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Abstract
Self-reactive B cells are tolerized at various stages of B-cell development and
differentiation, including the immature B-cell stage (central tolerance) and the
germinal center (GC) B-cell stage, and B-cell tolerance involves various
mechanisms such as deletion, anergy, and receptor editing. Self-reactive B
cells generated by random immunoglobulin variable gene rearrangements are
tolerized by central tolerance and anergy in the periphery, and these processes
involve apoptosis regulated by Bim, a pro-apoptotic member of the Bcl-2 family,
and regulation of B-cell signaling by various phosphatases, including SHIP-1
and SHP-1. Self-reactive B cells generated by somatic mutations during GC
reaction are also eliminated. Fas is not directly involved in this process but
prevents persistence of GC reaction that allows generation of less stringently
regulated B cells, including self-reactive B cells. Defects in self-tolerance
preferentially cause lupus-like disease with production of anti-nuclear
antibodies, probably due to the presence of a large potential B-cell repertoire
reactive to nucleic acids and the presence of nucleic acid-induced activation
mechanisms in various immune cells, including B cells and dendritic cells. A
feed-forward loop composed of anti-nuclear antibodies produced by B cells
and type 1 interferons secreted from nucleic acid-activated dendritic cells plays
a crucial role in the development of systemic lupus erythematosus.
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Introduction
Studies on autoantibody-transgenic mice and analyses of the  
repertoire of various B-cell subsets in humans and mice have 
demonstrated that self-reactive B cells are negatively regulated 
at various stages of B-cell development and maturation, includ-
ing the immature B-cell stage in bone marrow, transitional B-cell 
stage, and germinal center (GC) B-cell stage1,2. There are multi-
ple mechanisms for B-cell tolerance, such as deletion, functional  
inactivation (anergy), and alteration of antigen specificity by 
replacement of immunoglobulin (Ig) variable (V) gene segments 
(receptor editing)3,4. Some self-reactive B cells emerge in the 
peripheral lymphoid organs without being deleted or function-
ally inactivated but do not differentiate to plasma cells even in the 
presence of interaction with self-antigens as if they are ignored  
(clonal ignorance)2. In some autoantibody-transgenic mice,  
self-reactive B cells are accumulated in marginal zone B cells5–7, 
suggesting that these self-reactive B cells are positively selected  
to differentiate to marginal zone B cells. However, self-reactive 
marginal zone B cells are also tolerized8.

Autoantibodies to nuclear antigens are characteristically produced 
in patients with systemic lupus erythematosus (SLE) and its ani-
mal models and play a pathogenic role in the development of  
this disease. Production of these autoantibodies requires a break 
of B-cell tolerance because B cells reactive to nuclear antigens 
have been shown to be tolerized1,9. Genes expressed in B cells 
are enriched in SLE-associated genes whereas those expressed in 
CD4+ T cells are enriched in genes associated with rheumatoid 
arthritis10, suggesting that defects in B cells play a central role in 
the development of SLE. In mice, SLE-like disease is the most 
common autoimmune disease developed by genetic defects in  
B cells11. These defects include those that break B-cell tolerance 
by regulating B-cell activation and survival irrespective of anti-
gen specificity12,13. Thus, general (antigen-non-specific) defects in 
B-cell tolerance induce production of autoantibodies to nuclear 
antigens, suggesting the presence of mechanisms for preferen-
tial production of these autoantibodies. One of the mechanisms 
appears to be a large potential B-cell repertoire reactive to nuclear  
antigens1. In both humans and mice, reactivity to nuclear antigens 
is demonstrated in more than half of immature B cells in which 
the B-cell repertoire is formed by random recombination of Ig V 
gene segments but not yet selected by antigens. Another mecha-
nism involves nucleic acid (NA) sensors that activate various cell 
types, including B cells, upon interaction with NAs14–16. NA sen-
sors play a crucial role in the defense against microbes, especially 
viruses, through recognition of microbial DNA and RNA but also 
are involved in the activation of B cells reactive to nuclear antigens 
containing NAs, leading to production of autoantibodies to nuclear 
antigens. Thus, development of SLE involves both functional 
defects in B cells and NA-induced activation of immune cells. 
Crucial roles of these mechanisms are supported by the findings 
that SLE-associated genes in humans contain a number of genes 
involved in the regulation of B-cell signaling, NA degradation, or 
sensing of NAs, including the NA sensors TLR7 and TLR917,18. 
In this review, I discuss mechanisms for B-cell tolerance and its 
break in SLE with a focus on regulation of B-cell signaling and  
NA-mediated immune cell activation. I also discuss tolerance 
of self-reactive B cells generated by somatic mutations of Ig V  

genes in GC reaction and the contribution of GC reaction in  
autoimmunity.

Nucleic acid-induced B-cell activation and 
interferons
TLR7 and TLR9 are endosome-localizing innate NA sensors 
recognizing RNA and DNA, respectively, and are involved in 
immune responses to microbes, especially viruses, by recognizing  
microbial NAs14. They are also involved in autoantibody produc-
tion to NA-related self-antigens15,16. Patients with SLE produce 
autoantibodies to the complexes of NAs and nuclear proteins such 
as nucleosomes and Sm/RNP. Nucleosomes and Sm/RNP contain 
DNA and RNA, respectively, and thus are recognized by TLR9 and 
TLR7, respectively19,20, both of which are expressed in B cells as 
well as innate immune cells. When these nuclear self-antigens are 
released from dead cells, they interact with B cells reactive to these 
self-antigens through B-cell antigen receptor (BCR) and are trans-
located together with BCR to endosomes where they are recognized 
by TLR7 and TLR9 (Figure 1). In these self-reactive B cells, the 
combination of signaling through BCR and co-stimulatory signal-
ing through TLRs induces cell activation, leading to production of 
autoantibodies to the nuclear self-antigens. Complexes of NAs and 
nuclear proteins are more immunogenic than NAs alone and this is 
probably due to resistance to degradation by nucleases. Deficiency 
in TLR7 and TLR9 markedly reduces autoantibody to Sm/RNP and 
DNA, respectively, in lupus-prone mice21, clearly indicating that 
B-cell activation mediated by NA sensors facilitates production of 
autoantibodies to nuclear antigens. Although both TLR7 and TLR9 
are involved in autoantibody production to nuclear self-antigens, 
TLR7 but not TLR9 is required for the development of autoim-
mune disease in a mouse model21. TLR9 rather ameliorates TLR7- 
dependent development of lupus-like disease22,23 by competing 
endosomal transport with TLR724. On the basis of these findings, 
together with the genetic findings, demonstrating the association of 
RNA-sensing pathways with lupus, a dominant role of RNA-related 
antigens in the development of lupus is suggested16, although the 
mechanism is not yet understood.

In leukocytes from patients with SLE, expression of genes respon-
sive to type 1 interferons (IFN I) is markedly augmented25,26 and 
this is probably due to augmented IFN I production. The augmented 
IFN I production in SLE appears to involve TLR7 and TLR9 as 
signaling through these TLRs induces IFN I expression in innate 
immune cells27, especially in plasmacytoid dendritic cells (DCs), 
which are capable of producing IFN I in large quantity. Upon 
forming immune complexes with autoantibodies, nuclear self-
antigens, such as Sm/RNP28, and DNA complexed with HMGB129 
are endocytosed by FcγR in DCs and recognized by TLR7 and 
TLR9 in endosomes, leading to the production of a large amount 
of IFN I (Figure 1). Some of the patients with type I interferon-
opathies, a set of Mendelian disorders such as Aicardi-Goutières 
syndrome (AGS) characterized by constitutive IFN I production, 
and their animal models develop lupus-like autoimmune disease 
as well as various inflammatory lesions30. These observations 
suggest that IFN I perturbs self-tolerance to nuclear self-anti-
gens and induces the development of lupus. Involvement of IFN I  
in development of lupus is further supported by the finding on a  
pristane-induced lupus model. Although most of the lupus-prone 
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Figure 1. A feed-forward loop consisting of anti-Sm/RNP antibody and type 1 interferons (IFN I) and Sm/RNP-specific B-cell inhibition 
by CD72. The nuclear self-antigen Sm/RNP released from dead cells is recognized by Sm/RNP-reactive B cells and generates both B-cell 
antigen receptor (BCR) signaling and co-stimulatory signaling through TLR7 in the endosome. The combination of these two signaling 
pathways induces cell activation and production of anti-Sm/RNP antibody. The immune complex consisting of Sm/RNP and anti-Sm/RNP 
antibody is endocytosed by dendritic cells (DCs) through interaction with Fcγ receptor and is recognized by TLR7 in endosome, resulting 
in the production of IFN I. IFN I is also produced through recognition of nucleic acids (NAs) by cytosolic NA sensors. IFN I activates B cells 
through receptor for IFN I (IFNAR) to induce IFN-inducible genes, including TLRs. IFN I also activates B cells indirectly by inducing B cell-
activating factor (BAFF) expression in myeloid cells. BAFF inhibits expression of Bim and perturbs B-cell tolerance. IFNγ is also involved in the 
activation of self-reactive B cells. CD72 recognizes Sm/RNP and specifically inhibits BCR signaling when BCR recognizes Sm/RNP, thereby 
inhibiting production of anti-Sm/RNP antibody. BAFF-R, B cell-activating factor receptor.

mice do not show a strong IFN signature, the pristane-induced  
lupus model shows a strong TLR7-dependent IFN signature31 
and requires the receptor for IFN I (IFNAR) for both autoanti-
body production and development of lupus32. IFN I activates the  
expression of a large number of genes in various immune cells, 
including genes involved in B-cell activation33 such as TLRs in  
B cells34 and genes for B cell-activating molecules such as  
B cell-activating factor (BAFF)35 (Figure 1). The products of IFN 
I-inducible genes may collectively abrogate self-tolerance and 
activate self-reactive B cells. The majority of mutations found in 
AGS are located in genes involved in the metabolism of cytosolic 
NAs and their recognition30. Some of these genes such as TREX136 
encoding a cytosolic nuclease and IFIH137 encoding the cytosolic 
RNA sensor MDA5 are associated with SLE in humans. Thus, 
IFN I production caused by augmented responses to cytosolic NAs 
appears to be involved in SLE as well as AGS. Taken together, 
autoantibodies to nuclear antigens complexed with self-antigens 
induce IFN I production in DCs, and IFN I induces production 
of the autoantibodies in B cells, resulting in a feed-forward loop  

(Figure 1). This feed-forward loop may cause a strong IFN  
signature and massive production of autoantibodies to nuclear  
self-antigens characteristic of SLE.

Although the pristane-induced lupus model shows a type I IFN 
signature and requires IFN I for autoantibody production and dis-
ease development, IFNγ is overproduced and plays a crucial role in 
various other mouse models such as MLR-Faslpr/lpr, Sle1b, and 
Wiskott-Aldrich syndrome (WAS) chimera mice31,38–40. In both WAS 
chimera and Sle1b mice, B cell-specific deletion of IFNγ receptor 
abrogates spontaneous GC formation, autoantibody production, 
and the development of lupus-like disease39,40, suggesting a crucial 
role of IFNγ in breach of B-cell tolerance. In spite of the consider-
able overlap between genes induced by IFN I and those induced 
by IFNγ, IFNγ-induced gene expression is evident in patients with 
SLE because these patients overexpress the IFNγ-inducible genes 
whose expression is genes suppressed by in vivo IFNγ blockade41. 
Thus, IFNγ as well as IFN I may play a role in the pathogenesis of 
human SLE as well as mouse models.
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Regulation of central tolerance and clonal anergy by 
apoptosis and phosphatases
Self-reactive B cells generated in bone marrow by random Ig V 
gene rearrangements are tolerized by central tolerance such as 
deletion, anergy and receptor editing. It is already established that 
Bim, a pro-apoptotic member of the Bcl-2 family, plays a crucial 
role in the deletion and anergy of self-reactive B cells generated 
in bone marrow by regulating apoptosis42–44. Self-reactive B cells 
in Bim−/− autoantibody-transgenic mice clearly escape from both 
deletion and anergy42,43. Bim is required for BCR ligation-induced  
B-cell apoptosis that appears to be involved in the deletion of  
self-reactive B cells42. Bim is also involved in premature death 
of anergic B cells as they are less sensitive to survival signaling 
generated by BAFF43 that induces B-cell survival by reducing  
Bim expression45. Thus, Bim-mediated apoptosis plays a crucial 
role in both the deletion and anergy of self-reactive B cells. Breach 
of deletion and anergy in self-reactive Bim−/− B cells may contribute 
to the development of lupus-like disease in Bim−/− mice46.

The lipid phosphatase SHIP-1 and the non-receptor type pro-
tein tyrosine phosphatases (PTPs) SHP-1 and LYB/PEP regulate  
B-cell tolerance and the development of autoimmune diseases47,48. 
A recent study by Getahun et al.48 demonstrated that inducible  
deletion of either SHP-1 or SHIP-1 reverses anergy of DNA- 
reactive B cells and allows spontaneous differentiation of these  
self-reactive B cells to plasma cells. This result clearly indicates 
that anergy of self-reactive B cells is reversible and that both  
SHP-1 and SHIP-1 are required for maintenance of anergy. B cell-
specific deletion of SHP-1 or SHIP-1 causes severe lupus-like 
disease with autoantibody production12,13, suggesting that a func-
tional defect in B cells caused by deletion of SHP-1 or SHIP-1 is 
sufficient to abrogate B-cell tolerance and to develop autoimmune 
disease.

In B cells, both SHP-1 and SHIP-1 negatively regulate signaling 
through BCR. SHIP-1 dephosphorylates phosphatidyl inositol 
3,4,5-triphosphate (PI(3,4,5)P3), required for phosphatidyl inosi-
tol 3-kinase (PI-3K)-mediated activation of AKT, which in turn 
activates various signaling molecules, including mechanistic tar-
get of rapamycin (mTOR), and regulates cell activation processes, 
including metabolism, proliferation, and cytoskeletal changes49.  
The PI-3K pathway as well as the nuclear factor-kappa B  
(NF-κB) pathway plays a crucial role in BCR and BAFF-R sign-
aling for B-cell survival and activation50,51. Thus, SHIP-1 inhibits 
B-cell survival and activation by negatively regulating the PI-3K 
pathway. SHP-1 dephosphorylates proximal BCR signaling mol-
ecules such as Igα/Igβ and SLP-65/BLNK52 required for BCR 
signaling, including the PI-3K pathway. Both SHP-1 and SHIP-
1 contain SH2 domains, and their activation requires binding of  
these SH2 domains to tyrosine-phosphorylated proteins. When 
BCR interacts with antigens, BCR-associated tyrosine kinases  
such as Syk and Lyn phosphorylate various cytoplasmic sig-
naling molecules53. Lyn also phosphorylates B-cell co- 
receptors, including CD19, CD22, PIR-B, and CD72. Upon  
phosphorylation, CD19 recruits and activates PI-3K. In contrast, 
other co-receptors such as CD22, PIR-B, and CD72 recruit SHP-1 
at the phosphorylated immuno-receptor tyrosine-based inhibition 
motifs (ITIMs) in their cytoplasmic regions and activate SHP-154 

(Figure 2). Although fully phosphorylated immuno-receptor tyro-
sine-based activation motifs (ITAMs) in Igα/Igβ recruit the tyrosine 
kinase Syk, these ITAMs are partially phosphorylated in anergic 
self-reactive B cells. The partially phosphorylated ITAMs recruit 
and activate SHIP-1 instead of Syk47. Probably owing to continuous 
interaction of BCR with self-antigens in self-reactive B cells, both 
SHP-1 and SHIP-1 are constitutively activated in anergic B cells 
and play a crucial role in the maintenance of anergy by suppressing 
the PI-3K/AKT pathway.

PTP1B is another non-receptor type PTP known to regulate  
metabolic signaling pathway55. B cell-specific PTP1B deficiency 
causes augmented B-cell responses to BAFF, CD40 ligation, and 
lipopolysaccharide but not BCR ligation and induces lupus-like 
disease with autoantibody production56. PTP1B therefore appears 
to regulate B-cell tolerance as is the case for SHP-1, although  
PTP1B regulates a signaling pathway distinct from those regulated 
by SHP-1 (Figure 2). PTP1B dephosphorylates p38 MAPK as a 
direct substrate and regulates AKT.

The crucial role of both apoptosis and regulation of the PI-3K path-
way in B-cell tolerance is also demonstrated in the studies to iso-
late microRNAs that inhibit deletion of self-reactive B cells at the 
immature and mature B-cell stage57,58. These studies demonstrated 
that expression of miR-148a or the miR17-92 family reverses dele-
tion of self-reactive B cells. miR-148a protects B cells from dele-
tion by suppressing Gadd45α, phosphatase and tensin homolog 
(PTEN), and Bim (Figure 2). PTEN is a lipid phosphatase that 
regulates the PI-3K pathway by catalyzing PI(3,4,5)P3. Gadd45α 
was reported to induce translocation of Bim to mitochondria where 
Bim inhibits apoptosis59, and its defect causes lupus-like disease60. 
miR17-92 also regulates PTEN57,61. Thus, Bim and the PI-3K path-
way regulated by PTEN play a crucial role in microRNA-mediated 
regulation of B-cell tolerance.

PEP is a mouse ortholog of human LYP encoded by PTPN22. The 
PTPN22-C1858T haplotype that encodes LYP-R620W is associ-
ated with various autoimmune diseases, including SLE, Graves’ dis-
ease, type 1 diabetes, and rheumatoid arthritis17,18. PEP/LYP binds 
to Csk, but this association is disrupted in LYP-R620W62. Although 
PEP-deficient mice do not show much phenotype in B cells, mice 
expressing PEP-R619W carrying the corresponding mutation with 
human LYP-R620W show hyperactivity of both B and T cells and 
development of lupus-like disease63,64, suggesting that functional 
properties of LYP acquired by the R620W mutation cause B-cell 
hyperactivity. In humans, both transitional and mature naïve B cells 
from individuals with LYP-R620W show much higher frequencies 
in self-reactive B cells65, indicating defects in central B-cell tol-
erance. This defect is corrected by enzymatic inhibitor of LYP66. 
Thus, either augmented phosphatase activity or altered functional 
property due to lack of Csk binding in LYP-R620W may perturb 
central B-cell tolerance, although its substrates regulating tolerance 
are not yet clear.

Nuclear antigen-specific tolerance mechanism
Among various B-cell inhibitory co-receptors that activate  
SHP-1, CD72 plays a unique role in specifically tolerizing B cells 
reactive to nuclear antigens67. Recently, Akatsu et al. demonstrated 
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that CD72 specifically binds to Sm/RNP and that CD72-mediated 
signal inhibition is induced when B cells interact with Sm/RNP 
through BCR, leading to inhibition of B-cell responses to Sm/RNP 
(Figure 1)67. Sm/RNP may co-ligate Sm/RNP-reactive BCR and 
CD72, thereby inducing phosphorylation of the CD72 ITIM by Lyn 
associated with BCR, the event required for SHP-1 activation and 
signal suppression54. This finding is consistent with the previous 
findings that CD72-deficient mice develop lupus-like disease much 
more severely than mice deficient in other inhibitory receptors  
such as CD22 and PIR-B68,69, although CD72 does not regulate 
polyclonal BCR signaling induced by anti-IgM antibody70. By 
specifically suppressing signaling through BCR reactive to nuclear 
antigens, CD72 strongly inhibits the development of lupus without 
affecting polyclonal BCR signaling.

NA sensors, including TLR7, respond to microbial RNA better 
than endogenous RNA by recognizing the structural features of 
microbial RNA such as dsRNA and 5′-triphosphate RNA as well as 
features such as localization of RNA71,72. Nonetheless, TLR7 plays 
a crucial role in autoimmune responses by recognizing the RNA-
containing self-antigen Sm/RNP20,21. Thus, mechanisms intrinsic 
to TLR7 may not completely distinguish self-RNA from microbial 
RNA and CD72 is required for complete suppression of responses 
to self-RNA. CD72 appears to recognize RNA-related self-antigens 
but not microbial RNA67. Microbial RNA is thus distinguished from 

self-RNA by both mechanisms intrinsic in NA sensors and specific 
recognition of NA-containing self-antigen by CD72.

B-1 cells are suggested to play a role in autoimmune diseases 
because (1) self-reactive and poly-reactive B cells are positively 
selected and accumulated in B-1 cells and (2) B-1 cell expansion 
is associated with autoimmune diseases in both humans and mice73. 
Indeed, B-cell SHP-1 regulates both development of lupus-like dis-
ease and B-1 cell expansion12. However, CD72 regulates the former 
but not the latter. In contrast, mice deficient in Siglec-10, a SHP-
1-recruiting inhibitory receptor abundantly expressed in B-1 cells, 
show marked expansion of B-1 cells74 but development of only 
mild disease in aged mice older than 1 year of age68. Thus, SHP-1 
regulates B-1 cell expansion and development of lupus-like disease 
through distinct SHP-1-recruiting receptors, Siglec-G and CD72, 
respectively, and B-1 cell expansion does not necessarily associate 
with development of autoimmune disease.

Tolerance of germinal center B cells and maturation 
of self-reactive B cells to plasma cells
Antigen-stimulated B cells differentiate to plasma cells either 
directly by extrafollicular pathway or through GC reaction, in which 
B cells undergo Ig diversification by somatic hypermutation in the 
Ig V region and are selected for production of high-affinity anti-
body. It is established that somatic mutations of Ig V genes play a 

Figure 2. B-cell signaling pathways regulating B-cell tolerance and autoimmunity involve phosphatases and microRNAs. Phosphatases 
such as SHP-1, SHIP-1, and LYP-R620W (and also mouse ortholog PEP-R619W) and microRNAs such as miR148 and miR17-92 are 
demonstrated to reverse central B-cell tolerance, B-cell anergy or both. PTP1B, a protein tyrosine phosphatase, and phosphatase and 
tensin homolog (PTEN), a lipid phosphatase, are also involved in B-cell tolerance as B cell-specific deletion of these genes causes lupus-like 
disease56,88. SHIP-1 is activated by mono-phosphorylated immuno-receptor tyrosine-based activation motif at Igα/β. Both SHIP-1 and PTEN 
dephosphorylate PIP3 required for activation of AKT involved in cell activation and survival. SHP-1 is activated by phosphorylated immuno-
receptor tyrosine-based inhibition motifs at various inhibitory co-receptors such as CD72, CD22, PIR-B, and Siglec-G and dephosphorylates 
proximal B-cell antigen receptor (BCR) signaling molecules such as Igα/β and BLNK/SLP-65, thereby reducing BCR signaling, including 
AKT activation. PTP1B dephosphorylates p38MAPK and negatively regulates AKT activation induced by signaling through CD40 and B cell-
activating factor (BAFF) receptor. LYP-R620W and its mouse ortholog PEP-R619W perturb B-cell tolerance. The microRNA miR148a inhibits 
expression of Bim, GADD45α, involved in Bim translocation to mitochondria, and PTEN, thereby suppressing Bim-mediated B-cell deletion 
and augmenting AKT activation. PTEN expression is also suppressed by miR17-92. NF-κB, nuclear factor-kappa B; PI-3K, phosphatidyl 
inositol 3-kinase; PI(4,5)P2, phosphatidylinositol 4,5-bisphosphate; PTP, protein tyrosine phosphatase.
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role in the generation of self-reactive B cells75,76. Comparison of the 
sequence of autoantibodies and their germline genes demonstrated 
that many of the autoantibodies are generated from non-self-reac-
tive antibodies and acquire self-reactivity by somatic mutations in 
Ig V regions, although some autoantibodies are derived from germ-
line-encoded autoantibodies.

Involvement of GC reaction in autoantibody production in lupus 
is further supported by indirect evidence. First, mice that sponta-
neously develop lupus show spontaneous GC reaction77, although 
immunization is required for GC formation in normal mice. Second, 
GC B cells strongly express Fas, a member of tumor necrosis fac-
tor receptor family transmitting apoptotic signaling. B cell-specific 
deletion of Fas induces the development of lupus-like disease78, 
suggesting that Fas-mediated apoptosis of self-reactive GC B cells 
is involved in self-tolerance for nuclear antigens.

The presence of self-tolerance that tolerizes self-reactive GC  
B cells generated by somatic mutations was clearly demon-
strated by using transgenic mice for anti-hen egg lysozyme (HEL)  
antibody and mice transgenic for mutated HEL as a surrogate self-
antigen. In this elegant experimental system, the mutated HEL 
is recognized by somatically mutated anti-HEL antibody gener-
ated upon affinity maturation but not by un-mutated anti-HEL  
antibody. Therefore, B cells reactive to the mutated HEL repre-
sent self-reactive B cells generated by somatic mutations. This 
study demonstrated that self-reactive B cells generated by somatic 
mutations are efficiently eliminated if the reactive self-antigens 
are present within GCs79,80. In the absence of Fas, self-reactive  
B cells generated by somatic mutations are efficiently eliminated, 
but GC reaction persists for a prolonged period and generates 
“rogue GC B cells” that accumulate somatic mutations but are not 
stringently selected. The “rogue B cells” show a defect in affin-
ity maturation and gain self-reactivity81. Thus, Fas is not directly 
required for elimination of self-reactive B cells generated by 
somatic mutations but is required for the prevention of prolonged 
GC reaction that generates “rogue GC B cells” due to less stringent 
selection, thereby indirectly inhibiting generation of self-reactive 
GC B cells.

Although evidence suggests the involvement of GC reaction in the 
generation of self-reactive B cells, studies using rheumatoid factor-
transgenic mice demonstrated that self-reactive B cells are excluded 
from GCs and differentiate to plasma cells by the extrafollicular 

pathway accompanied with somatic mutations of Ig V genes82,83.  
The crucial role of the extrafollicular pathway in autoantibody  
production is also supported by the deep sequencing analysis of  
Ig V genes in B cells from patients with SLE84. This analy-
sis revealed that the Ig V regions of plasma blasts from patients 
with SLE contain fewer somatic mutations compared with those  
generated by vaccination and are similar in sequence to those of 
recently activated B cells but not memory B cells. Thus, involve-
ment of GC reaction and defect in the GC checkpoint in autoan-
tibody production in autoimmune diseases need to be further 
addressed in the future.

Conclusions
Self-reactive B cells are tolerized by multiple different mechanisms 
at multiple different B-cell differentiation stages. Autoantibody  
production therefore requires self-reactive B cells to survive  
multiple selections at different B-cell differentiation stages. This 
explains the synergy of genetic defects such as deficiency of Fas 
and Bim85–87 and deficiency of CD72 and Fas70 in the development 
of severe autoimmune disease. Nonetheless, various single-gene 
defects cause autoantibody production and autoimmune diseases. 
At least some of these genes may breach only a part of the check-
points, but their defect is sufficient for autoantibody production 
probably because each checkpoint is not able to completely deplete 
self-reactive B cells and may become less stringent by aging and 
environmental factors. Moreover, the presence of multiple mecha-
nisms suggests multiple pathways for autoantibody production, 
including GC and extrafollicular pathways. Further studies will 
reveal more precise mechanisms by which self-reactive B cells 
are generated and differentiate to autoantibody-producing cells in 
autoimmune disease.
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