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A state‑space model to derive 
motorboat noise effects on fish 
movement from acoustic tracking 
data
Margarida Barcelo‑Serra1*, Sebasti� Cabanellas1, Miquel Palmer1, Marta Bolgan2 & 
Josep Alós1

Motorboat noise is recognized as a major source of marine pollution, however little is known about 
its ecological consequences on coastal systems. We developed a State Space Model (SSM) that 
incorporates an explicit dependency on motorboat noise to derive its effects on the movement of 
resident fish that transition between two behavioural states (swimming vs. hidden). To explore the 
performance of our model, we carried out an experiment where free-living Serranus scriba were 
tracked with acoustic tags, while motorboat noise was simultaneously recorded. We fitted the 
generated tracking and noise data into our SSM and explored if the noise generated by motorboats 
passing at close range affected the movement pattern and the probability of transition between 
the two states using a Bayesian approach. Our results suggest high among individual variability in 
movement patterns and transition between states, as well as in fish response to the presence of 
passing motorboats. These findings suggest that the effects of motorboat noise on fish movement 
are complex and require the precise monitoring of large numbers of individuals. Our SSM provides a 
methodology to address such complexity and can be used for future investigations to study the effects 
of noise pollution on marine fish.

The oceans are filled with sounds generated by a variety of natural sources, including biotic sources such as 
mammals, fish and invertebrates1–3, and abiotic sources such as breaking waves, earthquakes, wind and rain4. 
However, many forms of underwater sounds are generated by anthropogenic sources, such as vessels, motor-
boats, wind turbines, military sonars, oil or gas drilling and oceanographic research technologies5,6. The negative 
consequences of high-intensity sounds generated by pile driving and seismic air guns on behaviour have been 
described mainly on marine mammals7–9. Over the years, however, research has broadened the scope and there 
has been an increase in the number of studies analysing the impacts of noise pollution from different sources on 
the ecology of marine fauna at different levels10–12.

The noise pollution emitted by recreational motorboats in coastal systems has generated recent interest6,13. 
The potential effects of noise emitted by motorboats on marine fish behaviour have been recently reviewed 
in6. Evidence suggests that some marine fish, when disturbed by motorboat noise stop moving and hide into 
shelters14,15, modify parental care related behaviours16, modify calling behaviour17, change female mate choice 
preferences18 and alter interspecific cooperation19. Furthermore, noise pollution may interfere with the animal’s 
ability to detect naturally generated sounds (i.e., masking), reducing the range to detect communicative sounds 
and other acoustic cues19–22. This can have a negative effect on communication for reproductive purposes, ori-
entation and predator or prey detection, potentially affecting survival and reproduction23,24. All these findings 
highlight the importance of measuring the impact of motorboat noise on marine fauna for management and 
conservation of marine coastal areas12.

The effects of motorboat noise on fish movement and space use have received less attention. The lack of proper 
technology to measure fish movement in the wild has limited our ability to disentangle the consequences of 
noise pollution on fish movement behaviour. Movement and space use constitute behavioural traits that when 
measured in the wild provide major insight into the biology, ecology and conservation of marine fish species25. 
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In fact, some of the above mentioned studies exploring the effects of anthropogenic noise on fish behaviour have 
been carried out under laboratory conditions18,20,21,23. Captive animals can show altered patterns of behaviour 
and the sound transmission inside confined areas might not have the same physical parameters than natural 
sounds in the wild6. Although laboratory experiments are fundamental and provide answers that cannot be 
reached in field studies (e.g., hearing threshold shifts and auditory and hormonal effects), there are limitations 
when extrapolating the laboratory results and applying the conclusions to wild populations. In order to extract 
robust conclusions on the ecological consequences of motorboat noise on marine fish, there is a need to com-
bine laboratory results with measures of movement and space use in wild fish exposed to real sources of noise 
pollution in their natural environment.

Acoustic telemetry technology (i.e., acoustic tracking) is based on applying, to the studied organism, micro 
acoustic transmitters emitting acoustic signals that are received by an array of acoustic receivers25,26. Acoustic 
tracking has been developed and widely used to describe the movement, territory size, home range, space use 
and habitat selection in many coastal fish species in wild settings27. However, there is substantial evidence that 
the acoustic tracking of an individual can be highly influenced by several factors such as water currents, tidal 
phase, environmental noise, distribution of the array of receivers and distance between the emitter and receiver 
units28,29. In order to use this technology in behavioural studies, the development of specific statistical solutions 
is required to solve the issues associated with the large observational error30.

State-space models (SSM) have emerged as one of the most promising tools to study animal movement in the 
wild while properly addressing the limitations of tracking uncertainty29,30. Furthermore, they are a flexible tool 
that allows for the integration of environmental explanatory variables expected to affect animal movement31. 
Applying SSM to acoustic tracking data allows for the extraction of relevant behavioural information while 
considering the large observational error of the system30. SSM combine a behaviourally mediated process model 
(movement model), with an observation error model29. The movement model predicts the position of a tagged 
individual at a given time. This model can include different behavioural states (e.g., swimming or hidden), as well 
as any other environmental covariates that may affect the transition matrix among the behavioural states (e.g., 
noise pollution), making this model particularly attractive to test the effects of motorboat noise on fish move-
ment. Finally, the error model predicts the probability of detecting a tagged individual by a receiver in function 
of the distance between them (see details in30).

Given this background, the objective of this work was two-fold. First, we developed an improved analytical 
tool to properly integrate the effects of environmental variables (presence of noise peaks generated by motorboats 
passing at close range and diel pattern of behaviour) on a two-state movement model (swimming vs. hidden) for 
marine resident fish. Second, we tested the hypothesis whether or not the noise peaks generated by motorboats 
passing at close range (within the study area) affected the transition probabilities between the two behavioural 
states in the species Serranus scriba (Linnaeus, 1758). S. scriba is a small-bodied Serranid, resident of littoral 
marine waters of the Mediterranean and Black sea that establishes a home range or bounded area to perform its 
vital activities32,33. S. scriba is a highly valued species in recreational fisheries at the NW Mediterranean subject 
to high fishing pressures in places such as the Balearic Islands34. For the purpose of this work, we monitored the 
movement of individuals via acoustic tracking and developed a SSM built upon the works of Alós et al.30 and 
Palmer et al.35 to analyse the data. We predicted that the noise peak generated by motorboats passing at close 
range can alter the movement behaviour of coastal fish species, with fish seeking refuge under such circumstances 
(hide or fear effect)36, having an impact on macroscopic patterns of space use. This work is not only important 
for providing a methodological solution to study the effects of motorboat pollution on animal behaviour, but 
could be used as a tool for making informed managerial decisions in coastal areas, and more specifically Marine 
Protected Areas.

Methods
Development of the space state model.  For the theoretical component of this study, we developed a 
State Space Model (SSM) to model the movement of resident fish that transition between two behavioural states 
(swimming vs. hidden). The SSM incorporates an explicit dependency on the noise produced by motorboats to 
derive its effects on fish movement (Fig. 1). The alternate state movement pattern (swimming vs. hidden) has 
been widely described in resident marine fish transiting from swimming while searching for food to hiding to 
avoid predators37, and is particularly evident in our study case species S. scriba38.

The model developed here is an adaptation for behavioural particularities of the SSM developed in30. The basic 
(i.e., with no covariates) movement model describing the expected movement pattern of coastal fish displaying 
home range behaviour assumes that fish follow a biased random walk (BRW)39. BRW considers that fish swim 
following random stimuli but with an additional tendency to remain close to a specific point defined as the cen-
tre of their home range40,41. According with this movement model (Fig. 1), fish spend most of the time within a 
bounded area because a drift force (k) pulls them towards the centre of the home range or shelter, limiting their 
exploratory range (Fig. 2). We described a function to determine the transition between the two states, swim-
ming and hidden (Eq. 1). When swimming, fish move according to a BRW model while when hidden fish do 
not move (i.e., maintain the previous position). The transitions between the two behavioural states have been 
modelled with a transition matrix (Eq. 1):

where pn is the probability to continue swimming at time n given that the fish was swimming at the previous time 
step (n-1); 1-pn is the probability of shifting from swimming to hidden at time n given that the fish was swimming 
at the previous time step (n-1); qn is the probability to continue hidden at time n given that the fish was hidden 

(1)Tn =

(

pn 1− pn
1− qn qn

)
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at the previous time step (n-1); and 1-qn is the probability of shifting from hidden to swimming at time n given 
that the fish was hidden at the previous time step (n-1). The results of applying different transition matrices are 
demonstrated by simulated paths of fish moving with the same BRW but with different combinations of p and 
q (Fig. 3). The simulations show fish that tend to remain hidden (shy fish), fish with no preference towards a 
specific behaviour (intermediate fish) and fish that tend to swim (bold fish, Fig. 3).

In our study, two putative explanatory variables were considered to affect p and q: the natural diel pattern of 
fish behaviour and the presence of noise peaks generated by passing motorboats at close range. They were both 
considered categorical variables, day vs. night and presence vs. absence of motorboats passing at close range. The 
first variable was obtained using the sunrise and sunset hours in UTC, while the second one was extracted from 
sound recordings (see section below for details on the methodology). Accordingly, four different Tn matrices 
were defined: (1) day and noise (at daylight in presence of noise peaks generated by passing motorboats), (2) 

Figure 1.   Directed acyclic graph of the State-Space Model (SSM). The unobserved position −→r n at time step n 
is generated following a combination of movement parameters (the process model) of the fish: position of the 
centre of the home range ( −→r HR ), strength of the driving force attracting the individual to the centre of the home 
range (k) and Radius of the home range. The actual position (n) depends on the previous position (n-1), and the 
behavioural state (Sn; swimming vs. hidden) at time step n and is determined by the transition matrix Tn (Eq. 1, 
see main text). The observed data (number of detections, ND) at time n consists of all the detections recorded by 
each one of the receivers (j in R). Note that ND at time n is independent of the ND at time n-1 and is generated 
using the probability of detection by receiver j at n time unit (PDj,n) determined by a logit function (with 
parameters α and β at time n) of the distance (d at n) between the (unobserved) fish position and the (known) 
receiver position (observational model).

Figure 2.   Simulation of 1000 time steps of a fish moving according to the two-state movement model tracked 
by an array of acoustic receivers. In red the positions of the fish while hidden and in blue the positions and 
trajectories when the fish is swimming. The black crosses represent the acoustic receivers. Note the aggregated 
distribution of positions imposed by the fish being limited to move within its home range area.
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day and silence (at daylight in absence of noise peaks generated by passing motorboats), (3) night and noise (at 
night in presence of noise peaks generated by passing motorboats), and (4) night and silence (at night in absence 
of noise peaks generated by passing motorboats). For each one of the four matrices, the parameters pn and qn 
were estimated (for a total of 8 estimated parameters). For convenience (see details in the next section), in this 
work the noise generated by passing motorboats was transformed into a binary variable (presence vs. absence 
of noise peaks generated by passing motorboats). Note, however, that the model can be easily accommodated 
to fit any other continuous explanatory variable (e.g. noise levels in dB). In this case, the natural choice would 
be a linear combination at the logit scale, resulting in a sigmoidal response between 0 and 1. For example, to 
estimate p at daylight one could apply: logit(pn) = β1,p,day + β2,p,dayVn, where Vn is the (continuous) value of the 
putative explanatory variable at time n.

Our two-state movement model was designed to be fed by acoustic tracking data generated by an array of 
receivers, requiring for the integration of an observational error module (Fig. 1). The raw data obtained from 
acoustic tracking experiments are not fish positions, but a number of detections at a given time period by every 
one of the acoustic receivers (Fig. 2). Alós et al.30 described a logistic function to extract fish positions from 
such detections. Briefly, the number of detections for a given individual during a specific period is assumed 
to be binomially distributed, with a probability of detection depending on a logistic function of the distance 
between the individual and a receiver (Fig. 1). We estimated the parameters of the logistic function within our 
SSM framework model using the acoustic tracking data described below.

Acoustic tracking and noise data collection.  To explore the performance of our SSM and test our 
hypothesis in a real case study, we used tracking data obtained from a standard acoustic tracking experiment 
carried out in the marine protected area of the Palma Bay, Mallorca, Spain (39° 28′ 17ʺ N, 2° 43′ 22ʺ E). In July 
2017, an array of 14 acoustic receivers (model VEMCO VR2W, Innovasea Systems Inc., Bedford Canada) was 
deployed at the centre of a no-take area within a sea grass meadow dominated by Posidonia oceanica (L.) Delile 
with sand patches, the typical habitat of our study species S. scriba42(Fig. 4). The average depth of the study site 
was 13 m (Fig. 4). The receivers were distributed in a 150 × 150 m grid allowing for a high detection overlap 
among receivers, which is expected to improve the estimation of the centre of activities26 (Fig. 4). The Receiver’s 
detection range was previously measured and determined to be greater than 300 m, with a 50% probability of 
detection located at 150 m38. Each receiver was suspended 2 m above the bottom to optimize detections and 
avoid the thermocline effects (see details in38).

After the receiver array was deployed, 15 S. scriba were caught during one angling session, using convec-
tional hook-and-line gear and small-sized shrimps as bait, and were transported to the Laboratory for Fisheries 
Experimentation and Aquaculture (LIMIA) field station in Andratx (Mallorca) for tagging. At the field station, 
fish were placed in a 400 L aerated fish-holding tank for recovery. After one week, individuals were anesthe-
tized by immersion in 10 L of filtered sterile seawater with 100 mg L−1 of tricaine methanesulfonate (MS222, 
Sigma-Aldrich Inc., Missouri United States). Individuals were measured (total length in mm and weight in g) 

Figure 3.   Simulation of 1000 time steps of three fish moving according to the two-state movement model 
with different probabilities of transition. Graphs on top show the Markovian-based transitions between state 1 
(swimming) and state 2 (hidden) over time for each individual (shy, intermediate and bold). The scatter plots 
below represent the movement pattern. Red dots denote the location of a hidden individual while blue dots 
and lines represent individuals swimming and their path. The transition between states was generated using 
the transition matrix in Eq. (1). (a) graphs obtained from simulating data on shy fish (individuals that tend to 
remain in state 2, hidden); (b) simulated data on intermediate fish (individuals that do not show a preference for 
a state); and (c) simulated data on bold fish (individuals that tend to remain in state 1, swimming).
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and a micro acoustic transmitter (model V7 VEMCO, Innovasea Inc., Bedford Canada; hereafter referred to 
as tag) was implanted into the peritoneal cavity through a dorso-ventral incision and posteriorly sutured using 
non-absorbable stitches (Mersilk, 4-0, Ethicon Inc., New Jersey United States). The entire surgical process was 
carried out within 5 min. The tags used were 20 mm in length, 7 mm in diameter, weighted 1 g in water, did 
not exceed a 2% of the fish’s body weight and had a manufacturer’s expected lifespan of 205 days. Every 120 s 
each tag emitted a specific sequence of ultrasonic pulses (acoustic signal) at a given frequency (69 kHz), which 
was detected by one or more acoustic receivers, allowing for individual fish detection and recognition43,44. After 
manipulation, fish were placed in a tank to recover until normal behaviour was observed and were released at 
the same capture location (Fig. 4). Capture, tagging and tracking of the individuals was performed following the 
local guidelines and regulations for animal experimentation and welfare. Experimental protocols were approved 
by the responsible institution for animal care (University of the Balearic Islands) and authorized by the Fisheries 
Department of the Government of the Balearic Islands (Experimental ethical protocol number: CEEA 60/09/16).

To simultaneously collect noise data, an underwater acoustic recorder (SNAP, Loggerhead Instruments Inc., 
Florida United States; sampling rate 44.1 kHz, 16 bit) provided with an omnidirectional HTI96-min hydrophone 
(High Tec, Inc., Mississippi United States; sensitivity − 170 dB re 1 V μPa−1, recording .wav files) was moored at 
the centre of the study area (hereafter referred to as “sound recorder”). The sound recorder was programmed to 
record 1 min every 11 min from June 22nd to August 8th. We used ten days of data (July 24th to August 3rd), 
when we obtained simultaneous data for the maximum number of tagged individuals (N = 8 individuals) and 
sound recordings. To automatically detect peaks of noise generated by motorboats passing at close range, we 
processed the data in MATLAB (version 2011b) using custom-written scripts following Merchant et al.45. Power 
spectral density (dB re 1 μPa2 Hz−1) was calculated in 1-s non-overlapping segments over the entire frequency 
range (i.e., 0–22 kHz) for the whole file. Following Merchant et al.45, we calculated the sound pressure level (SPL) 
as the mean squared sound pressure (p2

rms) expressed in decibels, where pref is a reference pressure of 1 μPa.

For the purpose of this study, we were interested in evaluating the effect of noise peaks emitted by motor-
boats passing at close range (within our study area). Therefore, instead of directly using SPL values, we derived 
a qualitative binary variable (presence vs. absence of noise peaks). To obtain such variable, we selected the audio 
tracks in which the SPL was at least 1.8 times higher than the basal ambient noise, defined as the constant noise 
recorded when boats were not present (hereafter referred to as “noise threshold”). The noise threshold was then 
used as a criterion to automatically detect a peak of noise result of a motorboat passing at close range. To validate 
the quality of the data obtained, recordings were visually inspected for detecting the presence of noise peaks 
generated by motorboats passing at close range (see Supplementary Information Figure S1). A total of 924 audio 
tracks were manually inspected, and noise peaks generated by motorboats passing at close range were detected 

SPL = 10 · log10

(

p2rms

p2ref

)

Figure 4.   Map of the study area showing the acoustic tracking experimental setup. The map shows the 
distribution of the acoustic receivers (pink dots) deployed within the no-take Marine Protected Area (MPA) of 
Palma Bay (Mallorca, Spain), as well as the expected detection range of the receivers (shaded pink). The map 
also shows the habitat characteristics of the study area comprising a seagrass meadow of Posidonia oceanica 
(dark blue) with patches of sand (light blue). Isobaths show site depth in meters. Yellow crosses indicate the 
locations where the individuals were caught and released after tagging. Note in the map the two motorboats 
cruising the study area. Satellite image from the Spanish public database of the National Center for Geographic 
Information (CNIG) edited using ArcGis v.10.6 developed by Esri (https​://www.esri.com/es/arcgi​s).

https://www.esri.com/es/arcgis
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in 79 of them. In all these 79 tracks, SPL exceeded the noise threshold, suggesting that this threshold was accu-
rate in detecting noise peaks generated by motorboats passing at close range. The noise data obtained and used 
for the SSM was therefore a two-component discrete variable, presence vs. absence of noise peaks generated by 
motorboats passing at close range (Fig. 5).

Estimating SSM parameters given the data.  All the parameters of the integral SSM (Supplementary 
Information, Table S1) were estimated using a Bayesian approach. JAGS46 (http://mcmc-jags.sourc​eforg​e.net/) 
and the r2jags package47 were used to obtain the samples from the joint posterior distribution for the model 
parameters given the data (number of detections per time unit defined as 12-min time steps as imposed by the 
noise data collection method, day vs. night and presence vs. absence of motorboat noise). A custom R48 script 
was implemented for moving three independent MCMC chains. Technicalities of the model implementation are 
detailed in the custom R script, available along with the input data in the DIGITAL.CSIC repository (http://hdl.
handl​e.net/10261​/22061​5). An independent analysis was completed for each individual (N = 8). Convergence 
was assessed by visual inspection and was tested using the Gelman-Rubin statistic49. Values smaller than 1.1 
in the Gelman-Rubin Statistic were assumed to suggest convergence50. Concerning priors, a truncated normal 
distribution between − 20 and 20 (at the logit scale) was assumed for all pn and qn, which is virtually equivalent 
to a uniform-flat prior distribution between 0 and 1. For the parameters of the logistic dependence of detec-
tion probability on fish-receiver distance, the inflexion point was assumed to be uniformly distributed between 
− 1000 and 200 m, according with previous results using the same type of receivers38. This data was used as 
sensible initial values.

The prior distribution for the BRW parameters was set following Alós et al.30. The radius of the home range 
was assumed to be uniformly distributed between 50 and 1000 m, and the exploration parameter k (strength of 
the driving force attracting the individual to the centre of the home range) was assumed to be gamma distrib-
uted with parameters shape = 0.1 and scale = 0.1. Finally, the centre of the home range was assumed to be within 
1000 m around the centre of the receiver’s grid, which is in accordance with the averaged receiver’s position after 
weighing for the number of detections. The posterior distribution of the parameters was estimated from 10,000 
valid iterations after appropriate burning (the first 1,000 iterations were discarded) and thinning (one out of 10 
iterations were kept). The extent of the overlap among the Bayesian Credibility Intervals (BIC) was used to test 
the working hypothesis, whether or not the presence of noise peaks generated by passing motorboats at close 
range is affecting the transition matrix.

Results
Acoustic tracking and noise data.  All fish (N = 8) were detected every day during the 10 days consid-
ered, suggesting a high residency pattern and small space use (Fig. 5). Fish showed large among individual dif-
ferences in the detection patterns. The total number of detections ranged from 10,764 to 189 detections, with an 
average of 3,005 detections and standard deviation of 3416 (Table 1). A natural day night regime of detections 
was evident for almost all fish, the number of detections notably decreased at night as previously described for 

Figure 5.   Temporal series of acoustic detections (presence of noise peaks generated by passing motorboats at 
close range in red and fish detections in blue) during the 10 days of the study for each fish (based on 12-min 
time steps). Red vertical lines represent the detection of at least a motorboat passing at close range within the 
12-min time period according to our Sound Pressure Level analysis. Note the increase of motorboat detections 
during the weekend (July 29th and 30th). Blue bars represent number of detections for each individual by all the 
receivers during 12 min. Grey shadowed areas represent night time according to local sunset and sunrise data.

http://mcmc-jags.sourceforge.net/
http://hdl.handle.net/10261/220615
http://hdl.handle.net/10261/220615
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this species38. The total number of diurnal detections was 18,006, while the total number of nocturnal detections 
was 6035 (Fig. 5). From the noise recording data, a total of 79 audio tracks confirmed the presence of noise peaks 
generated by motorboats passing at close range. The noise peaks generated by each motorboat exceeded the 
noise threshold to a different extent; the SPL measured exceeded the noise threshold with a minimum of 5.1 dB 
re 1 μPa2 Hz−1 and a maximum of 22.4 dB re 1 μPa2 Hz−1. Passing motorboats presented a temporal dynamic 
within the day and week (Fig. 5). At night, the number of passing motorboats detected was very limited. Fur-
thermore, half of the motorboats detected were recorded during the weekend, which is probably linked with 
the high number of recreational boats present in the studied location. When combining fish tracking data with 
motorboat noise recordings, fish detections were discretized in 12-min periods (dictated by the noise recording 
data) on a temporal series that overlapped the detected motorboat activity and the natural diel pattern (Fig. 5).

State‑space model.  Using our SSM approach, we were able to estimate the individual movement param-
eters (latitude and longitude of the centre of the home range, exploration (k) and radius of the home range, 
Fig. 6). Regarding the latitude and longitude of the centre of the home range, fish had different centres of activity 
distributed across the array of acoustic receivers, although most located their centre of activity in the northern-
east part (a shallower part) of the study area (Fig. 6). Curiously, fish 1586 and 1595 had practically the same 
position in booth coordinate axes suggesting a high overlapped space use (Fig. 6). On the general properties of 
the exploration of the home range, the results showed large among individual variability of k with a median of 
0.88 s−1 and SD 0.80 s−1 with a maximum of 1.99 s−1 and a minimum of 5.4 10–6 s−1 (Fig. 6). The SSM revealed 
large differences in the attraction force to the centre of the home range with some individuals covering the whole 
home range in few hours while others needed days. Similar results were found for the size (radius) of the home 
range (Fig. 6). The radius (in m) varied among individuals with a mean of 84.25 m and SD 40.4 m, being the 
maximum size of the home range 175 m and the minimum 50 m. These results suggest large among individual 
variability in the movement of S. scriba, considering that all tracked fish inhabited the same area and were of 
similar sizes (Table1; all fish were adults).

Transitioning probabilities between behavioural states (swimming vs. hidden) in relation to the diel pattern 
(day vs. night) show that fish tend to remain in the same state during the day (Fig. 7a–d) and switch from swim-
ming to hidden during the night (Fig. 7e–h). On the effects of motorboat noise, there was no clear tendency to 
switch between states in presence (Fig. 7a,b,e,f) or absence (Fig. 7c,d,g,h) of noise peaks generated by motorboats 
passing at close range, suggesting a lack of effect of this variable on fish behaviour (neither a fear effect inducing 
the fish to hide into a refuge, nor an attraction effect inducing the fish to leave the refuge and start swimming) 
under the studied conditions. When analysing the interaction between diel pattern (day vs. night) and motorboat 
noise (presence vs. absence of motorboats passing at close range), we found that individuals tended to remain 
in the same state (swimming or hidden) irrespective of the later environmental variable (Fig. 7). In general, the 
probability of remaining in the same state (p) is close to 1 across all individuals (Fig. 7). However, individuals 
that were swimming at night had a smaller probability to remain in the same state, thus tended to switch to a 
hidden state regardless of the presence or absence of noise peaks generated by passing motorboats (Fig. 7f,h).

Discussion
In this work, we developed and implemented a SSM to study the effects of motorboat noise on the movement 
behaviour of a marine costal fish species in the wild tracked by acoustic tracking. We did not find evidence that 
peaks of noise generated by motorboats passing at close range are affecting the transition between swimming 
and hiding in S. scriba, although some individual peculiarities were found. Overall, the SSM modelling approach 
presented in this work can provide an analytical solution to study the ecological consequences of noise pollution 
on wild animal movement behaviour recorded via tracking. The SSM we developed here is flexible and future 
developments of the model can easily accommodate other types of movement behaviours fitting the specifici-
ties of the tracked species (e.g., correlated random walks following an environmental driver51). In addition, the 

Table 1.   Fish biometrics and tracking data detections during the study period. By columns: individual unique 
identifier (ID); biometric measures for each fish, weight in grams and total length in centimetres (W and 
TL respectively); capture and release depth in meters (Depth); mean number of detections every 12 min per 
individual (Mean detections); mean number of receptors that detected each individual every 12 min (Mean 
receptors); total number of detections per individual during the 10 days of the study period (Total detections). 
(−) Means no data available.

ID W (g) TL (cm) Depth (m) Mean detections (per 12 min) Mean receptors (per 12 min) Total detections

1582 – – – 8.97 2.75 10,764

1583 43.0 14.6 7.5 0.51 0.31 661

1584 63.1 16.4 15 2.72 1.20 3260

1586 52.9 16.0 9 0.82 0.51 988

1595 49.7 15.5 - 1.39 0.68 1667

1597 61.6 15.9 14 3.55 0.94 4259

1598 76.2 18.0 9 1.88 0.83 2253

1599 77.8 18.2 13 0.16 0.14 189
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inclusion of sentinel or control tags (fixed tags moored within the array that are not attached to moving fish52) to 
continuously monitor (each time step) the shape of the logistic function described by the probability of detection 
against disturbances, would allow to take into account the natural fluctuations of the detection probability over 
time. Both, a more complex movement model including different behavioural states and enhanced measurement 
of the positional error constitute the next steps to further develop and improve this model.

The movement pattern results obtained from applying the SSM to our field data revealed important among 
individual differences in the behaviour of S. scriba. In general, we found that our population of S. scriba is 
sedentary, making it more vulnerable at being exposed to human impacts such as motorboat noise in coastal 
areas53. We determined an average home range size of 0.02 Km2. This value is smaller than those reported in 
previous studies in S. scriba38, and other Serranidae54, which have reported average home range areas of ~ 1 Km2. 
However, in both cases, traditional acoustic tracking measuring individual presence vs. absence without apply-
ing a movement model was used to estimate the home range area. Our findings suggest that the SMM approach 
enhances the accuracy of home range size estimation via tracking. We found large among individual variability 
in home range sizes (ranging from 50 to 175 m). The ecological and evolutionary implications of intraspecific 
variability in home range size have been of great interest in the behavioural ecology research33,55,56. Differences 
in home range area could emerge from different behavioural types making some individuals more risk prone and 
explorative than others40. Furthermore, the attraction force to the centre of the home range (k) can be used as 
a proxy for exploratory behaviour. In our study species, we found high among individual variability in the time 
spent covering the home range ranging from few hours to several days. Overall, the exploration (k) extracted 
from our model is bigger than the one proposed in Palmer et al.35 for Coris julis, a marine Labrid species that 
is also highly resident. These results suggest a relatively large exploration range for our study species. Our SSM 
also revealed that S. scriba is a diurnal species, being more active during the day than at night (Fig. 5), a usual 

Figure 6.   Means and Bayesian Credibility Interval (BCI) for the movement parameters estimated by the State 
Space Model for each individual. HRx and HRy define the centre of the home range, k is a measure of the 
driving force attracting the individual to the centre of the home range and radius defines the radius of the home 
range.
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characteristic of species inhabiting tropical and temperate areas57,58. Therefore, our work provides additional 
support to the results found by March et al.38 on the diel pattern of behaviour of S. scriba.

Regarding the results of noise peaks generated by passing motorboats (Fig. 5), we found the expected dynamic 
across time with more motorboat detections during the day than at night. Among-day variation showed an 
increase in the number of motorboats during the weekend, likely related to recreational activities in the studied 
coastal area. There was no evident effect of noise peaks produced by motorboats passing at close range on the 
S. scriba movement pattern of behaviour. However, the lack of effect of noise peaks generated by motorboats on 
fish behaviour needs to be contextualized under the specific studied circumstances.

First, we only considered the effects of noise peaks generated by motorboats passing at close range, we did 
not measure overall effects of noise pollution. Furthermore, the behaviour studied in this work is limited to the 
differential transition between states, swimming and hidden. Including other behaviours such as swimming 
speed and position of the fish in the water column could provide more information on the effects of noise pol-
lution on movement behaviour. For these reasons, we cannot exclude generalized effects of motorboat noise on 
behaviour, physiology and overall fitness of the studied species. Next steps to improve our model should include 
other behaviours to broaden the scope of the effects of noise pollution on fish behaviour.

Second, the relatively large number of motorboats passing through the study area might have caused a habitu-
ation effect in our study species. This habituation phenomenon has already been observed in other species; fish 
in habitats with higher motorboat disturbance show reduced sensitivity to motorboat noise59. Furthermore, 
Holmes et al.60 found that some coastal fishes returned to pre-disruption behaviour after 20 min of motorboat 
noise exposure. However, behavioural habituation to continuous sounds of heavy ship traffic may hide physi-
ological stress with a potential impact on survival and reproduction60–63, and general population maintenance15. 
To demonstrate the validity of the habituation hypothesis in our species, fish could be subject of experimental 
trials in controlled environments (aquaria or tanks), where individuals from high and low acoustically polluted 
areas are exposed to different levels of noise. In this way, sound tolerance and habituation could be measured 
in S. scriba when other environmental factors are controlled (habitat, population density and oceanography).

Third, our methodological approach had some limitations that could hide a real effect of motorboat noise 
on behaviour. It is possible that we failed to detect changes in behaviour due to the relatively sparse temporal 
resolution of tracking and discrete noise recordings (12-min time steps). For example, a motorboat could have 
passed just before the sound recorder started the one-minute recording period, affecting the general behaviour 
of the fish but not being considered in the noise data. An increase in resolution of the tracking data (e.g. larger 
sample size during a longer period of time and more accurate positioning) and a more detailed noise dataset 
(e.g. continuous sound recording of noise levels in dB) could provide a more realistic view into the behaviour of 
the studied species. To amend this limitation, we provided our SSM with an extension that accommodates to fit 
a continuous explanatory variable (e.g. noise levels in dB). Because of the nature of our empirical data, we were 
not able to use this addition to the model, however this can be used in the future to obtain stronger analytical 
results on the effects of noise on fish behaviour.

Fourth, effects of motorboat noise on behavioural responses can be different depending on the engine types 
and motorboat speed64. Furthermore, different sounds can trigger different behavioural responses on animals6. 
Currently, there are no available studies describing the hearing range and threshold of S. scriba, which is likely 
sensitive only to the particle motion component of anthropogenic noise. Implementing a set of experiments 

Figure 7.   Means and Bayesian Credibility Interval (BCI) for behavioural values estimated by the Space State 
Model. p represents the probability of remaining in the same state (hidden or swimming). (a) p during the 
day in presence of noise peaks generated by passing motorboats when the fish is hidden. (b) p during the day 
in presence of noise peaks generated by passing motorboats when the fish is swimming. (c) p during the day 
in absence of noise peaks generated by passing motorboats when the fish is hidden. (d) p during the day in 
absence of noise peaks generated by passing motorboats when the fish is swimming. (e) p at night in presence 
of noise peaks generated by passing motorboats when a fish is hidden. (f) p at night in presence of noise peaks 
generated by passing motorboats when a fish is swimming. (g) p at night in absence of noise peaks generated by 
motorboats when the fish is hidden. (h) p at night in absence of noise peaks generated by motorboats when the 
fish is swimming.
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under laboratory conditions with fish exposed to different sounds and different levels of noise pollution could 
help determine the best noise type and sound frequency interval affecting the behaviour of S. scriba, thus allowing 
us to target specific sounds when analysing natural recordings in following wild-based experiments.

The noise generated by commercial and recreational motorboats is probably the most important source of 
anthropogenic noise in coastal areas5,6. Studies on the effects of noise pollution on fish behaviour are important, 
especially for marine protected areas management. Literature showing the negative effects of noise pollution over 
all marine fauna, mammals, fishes and invertebrates is abundant8,23,65,66, and key for understanding the effects 
of such pollution on the marine environment as a whole12. We were not able to find an effect of noise peaks 
generated by motorboats passing at close range on a specific behaviour of S. scriba, but this does not imply that 
the activity of motorboats is not affecting the functioning of the ecosystem enclosed in the Palma Bay marine 
protected area. Overall, this work provides important analytical solutions for the study of the ecological impacts 
of anthropogenic noise pollution in wild fish populations. Thus, delivering a tool for future studies and manage-
rial applications.

Data availability
The datasets generated and analysed during the current study are available at the DIGITAL.CISC online reposi-
tory (http://hdl.handl​e.net/10261​/22061​5), other information is included in this article as supplementary 
information.
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