transcriptomics, using cell suspensions from dissociated
tissue, has enabled the characterization of cellular processes and
previously unidentified populations in both physiological and dis-
eased states [1,2]. While able to capture the cell–cell variation pre-
sent in tissue, single-cell transcriptomics is unable to provide the
spatial context of cells [3,4]. Consequently, the scope of these stud-
ies may be limited as the native cellular environment of biological
systems is not considered, omitting the functional roles from the
spatial organization of tissue [5,6]. Recent advances in multiplex
tissue imaging have tried to preserve the spatial context of tissues
while retaining the depth of single-cell analysis, enabling the
investigation of both cell–cell interactions and the spatial distribu-
tion of the cells in human tissues and organs [7,8]. However, as
most clinical and archival samples are preserved as formalin-
fixed paraffin-embedded (FFPE) tissue, this has limited the imaging
technologies available that can overcome the inherent autofluores-
cence and damage to cell and tissue quality observed in FFPE tissue
[9–11].

This mini-review will highlight how the development of major
proteomic-based tissue imaging technologies over the past decade,
ranging from multiplex immunofluorescence and mass cytometry
to DNA barcoding methods, has deepened our understanding of
human diseases.
2. Tissue imaging technologies

2.1. Sequential multiplex immunofluorescence

Multiplex immunofluorescence overcomes the limitations com-
monly associated with conventional immunohistochemistry (IHC),
including the low label capacity and high inter-observer variability,
by allowing simultaneous detection of multiple markers on a single
tissue section and post-imaging digital analysis [12,13]. While sev-
eral methods are available in multiplex immunofluorescence, mul-
tiplexing often presents challenges through the degradation of
tissue architecture and epitopes after iterative stain cycles
[14,15]. Tyramide signal amplification (TSA) is the core of many
multiplex immunofluorescence technologies. As shown in Fig. 1,
TSA methods consist of serial staining cycles where horseradish
peroxidase (HRP) conjugated to secondary antibodies enzymati-
cally catalyzes tyramide reactions, binding tyrosine-conjugated
fluorophores near protein antigens of interest [8,15–18]. The sub-
sequent covalent tyramide-tyrosine bond formed helps preserve
fluorescent signals accumulating on the tissue while other non-
covalently bound antibody pairs are removed by heat [15,16,19].
This allows the detection of markers with low expression and the
use of primary antibodies from the same species, while still main-
taining a high signal-to-noise ratio [16,17,19–21]. TSA is also more
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photostable compared to conventional immunofluorescence,
which enables the long-term storage and re-imaging of the slides
after the initial staining [22].

The most notable TSA method is the Opal Multiplex IHC assay
(Akoya Biosciences), which can identify up to eight markers using
FFPE tissue [15]. The Opal assay utilizes TSA-conjugated fluo-
rophores which are covalently bound to tissue, and iterative
rounds of antibody staining and stripping by heat-induced epitope
retrieval, commonly performed in the microwave [21,23]. After the
optimization of an Opal assay using single-colored controls and a
spectral library, the resulting assay has the advantages of increased
sensitivity, specificity, and compatibility with most fluorescent
microscopes in research laboratories [16].

While the large-scale quantitative analysis and manual labor-
intensive protocols are limiting in TSA-based technologies, the
development of autostainers and automated protocols has allowed
for consistent imaging of multiple whole tissue samples with quick
turnover times [20]. However, these advancements in protocol
automation do not address all the limitations. Tissue degradation
from repeated heat-induced epitope retrievals required in TSA-
based protocols and prolonged tissue exposure to chemicals
required for multiplexing are particularly problematic when stain-
ing delicate samples or tissues with low cell density [8,14]. Fur-
thermore, TSA does not recognize the intensity of antibody
expression and is prone to false-positive staining from tyramide
overreaction [12]. Fluorescence imaging is also limited by tissue
autofluorescence and difficulties in assessing and recognizing tis-
sue architecture, as opposed to imaging of conventionally stained
tissue [21]. Ultimately, spectral overlap remains a barrier to mar-
ker capacity for panels from fluorescence-based multiplex imaging
technologies.

2.2. DNA barcoding

To overcome the practical and spectral limitations of sequential
immunofluorescence imaging, DNA-barcoded imaging probes have
been developed. DNA barcoding utilizes antibodies conjugated
with orthogonal DNA oligonucleotides (Fig. 1), which are detected
by probes of complimentary single-stranded DNA often conjugated
to a fluorescent dye [24]. Here we will focus on co-detection by
indexing (CODEX), and nanoString Digital Spatial Profiler (DSP),
two examples of DNA barcoding methods.

2.2.1. Co-detection by indexing (CODEX)
This technology incorporates DNA-conjugated antibodies with

dye-labeled nucleotides for multiplex imaging [25]. In the first iter-
ation of CODEX, cells are first stained with all tagged antibodies,
where markers are iteratively revealed and imaged when exposed
to a nucleotide mix, allowing the final multiplexed image to be
reconstructed [25]. Notably, the recent commercialization of
CODEX into the PhenoCycler by Akoya Biosciences has led to
advancements in their workflow, which includes an automated
microfluidic system for a single staining procedure capable of
staining FFPE, fresh-frozen (FF) tissue, and single cells [26]. This
advancement allows the quantification of up to 60 markers and
streamlines the staining protocol in a single platform. The latest



Fig. 1. Workflow for multiplex imaging technologies. Formalin-fixed paraffin-embedded (FFPE) tissue samples first undergo a round of antigen retrieval to prepare the tissue
for staining. In sequential multiplex immunofluorescence, each marker is stained separately, where the fluorescent signal is amplified from the horseradish peroxidase (HRP)-
tyramide reaction (left). DNA barcoding instead consists of a single staining step with antibodies conjugated to oligonucleotides. These oligonucleotides are detected, imaged,
and then quantified to create the final multiplexed image (middle). Mass cytometry imaging also utilizes a single staining step with metal-conjugated antibodies. These metal
isotopes (M) are ionized and detected by mass spectrometry, where the signal detected can be used to reconstruct the image (right). After staining, the images acquired from
all imaging technologies follow a similar analytics pipeline including cell segmentation and phenotyping to further data analysis and visualization.
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system, PhenoCycler-Fusion, has an integrated imaging platform
for faster single-cell and tissue analysis, while increasing sample
capacity [27]. This system is also compatible with RNAscope [28]
to enable RNA detection alongside protein markers.
5258
CODEX is advantageous due to its ease of use while minimizing
spectral overlap and batch effects from the single antibody staining
step [29]. The commercialized version of CODEX is compatible
with many existing inverted fluorescent microscopes and does
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not cause significant damage to the tissue sample. While CODEX
panels have been validated for up to 56 antibody markers in lym-
phoma and colorectal cancer samples [30,31], over 100-plex panels
have been developed for use with the PhenoCycler-Fusion system,
enabling the spatial characterization of clinical samples with a
single-cell resolution. CODEX has the capacity to increase the num-
ber of markers in antibody panels, only limited by the development
of new, unique oligonucleotide sequences and long imaging acqui-
sition times [26]. While CODEX overcomes many technological
barriers in multiplex tissue imaging, the cost of CODEX-specific
reagents is one of the primary limiting factors. Many of the anti-
bodies validated and compatible with CODEX are more expensive
than antibodies available for staining in FF tissue [26]. As CODEX
increases the capacity for more markers in antibody panels, mini-
mizing the speed of each imaging cycle to visualize the entire bar-
coded tissue remains an issue to be addressed [25].

2.2.2. GeoMx Digital Spatial Profiler
GeoMx Digital Spatial Profiler (DSP), a commercial system

developed by nanoString, is an alternative method that allows
the visualization of both mRNA and protein using oligonucleotide
probes conjugated to either antibodies or RNA probes with a pho-
tocleavable UV linker [32,33]. The DSP platform also integrates flu-
orescent staining to identify morphological features and help select
regions of interest (ROI). After the oligonucleotide incubation, the
slides are scanned into the automated DSP system to select for
ROI, where for each region the oligonucleotides are photo-
released and collected into a microtiter plate for quantification
[32,33]. ROI selection and shape can be customized by the user
with the DSP platform capable of imaging regions at sizes of
5 lm by 5 lm to 660 lm by 785 lm [34]. Currently, DSP has been
validated for use with up to 44 proteins and 96 genes in lymphoid,
colorectal tumor, and inflammatory bowel disease tissue and is
compatible with both FFPE and FF tissue [33,34].

One of the primary advantages of DSP is the capability to profile
both RNA and protein using targeted panels in the same tissue sec-
tion multiple times for in-depth sequencing of only targets of
interest with minimal damage to the tissue section [33,35]. Cur-
rently, over 300 antibodies have been validated for use with the
DSP platform in addition to pre-designed reagent panels and
custom-designed antibody or RNA probes [34]. Finally, the DSP
platform is simple to use, automated, and does not require addi-
tional instrumentation to image, quantify and undertake spatial
profiling [33,36]. However, DSP is restricted to analyzing informa-
tion within each region of interest and cannot profile the complete
slide, unlike CODEX and sequential immunofluorescence imaging
[33]. While DSP can achieve a near single-cell resolution for some
proteins, this cannot be achieved for all markers and relies on the
sensitivity of each antibody or probe used [33,37]. Further develop-
ment of DSP needs to improve processing capacity and reduce the
current turn-around time of up to four days, which is usually
lengthened by increased ROI size and complex profiling strategies
[32,34]. Another platform recently developed by nanoString, the
CosMx Spatial Molecular Imager, aims to overcome the issues with
resolution and speed in DSP, enabling detection of both RNA and
protein at a subcellular resolution [38].

2.3. Mass cytometry imaging technologies

Mass cytometry imaging (MCI) applies the principles of mass
cytometry used for analyzing cells in suspensions to visualize FFPE
and FF tissue samples using metal-conjugated antibodies (Fig. 1)
[39,40]. Mass cytometry-based imaging technologies overcome
many of the limitations in fluorescence-based methods, allowing
the visualization of up to 40 markers [39,41,42]. Imaging Mass
Cytometry (IMC) [42] and Multiplexed Ion Beam Imaging (MIBI)
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[41] are the two primary methods, only differing in how they ion-
ize the metal isotopes for detection by the time-of-flight (TOF)
mass spectrometer.

IMC detects molecular targets using metal-conjugated antibod-
ies which are ionized in an ablation chamber by a UV laser, then
measured and indexed by TOF mass spectrometry [40,42,43]. The
speed and size of the laser ablation spots determine the resolution
of the final image acquired, where a rastering speed of 200 pixels
per second using a 1 lm laser spot size can image 1 mm2 of tissue
in under two hours [43].

Meanwhile, MIBI follows a similar principle but uses an alterna-
tive to a pulsed laser to vaporize the metal isotopes bound to the
tissue [43]. Instead, a tunable oxygen primary ion beam is used
to rasterize the tissue, ionizing metal isotopes while only ablating
a thin layer of tissue [39,41,43]. This enables the tissue to be res-
canned, unlike IMC [8]. Like IMC, MIBI is capable of imaging tissue
sections of up to 1 mm2, with the resolution of the final image reli-
ant on the acquisition time [44]. However, in MIBI, the ion beam
can be adjusted, allowing a higher resolution of as low as
260 nm to be scanned [39,44]. Detailed comparisons between
IMC and MIBI have been previously reviewed [8,39].

MCI is advantageous over fluorescence-based imaging as it uti-
lizes atomic mass in generating the tissue image, reducing endoge-
nous autofluorescence and the need for amplification [42,45]. The
subsequent low signal-to-noise ratio allows for high sensitivity
with detection limits of approximately 50 copies of an epitope
per pixel [46]. The use of heavy-metal isotopes ensures that each
isotope has a unique atomic mass that can be easily identified
and quantified, resolving issues related to spectral overlap com-
mon in fluorophore-based imaging technologies [46]. Currently,
the largest panels validated for imaging diseased tissue using
MCI consist of 30–40 markers [42,44,47–49]. However, MCI has
the potential to expand and detect up to 100 markers depending
on the discovery of new rare metal isotopes [39]. IMC can also be
expanded to detect mRNA expression by conjugating RNAscope
probes to heavy metal isotopes [28,40,50]. Currently, in situ detec-
tion of up to three mRNAs can be obtained simultaneously, allow-
ing visualization of the relationships seen in and between mRNA
and protein signaling networks [51].

Both IMC and MIBI rely on high-quality, purified antibodies for
use with a TOF mass spectrometer to minimize non-specific signals
from impurities, wheremost of these antibodies are only optimized
for use in single-cell suspensions. Consequently, developing a high
parameter panel is both expensive and time-consuming, requiring
antibody validation and optimization [7,8,43,46]. In addition, the
time-consuming nature of image acquisition limits the use of MCI
for whole-slide imaging. Instead, MCI is usually reserved to analyze
smaller ROI to ensure high spatial resolution while balancing the
speed of image acquisition [43]. Manually selected ROI are vulner-
able to visual and cognitive bias andmay ignore spatial and cell–cell
interactions that would otherwise be identified during whole-slide
imaging [52]. Furthermore, the 1 lm2 resolution used in IMC is still
unable to accurately resolve and image subcellular organelles, lim-
iting the ability to assign cellular phenotypes based on marker
expression [40]. However, the recent adaptation of a positively
charged cesium primary ion beam to MIBI has enabled the imaging
of subcellular structures, achieving approximately 30 nm in the lat-
eral resolution and 5 nm in the axial resolution [53].
3. Application of tissue imaging in human disease

3.1. Cancer

The demands for better biomarkers and a deeper understanding
of mechanisms underlying successful immunotherapy have played
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a pivotal role in spearheading the development of cutting-edge
multiplex tissue imaging technologies [41,42]. These approaches
have characterized tumor microenvironments (TME) with single-
cell resolution and defined the local cellular response to
immunotherapy [31,44,54,55]. In this regard, breast cancer tumor
samples were explored in two original papers, which first
described the utility of IMC and MIBI [41,42] in in-depth cell phe-
notyping of tissue, allowing the visualization of the cell–cell inter-
actions, tissue architecture, and tumor heterogeneity.

The success of these studies helped establish the prognostic
value of studying tumor heterogeneity and how characterizing
TME can predict treatment and patient outcomes. One of the land-
mark studies [44] used MIBI with a 36-plex panel to identify TME
in triple-negative breast cancer, a form of breast cancer with
increased tumor-infiltrating lymphocytes and a lack of therapeutic
breast cancer targets (estrogen receptor, progesterone receptor,
and HER2). This study found that the spatial organization of
immune infiltrates and immunoregulatory proteins were differen-
tially expressed across patients and that PD-L1 and IDO were hall-
marks of tumor compartmentalization, which could be associated
with increased overall survival. This seminal study was important
in forming a framework for visualizing and analyzing high param-
eter data, linking the cellular composition of tumor microenviron-
ments to clinical cohorts with improved survival. Similarly, a
recent CODEX study developed a 56-plex panel to analyze clinical
cutaneous T cell lymphoma samples [30]. Expansion to a 56-
marker panel with CODEX allows more extensive immunopheno-
typing by classifying cell types using multiple markers, especially
important for cells with similar lineages, and visualization of cells
with spatial context. An extensive panel is also important in
enabling the detection of novel biomarkers and immunomodula-
tory proteins. This identifies the intra-tumor and patient hetero-
geneity present and allows a more accurate understanding of the
cellular basis underlying the host responses to immunotherapy.
Together, these studies establish a framework and validated panel
for studying cell–cell interactions in TME and immunotherapy
responsiveness in FFPE tumor samples [30,44].

Imaging technologies have also been employed clinically to
characterize the changes in immune cells and checkpoints during
immunotherapy [54,56]. Due to easier reagent and instrument
availability, smaller 4- and 5-plex Opal panels have been used to
perform immune profiling on melanoma patients treated with
anti-PD1 monotherapy and combination therapy of anti-PD-1
and anti-CTLA-4 [56,57]. Responders to monotherapy and com-
bined therapy had higher initial and final infiltrates of immune
cells, consistent with previous studies describing the relationship
between the TME and immunotherapy [30,56,58–60]. Additionally,
while PD-1 and PD-L1 increased in responders, non-responders
had significantly fewer infiltrates of activated T cells and regula-
tory FOXP3+ T cells in tumors [56]. This has direct translational rel-
evance to clinical oncology, as it allows the prediction of non-
responders, which have low tumor-infiltrating lymphocytes, and
enables early selection of combination therapy to maximize treat-
ment efficacy.

Alternatively, larger IMC panels have been used to assess the
changes in immune cell infiltration and immunomodulatory pro-
teins in tumors after immunotherapy. An 18-plex panel showed
that breast cancer tumors, expressing the extracellular domain of
HER2, responded well to treatment with trastuzumab and were
spatially associated with increased CD8+ T cell infiltration [54].
Similarly, a 25-plex panel profiled melanoma tumors treated with
immune checkpoint inhibitors, pembrolizumab, nivolumab, or a
combination of ipilimumab and nivolumab [61]. The study
observed that patients with increased survival had higher levels
of CD8+ T cell infiltration. In addition, higher beta2-microglobulin
expression in tumors was associated with a better response to
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immunotherapy and may be a potential biomarker indicating
immunotherapy responsiveness. While these IMC studies only pro-
file ROI, they highlight how broad marker panels and subsequent
spatial analysis can capture biomarkers indicative of successful
immunotherapy, with potential for future routine use in predicting
patient immunotherapy responsiveness.

3.2. Autoimmune diseases

3.2.1. Type 1 Diabetes
Imaging beta-cells, the main source of insulin, in pancreatic

islets has been of interest in studying disease progression and
the immunopathogenesis of type 1 diabetes mellitus (T1DM)
[62]. Two IMC studies sought to characterize disease progression
and immunopathogenesis of T1DM by using archival pancreas
samples [47,49]. A 35-marker panel strived to elucidate the mech-
anisms behind beta-cell destruction and examined if proximity to
immune cells and blood vessels correlated with increased destruc-
tion [49]. Surprisingly, they discovered that while cytotoxic and
helper T cells are recruited to pancreatic islets before beta-cell
destruction, the spatial analysis suggested that they were not
directly involved as previously thought, exemplifying the impor-
tance of spatial information in understanding pathogenesis. In a
separate study, a 33-marker panel quantified the structural and
cellular changes in islets during T1DM progression [47]. They
found that while cytotoxic and helper T cells were also found in
proximity to beta-cell-containing islets, there was heterogeneity
in the spatial distribution and proportions of immune cell infiltra-
tion within each sample and across patient samples. Together, both
these studies help identify the changes in pancreatic tissue and
islet cells for early detection of diabetes, uncovering the mecha-
nisms behind pathogenesis.

More recently, another study has incorporated whole-slide
imaging with multiplex tissue imaging, allowing analysis of the
cellular heterogeneity of T1DM pancreas at an organ level [63].
Here, Opal fluorophores detected immune and endocrine cells for
infiltration and spatial analysis of islets [63]. While this study does
not utilize an extensive panel of markers, the incorporation of
whole-slide imaging with QuPath [64], a machine learning-based
image analysis platform, allows accurate and objective quantifica-
tion of the structural and cellular changes in T1DM pancreas.

3.2.2. Multiple Sclerosis
While our knowledge of the pathogenesis and treatments for

multiple sclerosis (MS) have advanced over the past decade, the
immunopathology behind the initiation of disease and triggers of
central nervous system (CNS) injury remains unknown [65]. The
limited availability of high-quality samples of early and active dis-
ease has led to difficulties in characterizing this stage of disease
[65]. Multiplex imaging technologies have enabled the study of
immune and CNS cell interactions while simultaneously generat-
ing high parameter data from rare archival samples [66].

A 13-plex IMC panel of myeloid and glial activation markers
mapped macrophage and astrocyte phenotypes in various lesional
regions [67]. By comparing myeloid cell and astrocyte phenotypes
in early and late MS lesions, the authors observed that in later
stages of disease, spatial interactions between these cellular popu-
lations significantly increased alongside increased activated
macrophages throughout perivascular spaces. This study uncovers
the changes in the cellular spatial organization of pro-
inflammatory phenotypes in the lesion rim and center throughout
disease progression, highlighting the capability of IMC in collecting
high-throughput data from limited tissue samples.

Another recent study [68] used a 15-plex IMC panel to charac-
terize different lesional stages of MS brain tissue after treatment
with natalizumab. This panel enabled the authors to pinpoint the
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anatomic localization of multiple T and B cell populations, identi-
fying immune cells with demyelinating activity in both normal-
appearing white matter and peaking in the core of active lesion.
The identification of cell–cell interactions with demyelinating
macrophage phenotypes in white matter before obvious signs of
demyelination, and near blood vessels and the border of active-
inactive lesions is instrumental to improving our understanding
of MS tissue injury and inflammation, an area still poorly
understood.

Both these studies feature the analysis of high dimensional IMC
data, highlighting the potential of multiplex tissue imaging in
addressing the current knowledge gaps in the initiation and pro-
gression of MS, improving diagnosis and identification of therapeu-
tic targets, especially with limited sample availability.

3.3. Infectious diseases

3.3.1. Tuberculosis
More recently, multiplex imaging technologies have been used

to address the limited knowledge surrounding the cellular archi-
tecture of tuberculosis granulomas. It has been previously estab-
lished that there is high lesion heterogeneity in mycobacterial
granulomas, where lesion pathology reflects bacterial persistence,
quality of the local immune response, and clinical outcomes
[69,70]. A 37-plex MIBI panel consisting of immune cells, non-
immune structural cells, and functional immunoregulatory mark-
ers imaged granulomas to identify hallmarks of active tuberculosis
[71]. They identified a unique spatial relationship between PD-L1
and IDO-1, where elevated co-expression of these markers was
associated with an immunosuppressive phenotype with a high
bacterial burden. Hence, the application of MCI to profile tubercu-
losis granulomas has revealed new immunoregulatory pathways
and can help direct the future design of host-directed therapies
to improve outcomes for tuberculosis patients.

3.3.2. COVID-19
Multiplex tissue imaging has also been applied to analyze tissue

response in COVID-19. The collection of high-parameter data has
helped the in-depth characterization of tissue pathology in the
novel disease through the analysis of the changing tissue struc-
tures and immune infiltrates [72]. Multiple studies using IMC,
DSP and Opal IHC have characterized the immune response and
spatial landscape of COVID-19 organ pathology [73–79].

To examine the multi-organ alterations caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), a 27-marker
IMC panel imaged the lungs, intestine, spleen, liver, and kidneys
[75]. Analysis established that the lungs and intestine displayed
strong immune responses, where increased infiltrate of CD11b+

macrophages and CD11c+ dendritic cells were observed. Intrigu-
ingly, elevated production of both the anti-inflammatory cytokine,
IL-10, and pro-inflammatory cytokine, TNF-a, was observed in the
two organs. This study lays the foundation for mapping COVID-
related organ damage throughout the body and identifies immune
signatures that need to be addressedwhen developing therapeutics.

A later study [73] undertook a more extensive 36-plex IMC
study to define and compare the immune landscape of COVID-19
lung pathology to other respiratory infections, using a panel con-
taining structural, immune cell, and functional markers. In addition
to reporting increased macrophages and dendritic cells as disease
progressed, the study revealed an increase in interactions between
macrophages and fibroblasts, contributing to alveolar wall thicken-
ing observed in COVID-19 pathology. To further validate the find-
ings, the study compared the changes in cellular composition
from the IMC data to gene set signatures obtained from DSP, where
similar increases in fibroblast and macrophage cell populations
from the progression of early to late COVID-19 were observed.
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Here, this study outlines the immune landscape of COVID-19 rela-
tive to other respiratory diseases and highlights how a combina-
tion of imaging technologies can be used to validate trends
observed.

Imaging technologies have also been used to elucidate the host
determinants driving the increased severity of COVID-19 lung
pathology. A 6-plex Opal panel profiled immune cells in COVID-
19 lungs in comparison to healthy, uninfected lungs [79]. A signif-
icant increase in the frequency and density of CD163+ monocytes
and macrophages were observed in the alveolar spaces of infected
lungs, while there was little change in lymphocyte and neutrophil
populations. Importantly, a similar spatial arrangement was also
found to be present in individuals with severe influenza, implicat-
ing that increased monocyte recruitment at alveolar spaces is asso-
ciated with alveolar damage and COVID-19 severity and represents
a common feature of acute respiratory viral infection. With further
analysis in larger cohort sizes, future clinical investigations may
direct effective therapeutic development to reduce monocyte
recruitment and thus reduce disease severity.

These studies all highlight the power of multiplex imaging in
identifying the cellular mechanisms controlling the pathophysiol-
ogy and immunopathology of human diseases, and in guiding the
development of future therapeutics.
4. Summary & outlook

While the high dimensional data obtained from multiplex tis-
sue imaging enables phenotyping and analysis of tissue with a
single-cell resolution, this leads to an inevitable computational
challenge. A robust and objective workflow for imaging data anal-
ysis and visualization still needs to be established, especially if
these methods are developed for clinical use [18,80,81]. Robust
and standardized workflows from panel design and imaging to
data acquisition are fundamental in ensuring these results are valid
and are reproducible across different tissue samples and studies
[7,22]. As summarized in Fig. 1, most laboratories have adopted a
similar analytics pipeline consisting of single-cell segmentation,
cell phenotyping, dimensionality reduction, spatial analysis, and
data visualization [26,41,44,74,82]. However, both analysis and
reporting of tissue imaging studies have yet to be standardized.
The development of more user-friendly, open-source analysis soft-
ware, such as QuPath [64], is required to support and streamline
this process [13,83]. Finally, as many of these imaging studies form
part of early-stage discoveries of biomarkers and therapeutic tar-
gets, it is unknown how well these findings translate clinically.

The power of the multiplex imaging technologies has only just
been uncovered, expanding from the well-established use of study-
ing TME in cancer to studying the pathogenesis of autoimmune and
infectious diseases. Our knowledge of the mechanisms behind
immunotherapy and local cellular environments in disease is evolv-
ing alongside the technological advances inmultiplex imaging tech-
nologies, which are increasing their marker capacity, speed, and
resolution. While multiplex imaging technologies are still limited
in panel size compared to spatial transcriptomics, this is rapidly
being addressed by the continuing development of MCI and DNA-
barcodingmethods to feasibly increase thenumberofmolecular tar-
gets in panels [82]. Nevertheless, multiplex tissue imaging will cer-
tainly have clinical utility in the future, cementing the importance of
spatial biology in our understanding of human diseases.
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