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Since initial reports, more than 25 years ago, that T cells recognize lipids in the context 
on non-polymorphic CD1 molecules, our understanding of antigen presentation to 
non-peptide-specific T cell populations has deepened. It is now clear that αβ T cells 
bearing semi-invariant T cell receptor, as well as subsets of γδ T cells, recognize a vari-
ety of self and non-self lipids and contribute to shaping immune responses via cross 
talk with dendritic cells and B cells. Furthermore, it has been demonstrated that small 
molecules derived from the microbial riboflavin biosynthetic pathway (vitamin B2) bind 
monomorphic MR1 molecules and activate mucosal-associated invariant T cells, another 
population of semi-invariant T cells. Novel insights in the biological relevance of non-pep-
tide-specific T cells have emerged with the development of tetrameric CD1 and MR1 
molecules, which has allowed accurate enumeration and functional analysis of CD1- and 
MR1-restricted T cells in humans and discovery of novel populations of semi-invariant 
T cells. The phenotype and function of non-peptide-specific T cells will be discussed in 
the context of the known distribution of CD1 and MR1 molecules by different subsets of 
antigen-presenting cells at steady state and following infection. Concurrent modulation 
of CD1 transcription and lipid biosynthetic pathways upon TLR stimulation, coupled 
with efficient lipid antigen processing, result in the increased cell surface expression 
of antigenic CD1–lipid complexes. Similarly, MR1 expression is almost undetectable in 
resting APC and it is upregulated following bacterial infection, likely due to stabilization of 
MR1 molecules by microbial antigens. The tight regulation of CD1 and MR1 expression 
at steady state and during infection may represent an important mechanism to limit 
autoreactivity, while promoting T cell responses to foreign antigens.

Keywords: CD1, MR1, innate and adaptive immunity, lipids, vitamins

introduction

Earlier studies in the 1990s demonstrated that the antigen recognition potential of T lymphocytes 
is not limited to peptides presented by MHC class I and class II molecules (1, 2). Indeed, the newly 
identified MHC-related genes belonging to the CD1 family (3) were soon shown to present self 
and mycobacterial lipids to αβ and γδ T cell clones lacking CD4 and CD8 co-receptors (1, 2, 4). 
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Furthermore, human and murine T cells bearing semi-invariant T 
cell receptors (TCRs) (5, 6) were shown to be CD1d restricted (7).

A second MHC-related gene was identified in 1995, MR1 (8), 
which in 2003 was shown to select a population of cells known 
as mucosal-associated invariant T cells (MAIT) (9), also bearing 
semi-invariant TCRs (10). It was not until 2012, however, that 
microbial vitamin B2 metabolites were identified as the elusive 
antigens presented by MR1 molecules (11).

In the past 25 years, a number of investigators have elucidated 
the contribution of CD1- and MR1-restricted T cells to antimi-
crobial immunity, and for CD1-restricted T cells also to cancer 
immune-surveillance and autoimmunity. While comprehensive 
reviews on CD1 and MR1 antigen-presenting systems have been 
recently published (12–15), we will focus on recent findings that 
have advanced our understanding of the role of CD1- and MR1-
restricted T cells, also known as non-conventional T cells or innate-
like cells, as they straddle between innate and adaptive immunity.

CD1 Molecules

The human CD1 locus on chromosome 1 encodes five molecules, 
divided into group 1 (CD1a, b, and c) and group 2 (CD1d), 
based on sequence homology (3, 16). The fifth molecule, CD1e, 
is not expressed at the cell surface, yet plays an important role 
in assisting lipid antigen processing and loading on group 1 CD1 
molecules (17). CD1 molecules are heterodimers of a heavy chain 
non-covalently associated with β-2 microglobulin, and have an 
overall fold similar to MHC class I molecules, however, unlike 
MHC class I and class II molecules, they are not polymorphic (3, 
16). In comparison to MHC class I molecules, CD1 molecules have 
evolved a deep and narrow binding cavity that anchors the hydro-
phobic alkyl chains of lipid molecules: the binding cavity contains 
two pockets, A′ and F′, of which the A′ is deeper and closed by a 
narrow entrance at the top. Yet, each CD1 molecule differs in the 
antigen-presenting groove architecture, in the intracellular traf-
ficking pattern, and in the overall tissue expression (18, 19). These 
differences underscore the non-redundant physiological role of 
the CD1 isoforms, which sample a variety of lipids in early, late 
endosomes or deep in the lysosomes, where exogenous lipids dis-
tribute according to their biophysical properties (20) (Figure 1). 
In mice, group 1 CD1 genes are absent and it is thought that they 
were lost during evolution, as they are present in other rodents 
(21). This has greatly hindered our understanding of the role and 
frequency of group 1 CD1-restricted T cells, until the recent devel-
opment of CD1a, b, and c tetramers, which has opened the way 
toward enumeration and functional characterization of human 
lipid-specific T cells (22–24). Humanized SCID mice and group 1 
CD1 transgenic mice are also proving to be useful models to study 
the role of CD1-restricted T cells in disease settings (25, 26).

CD1a
CD1a molecules are expressed on double-positive thymocytes, 
while in the periphery their expression is restricted to tissue-
resident dendritic cells (DCs) and Langerhans cells (LC) in the 
skin (28). Unlike other CD1 isoforms, CD1a molecules have a 
short cytoplasmic tail, with no tyrosine-based motif to drive their 
recycling through late endocytic compartments. Hence, their 

trafficking is limited to the early endosomal compartment in a 
Rab22- and Arf6-dependent manner (29). Of all the CD1 mol-
ecules, CD1a has the smallest groove, which is suitable to present 
antigens encountered in the early endosomal compartment or at 
the cell surface (30–32).

CD1a-restricted cells can be autoreactive or pathogen reac-
tive. The only microbial antigen known to bind CD1a is the 
mycobacterial lipopeptide didehydroxymycobactin (DDM) and 
DDM-restricted T cells could play a pivotal role in early detec-
tion of Mycobacterium tuberculosis infection (33). Like for many 
other lipid-specific T cells, recognition is exquisitely sensitive to 
the structure of the peptide and to the length and saturation of 
the fatty acid, which influences the positioning of the peptide 
residues available for recognition by the TCR (31). Despite a low 
affinity interaction (100 μM) between a DDM-specific TCR and 
CD1a–DDM soluble molecules (23), DDM–CD1a dextramers 
have been successfully used to stain DDM-specific T cells ex vivo 
in patients with active tuberculosis or positive tuberculin test, and 
could be a useful tool to determine the phenotype and function 
of these cells at a population level (23).

The first ever reported CD1-restricted clone was self-reactive 
(1). One of the first identified self-antigens presented by CD1a is 
sulfatide, a glycolipid abundant in myelin sheets. Of note, sulfa-
tide can also be presented by CD1b, CD1c, and CD1d (34), which 
suggested a possible contribution of CD1-restricted T cells to 
the autoimmune response in multiple sclerosis (MS). To further 
characterize the pool of CD1a-autoreactive T cells, Moody, and 
co-workers have recently designed an experimental system based 
on CD1-expressing human myelogenous leukemia cells (K562 
cells), with low or absent expression of MHC molecules in order 
to limit allo-reactivity. These studies have demonstrated that 
polyclonal CD1a reactive T cells are present at high frequency in 
the peripheral blood of healthy individuals [0.02–0.4% of memory 
T cells (35, 36)]. Similar results were independently obtained with 
C1R cells as antigen-presenting cells, although in this case higher 
frequencies of CD1a (and CD1c) reactive cells were observed [up 
to 10% of circulating T cells (36)]. Interestingly, CD1a-restricted 
T cells found in the blood express the skin-homing receptors 
CLA, CCR6, CCR4, and CCR10 and produce the cytokine inter-
leukin 22 (IL-22) in response to CD1a+ DCs. The identification 
of CD1a-restricted cells in skin biopsies suggests that they may be 
playing an important immunoregulatory role in skin homeostasis 
through IL-22 secretion (35). It will be very interesting to investi-
gate whether they may also play a role in skin immunopathology 
in psoriasis or in other skin diseases where over production of 
IL-22 has been implicated (37).

To understand the nature of the antigens activating CD1a-
restricted T cells, self-ligands were eluted from secreted CD1a 
molecules and skin samples and tested in vitro (38). Unexpectedly, 
stimulatory antigens were more efficiently extracted in chloro-
form than in the commonly used chloroform methanol mixture, 
suggesting high hydrophobicity. Indeed, CD1a molecules were 
found to stimulate T cell clones when loaded with oily antigens 
lacking carbohydrate or charged head groups [such as triacyl-
glyceride (TAG), squalene, and wax esters], while lipids with 
hydrophilic head groups inhibited CD1a-restricted T cell auto-
reactivity (38). These results, which suggested a unique mode of 
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“headless” antigen recognition by autoreactive CD1a-restricted T 
cells, were recently confirmed and extended with structural and 
mutagenesis studies (39). Although two of the studied autoreac-
tive TCRs have binding affinities for CD1a–self complexes at the 
low end of the spectrum (30 and 93 μM (38, 39), CD1a tetramers 
loaded with a spectrum of permissive ligands [such as phos-
phatidylcholine and lysophosphatidylcholine (LPC)] have been 
shown to stain Jurkat cells transduced with one of these TCR (39). 
Furthermore, the ternary structure of two TCR–CD1a–self-lipid 
complexes showed that the TCR docks over the A′ roof of CD1a 
molecules without direct contact with the antigenic ligand. A 
comparison of these structures with those of CD1a–sulfatide (30) 
or CD1a–lipopeptide (31) provided a molecular explanation for 
the inhibitory effect of polar ligands, which are thought to disrupt 
the TCR–CD1a contact zone (39), revealing a mode of antigen 
recognition different from TCRs of peptide-specific T cells and 
other CD1-restricted T cells, centered on critical interactions 
with antigens bound to MHC or CD1 molecules (40).

TAG, fatty acids, and squalene accumulate in sebaceous 
glands and in the corneous stratus of the epithelium, separated 
from epidermal LC. So it is likely that at steady state, LC will not 
efficiently load these stimulatory antigens on CD1a molecules. 
However, upon trauma, infection or any form of barrier breach, 
these antigens could gain access to LC and increase the response 
of CD1a-autoreactive T cells. Consistent with this hypothesis, 
recently, CD1a-restricted responses have been documented in 
cohorts of patients allergic to bee and wasp venom (41). Despite 
the high lipidic content of wasp and bee venoms, in these patients 
the culprit antigens are not exogenous, but are generated in vivo 
by venom phospholipase A2 injected intradermally by wasps 

and bees via their sting (41). In vitro, it was shown that venom 
phospholipase A2 activates CD1a-restricted T cells cleaving 
non-antigenic phospholipids into lysophospholipids and anti-
genic headless fatty acids. Using an in vivo model of suction cap 
blisters, by mass spectrometry the authors also demonstrated the 
presence of lysophospholipids in the blister fluids of volunteers 
injected with venom. Although free fatty acids were not detected 
in the blister fluids, is it likely that this negative result was due to 
lack of sensitivity of the mass spectrometry (41).

Thus, the physical separation between antigen and antigen-
presenting cells and/or the balance between stimulatory and 
inhibitory CD1a-ligands seem to be two of the mechanisms that 
the immune system deploys to keep an abundant population of 
autoreactive T cells under control at steady state. As endogenous 
or exogenous phospholipases can be activated during exposure 
to several allergens, it will be of interest to investigate whether 
in cohorts of patients with atopic dermatitis similar mechanisms 
may be active and account for expansion and/or activation of 
autoreactive T cells.

The identification of phospholipase A2 as a novel mecha-
nism to generate autoantigens may offer new diagnostic and 
therapeutic opportunities. Likewise, as immunostimulatory oils 
and hydrocarbons are components of widely used adjuvants 
such as MF59, it will be important to address the role of CD1a-
autoreactive T cells in shaping the adaptive T cell response during 
the aforementioned vaccination protocols.

CD1b
CD1b molecules are expressed on thymocytes and on periph-
eral DCs. Through tyrosine-based cytoplasmic motifs CD1b 
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FiGURe 1 | Antigen presentation to non-peptide-specific T cells. MR1 
and CD1 molecules present vitamin B2 derivatives or self and microbial lipids 
to a variety of αβ or γδ-bearing T cells. Through a variety of receptors (such as 
DC-SIGN, mannose receptor, and LDL-receptors) or via phagocytosis (not 
depicted) antigen-presenting cells uptake incoming pathogens. Microbial 

antigens are distributed through the endocytic compartment where they 
intersect recycling MR1 and CD1 molecules. In these compartments, antigen 
loading occurs, often through the help of accessory molecules such lipid 
transfer proteins (not depicted). The invariant chain (Ii) facilitates MR1 
distribution in the late endosomal/lysosomal compartments (27).
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molecules bind to both AP-2 and AP-3 adaptors (42, 43) and 
efficiently traffic to acidic LAMP1+ lysosomes, where processing 
of complex lipid antigens may occur and loading is aided by the 
acidic pH and by lipid transfer proteins (17, 44, 45). Additionally, 
CD1b molecules have evolved the largest antigen-presenting 
groove, with three pockets (A′, C′, and F′) and a large tunnel, 
which can accommodate lipids with very long alkyl chains, such 
as mycobacterial antigens with up to 80 carbons (46, 47). As most 
cellular lipids do not exceed 40 carbons length, the architecture of 
the groove of nascent CD1b molecules is maintained by spacer (or 
scaffold) lipids, such as diacylglycerols and deoxyceramides (48, 
49). The existence of spacer lipids was initially suggested from 
the crystal structures of CD1b bound to the ganglioside GM2 
or phosphatidylinositol, where it was observed that detergent 
moieties occupied the channels not filled by the lipid ligands (46). 
Spacer lipids seat at the bottom of the antigen-presenting groove, 
providing support for antigens loaded in the CD1b molecule, 
and are displaced when loading of longer microbial lipids occurs 
(49, 50). Furthermore, by stabilizing the antigen-presenting mol-
ecules, they enhance presentation of microbial lipids with shorter 
acyl chains (49). Spacer lipids have also been found when CD1c 
and CD1d molecules were crystallized with short lipids (51, 52), 
so their use seems to be a common strategy to maintain the cor-
rect fold and antigen orientation for CD1 molecules.

While CD1b-autoreactive T cells have been described (53, 54), 
they are detected at lower frequency than for other CD1 members 
(35). Indeed, CD1b molecules are specialized in presenting bacte-
rial antigens, perhaps because of the large volume of the groove; 
so far the majority of the described ligands are of mycobacterial 
origin. Mycolic acid from M. Tuberculosis cell wall was the first 
described lipid antigen presented by CD1 molecules (4), and it 
can form the scaffold for other mycolyl antigens, such as glucose 
monomycolate (GMM) and glycerol monomycolate (55). Other 
families of CD1b lipid antigens are derivatives of phosphatidyl-
myo-inositol (such as phosphatidylinositol mannoside (PIM) 
and lipoarabinomannan (LAM)) and sulfoglycolipids. The 
structure–activity relationship of these classes of lipids has been 
recently reviewed in Ref. (56, 57) and we refer the reader to these 
excellent reviews for more detail.

The development of CD1b tetramers has recently allowed to 
track mycobacteria-specific CD1b-restricted T cells in the blood 
of individuals with active tuberculosis or previous M. tuberculosis 
(MTB) exposure (22). In addition to following the dynamics of 
lipid-specific immune responses, for those lipid antigens pro-
duced only by M. tuberculosis and not other mycobacterial spe-
cies (such as sulfoglycolipids), tracking of antigen-specific T cells 
may represent an important future tool for differential diagnosis.

Until now, it was assumed that group 1 CD1-restricted T 
cells were expressing highly diverse TCR, like peptide-specific 
MHC-restricted T cells. However, the use of tetramers to study 
the CD1b-GMM-specific T cell response in multiple individuals 
has allowed the discovery of two novel T cell types in the human 
repertoire, germ-line encoded mycolyl reactive (GEM) T cells 
(58) and LDN5-like T cells (59), which stain brightly and dimly, 
respectively, as indication of higher (around 1  μM) and lower 
affinity (20–40  μM) for CD1b–GMM complexes. GEM T cells 
express a semi-invariant TCR using TRAV1.2 variable segments 

rearranged to TRAJ9 joining segments (thus differing from the 
TRAV1.2-TRAJ33 TCR used by MAIT cells, see later), with nearly 
identical CDR3 sequences and a biased TRBV6.2 usage. LDN5-
like T cells have a biased TRAV17 usage, with uniform CDR3 
length, and a biased TRBV4.1 usage, with variable CDR3 length. 
Structural data point to a role of the TCR-β chain in influencing 
the fine specificity of the GMM-specific TCRs (58). The evidence 
to date suggests that GEM and LDN5-like T cells expansion is 
antigen driven upon infection, and that they do not represent 
another population of innate-like cells, unlike the semi-invariant 
MAIT and iNKT cells; however, a detailed transcriptional and 
functional analysis of these cells is yet to be done. Furthermore, 
it still remains to be determined whether GEM and LDN5-like T 
cells show immunological memory, how long they persist, and 
whether they can be harnessed for vaccination purposes. Finally, 
it remains to be determined what drives the selection of these cells 
in donors with no documented mycobacterial infection.

CD1c
CD1c molecules are expressed on thymocytes and at high den-
sity on peripheral DCs, LC (together with CD1a), and B cells. 
Through associations with AP2 adaptor molecules, they are 
widely distributed through the endocytic system (but not the 
LAMP1+ lysosomes), which allows sampling of a broad spectrum 
of lipids in a variety of antigen-presenting cells (60).

CD1c molecules present self and microbial lipids to T cells 
bearing αβ and γδ TCR. In 1989, Porcelli and colleagues dem-
onstrated specific recognition of CD1c by a CD4−CD8− γδ CTL 
line (1) and CD1c self-reactivity was later confirmed with other 
cytotoxic γδ lines bearing the Vδ1 segment (61, 62). The self-
antigens recognized by these CTL lines, though, still need to be 
identified.

CD1c-autoreactive αβ T cells are present at high frequency 
in the peripheral blood of healthy donors (36). Recently, a novel 
self-lipid antigen (methyl-lysophosphatidic acid, mLPA) that 
accumulates in leukemic cells has been identified as one of the 
targets of CD1c-reactive T cells (63). mLPA-specific T cell clones 
were shown to efficiently kill in vitro and in vivo primary leuke-
mia cells in a CD1c-restricted manner, but not normal B cells and 
primary DC, that despite being CD1c positive do not express the 
antigen at significant level (63). Selective accumulation of mLPA 
in human leukemia suggests that it can be considered a novel 
class of tumor-associated antigens and may represent a promising 
immunotherapeutic target.

CD1c molecules present several mycobacterial and synthetic 
lipids with methylated alkyl chains: mannosyl phosphodolichols 
(MPDs), mannosyl-β1-phosphomycoketide (MPM), and phos-
phomycoketide (PM) (24, 64–66). The mycobacterial enzyme 
polyketide synthase 12 (psk12) is crucial for the synthesis of the 
methyl-branched lipids, which are a molecular signature of myco-
bacterial infection and essential for antigenicity (24, 65). Polyclonal 
CD1c-restricted T cells expand in vivo during mycobacterial infec-
tion and can be tracked with lipid-loaded CD1c tetramers (24, 64).

The range of self and foreign antigens presented by CD1c 
may be larger than currently appreciated, as it has been shown 
that also lipopeptides can be antigenic, in analogy to CD1a. This 
was demonstrated as a proof of principle with a synthetic N-acyl 
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glycine dodecamer lipopeptide (lipo-12) (67). These results 
raise the possibility that other eukaryotic or viral N-terminally 
acylated peptides, such as post-translationally modified prod-
ucts of ribosomal translation, might be antigenic. Interestingly, 
as lipopeptide presentation is sensitive to proteolysis in late 
endosomes and lysosomes (67), CD1c and CD1a molecules are 
the two CD1 isoforms uniquely suited to lipopeptide presentation 
because they predominantly survey the secretory pathway and 
the early endosomes.

Structural studies have highlighted a partially open structure 
of CD1c F′ pocket (52), which may accommodate a variety of 
ligands, from diacylated lipids such as sulfatide (34), to lipopep-
tides and possibly aid antigen loading in the early endosomal 
compartment or at the cell surface, in the absence of specific lipid 
transfer proteins. Furthermore, the CD1c–MPM crystal structure 
has highlighted the essential role for the methyl branches of MPM 
in stabilizing the single alkyl chain in the A′ pocket (52). Finally, 
the exquisite specificity of MPM and PM reactive clones can also 
be explained at the structural level (68): in the absence of the man-
nosyl moiety, the phosphate head group of PM is shifted toward 
the F′ pocket. A range of TCR binding affinities (7–30 μM) have 
been reported for CD1c–mycoketide complexes, and while the 
ternary complex TCR–CD1c–antigen is not yet available, bio-
physical data with six CD1c-reactive TCRs showed that different 
TCRs used different docking strategies on the same CD1c–lipid 
complex, unlike what has been described for the iNKT TCR and 
is predicted for the GEM TCR (68).

CD1d
CD1d molecules are the most widely distributed, as they are 
expressed not only on hematopoietic cells (thymocytes, mono-
cytes, DCs, and B cells), but also on epithelial cells (28). CD1d-
restricted T cells are collectively known as natural killer T cells, 
because of co-expression of T cells and NK cell markers (most 
notably CD161 in humans and NK1.1 in some mouse strains). 
Two types of NKT cells exist: type I, (also known as invariant, 
iNKT), expressing a semi-invariant TCR (Vα24-Jα18 paired 
to Vβ11 in humans, Vα14-Jα18 paired to Vβ2, Vβ7, or Vβ8.2 
chains in mice); type II, expressing a polyclonal TCR repertoire 
(12). The CD1d antigen presentation system is conserved across 
species, and both human and murine iNKT cells can be tracked 
with CD1d tetramers loaded with the synthetic glycolipid agonist 
α-galactosylceramide (α-GalCer). Furthermore, the availability 
of murine models lacking type I or type I and II NKT cells has 
greatly contributed to our knowledge of the biology of these cells. 
Conversely, we still lack reagents to specifically detect the major-
ity of type II NKT cells, thus with few exceptions, their role in vivo 
has been less characterized.

Through recognition of a variety of self and microbial antigens, 
NKT cells have an important immune-regulatory role, spanning 
from autoimmunity, to protection against infection and tumor 
immune-surveillance. We refer the reader to recent reviews for a 
comprehensive discussion of NKT cell biology and CD1d antigen 
presentation (12, 14, 69–71), while here we highlight the role of 
microbiota in modulating iNKT cell reactivity and we summarize 
results revealing a previously unknown heterogeneity of the 
human NKT cell family (Figure 1).

Microbiota and NKT Cells
Regulation of metabolism and immunity by commensal bacteria 
is now well established (72). Interestingly, α-GalCer, the most 
potent iNKT cell agonist to date, was originally isolated from 
commensal bacteria of the marine sponge Agela mauritianus (73). 
The α-anomeric linkage of the sugar moiety is the quintessence 
of a microbial signature, and a variety of iNKT cell agonists from 
different microbial species have been characterized, although 
during microbial infection iNKT cell reactivity is often driven 
by cytokine-mediated signals (74). Recently, inhibitory and 
activatory α-GalCer species have been biochemically isolated 
from Bacteroides fragilis, a prominent species of the gut micro-
biota (75, 76). It has also been demonstrated that the intestinal 
microbiota plays an important role in the tight regulation of 
iNKT cell numbers and function, possibly through the balance 
between stimulatory and inhibitory lipids: germ-free mice have 
increased relative and absolute numbers of iNKT cells in the 
intestine, due to increased CXCL16 expression in the mucosal 
epithelium and CXCL16-dependent iNKT cell homing (77). 
The conditioning effect of the microbiota starts very early in life 
and has long-lasting consequences, as demonstrated by higher 
susceptibility of germ-free mice to intestinal immunopathol-
ogy and lung inflammation (77). In turn, iNKT cells influence 
bacterial colonization of the intestine and lungs of mice (78) and 
signaling through epithelial CD1d is essential in maintaining 
mucosal homeostasis via IL-10 secretion (79). These findings 
have been recently extended in humans, where phenotypically 
and functionally mature iNKT cells have been detected in the 
sterile environment of the fetal intestine, and it is thought that 
they may represent an important first line of defense at birth (80). 
Furthermore, lysosulfatide-reactive CD1d-restricted type II NKT 
cells have been identified in the mucosa of ulcerative patients, and 
their cytotoxic activity against the intestinal epithelium suggests a 
pathogenic role (81). It remains to be determined whether during 
intestinal inflammation, T cells restricted by group 1 CD1 may 
also recognize self or microbial lipids.

Human NKT Cell Heterogeneity
Adipose tissue-resident iNKT cells
Like MHC-restricted CD4 cells, iNKT cells can also differentiate 
in Th1, Th2, Th17, TFH, and T-regulatory subsets, which use the 
same transcription regulators as peptide-specific T cells (69). The 
balance between subsets could have profound regulatory effects 
during immune responses, through the secretion of cytokines 
and modulation of DC and B cell function (12). Recently, a tissue 
resident subset of iNKT cells with a unique transcriptional and 
cytokine profile has been shown to accumulate in adipose tissue 
and regulate the function of Tregs and macrophages, via IL-2 and 
IL-10, respectively (82). Adipose tissue iNKT cells do not express 
the master regulatory PLZF, but express the transcription factor 
E4BP4, which controls IL-10 production. Also, as compared to 
splenic or liver iNKT cells, a smaller fraction of adipose tissue 
iNKT cells expresses CD44 and NK1.1 markers, while expression 
of ICOS and PD-1 was increased. As adipocytes are CD1d positive, 
they could modulate iNKT cell activation through presentation of 
self and dietary lipids, and ultimately the cross talk between iNKT 
cells and adipose tissue macrophages could be very important 
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in preventing tissue inflammation. This hypothesis is consistent 
with the described protective role of iNKT cells against obesity-
induced chronic inflammation (83).

CD1d-restricted γδ T cells
Two groups employed CD1d tetramers loaded with two differ-
ent ligands to isolate CD1d-reactive T cells from healthy human 
peripheral blood. In one study, the majority of CD1-sulfatide 
tetramer staining cells were found to be T cells bearing the Vδ1 
TCR (84), while a second study identified Vδ1 T cells amongst 
those binding CD1d-α-GalCer tetramers, although the majority 
of cells binding to the latter tetramers, as expected, were iNKT 
cells (85). Interestingly, human Vδ1 do not recognize mouse 
CD1d-α-GalCer tetramers, unlike human iNKT cells, highlight-
ing a clear difference in the reactivity of the two populations. Also 
the affinity of binding of Vδ1 cells to human CD1d-α-GalCer 
complexes is lower than that observed for iNKT cells (Kd 16 
versus 0.5 μM).

Vδ1 bearing cells are typically tissue-homing γδ cells and are 
abundant in the intestinal mucosa (86, 87). Preliminary results 
suggest that some reactivity to C1R cells expressing CD1d mol-
ecules can be detected amongst Vδ1 polyclonal lines generated 
from intestinal biopsies (88). Given the presence of several lipids 
from the microflora and the abundant expression of CD1d on the 
gastrointestinal epithelium (28), future studies should investigate 
whether intestinal Vδ1 γδ T cells can also bind CD1d-α-GalCer 
tetramers and if so, the role of microbiota in maintaining and 
expanding Vδ1 γδ T cells after birth. As Vδ1 cells are present at 
higher frequency than iNKT cells, they could have a marked impact 
on intestinal homeostasis and immunopathology, and reactivity 
could be modulated by the expression of stress-induced MHC-
related molecules like MICA and MICB (86). Likewise, reactivity 
to sulfatide may underscore a possible role of these cells in MS.

The mode of γδ TCR–CD1d-α-GalCer/sulfatide recognition 
is markedly different from that of the iNKT TCR (85, 88). The 
γδ TCR docks orthogonally rather than in a parallel manner like 
the iNKT TCR, thus resembling type II NKT TCRs and classical 
peptide-specific TCRs (40); CD1d binding is dominated by the 
TCRδ chain, while CDR3γ residues contribute to lipid antigen 
binding only in CD1d-α-GalCer, but not in CD1d–sulfatide 
ternary complexes (85, 88).

NKT cells and chronic inflammation
Several investigators have described reactivity of human type II 
NKT cells toward inflammation-associated lysolipids, generated 
by the action of PLA A2 (89). T cells binding CD1d–LPC mul-
timers were found at higher frequency in the blood of myeloma 
patients compared to healthy controls, consistent with elevated 
serum levels of LPC in the plasma of these patients (90). In 
infected hepatocytes, Hepatitis B was shown to induce the activ-
ity of secretory phospholipases and the release of lysophosphati-
dylethanolamine (lyso PE), capable of eliciting CD1d-restricted 
type II NKT cells activation in humans and mice, suggesting that 
they may play a role in viral recognition (91).

Glucosylsphingosine (LGL1), the deacylated product of 
β-glucosylceramide (GL1), accumulates in several metabolic 
disorders such as Gaucher disease, as a consequence of altered 

sphingolipid metabolism. In all metabolic disorders, lipid accu-
mulation is associated with progressive inflammation. One of the 
contributing factors could be the expansion of pathogenic LGL1-
reactive CD1d-restricted type II NKT cells with a TFH phenotype, 
stimulating inflammation and B cell activation (92).

The demonstration that lysolipid species are antigenic for sub-
sets of CD1d-restricted NKT cells is of great interest and provides 
the link for NKT cell activation in sterile inflammatory condi-
tions, possibly suggesting novel therapeutic modalities through 
selective inhibition of the biochemical pathways generating the 
relevant antigens.

On the Role of DC in Regulating CD1 Reactivity
The central role of DCs in orchestrating immune responses is 
now well established (93). Immature DC, residing in the periph-
ery, patrol the body for incoming pathogens and recognition of 
pathogen molecular patterns (PAMPs) through pattern recogni-
tion receptors (PRRs) triggers DC activation, maturation, and 
migration to the draining lymph nodes. Coordinated changes 
in expression of MHC class I and II, co-stimulatory molecules 
and cytokines upon DC maturation, promote efficient priming of 
peptide-specific CD4, CD8 T, and B cells in the lymph node (94, 
95). The heterogeneity in DC subsets and their different anatomi-
cal distribution results in unique functional specialization, and 
ensures tailoring the adaptive immune response to the type of 
incoming stimulus (95).

As highlighted in the previous paragraphs, CD1d expression 
is constitutive and shared by all DC subsets; however, expression 
of group 1 CD1 molecules is much more restricted. Due to the 
strong autoreactivity of CD1-restricted T cells, tight regulation of 
steady-state cell surface expression of CD1 is required to control 
their activation. For example, lipids found in human serum, 
particularly lysophosphatidic acid and cardiolipin, inhibit group 
1 CD1 expression, through a transcriptional mechanism involv-
ing activation of the peroxisome proliferator-activated receptor 
(PPAR) nuclear hormone receptors (96).

Monocytes express only CD1d molecules, but during in vitro 
differentiation into DC with GM–CSF and IL-4, group 1 CD1 
expression is induced (2). It is likely that, in vivo, cytokines in the 
local microenvironment might influence group 1 CD1 expres-
sion in the process of monocyte to DC differentiation following 
transendothelial migration (97). Indeed it has been shown that 
monocyte infection with mycobacteria represents an efficient 
way to induce DC differentiation and expression of group 1 CD1 
molecules (98–100). Upregulation of CD1 molecules depends on 
NOD and TLR signals and is enhanced by concomitant inflamma-
some activation and release of bioactive IL-1β (101). Interestingly, 
while mycobacterial infection increases group 1 CD1 expression, 
it downregulates CD1d and interferes with MHC-restricted 
antigen presentation (99, 102).

Mycobacterial cell wall lipids thus have a dual effect, by serving 
as antigens (i.e., mycolic acids, GMM, LAM PMK, and DDM) 
and adjuvants that drive CD1 expression on the infected cells, to 
promote antigen presentation. However, group 1 CD1 molecules 
are not expressed on macrophages, which instead are the infected 
cells during in vivo MTB infection, thus whether CD1b-restricted 
T cells might play a sizeable cytotoxic and anti-mycobacterial 
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function in vivo is debatable. The low frequencies of group 1 CD1-
restricted T cells, even after infection, rather suggests a helper 
function, perhaps through modulation of DC function (103).

While during DC maturation a marked upregulation of MHC 
class I and II is observed, with increased half-life of surface 
MHC–peptide complexes leading to efficient peptide antigen 
presentation (104, 105), the surface expression of group 1 CD1 
molecules is only moderately increased (CD1b, CD1c) or even 
decreased (CD1a) (106); furthermore, CD1 molecules continue 
to recycle between the plasma membrane and intracellular com-
partments (102). CD1-mediated lipid antigen presentation occurs 
very efficiently already in immature DC and this might ensure 
prompt licensing of DC by lipid-specific T cells via cytokines and 
CD40–CD40L interactions (103). The role of iNKT cells in DC 
licensing and memory CTL generation is discussed in depth in an 
accompanying review in this issue.

To ensure optimal antigen presentation through CD1 mol-
ecules, DC subsets also coordinate lipid antigen uptake and dis-
tribution through the endosomal compartment through specific 
receptor-mediated interactions (19). Serum lipoproteins ensure 
efficient delivery of self and foreign antigens for CD1-mediated 
presentation, through ApoE-LDL-R-mediated uptake (107).

The C-type lectin Langerin mediates Mycobacterium leprae 
antigen uptake and delivery to Birbeck granules in LC and 
is required for CD1a–lipid antigen presentation (108). The 
mannose receptor (CD206), a C-type lectin expressed on mac-
rophages, dermal DC, and monocyte-derived DC, promotes 
mycobacterial LAM uptake and lysosomal delivery for CD1b 
presentation (109). Other C-type lectins that specifically capture 
pathogen-derived carbohydrate rich antigens are DEC 205 
(expressed on LC, dermal DC, and monocyte-derived DCs), 
DC-SIGN (CD209, expressed mainly on dermal DC). Their role 
in enhancing peptide presentation is well described (110, 111) 
and it is likely that these and other related molecules involved in 
endocytosis of bacteria or bacterial debris might also influence 
CD1d-restricted lipid antigen presentation in late endosomal 
compartments. Selective expression of endocytic receptors in DC 
subsets can also be exploited therapeutically: recently it has been 
shown that targeted delivery of the mycobacterial antigen GMM 
to monocyte-derived DCs via Siglec-7 via sialic acid-coated 
nanoparticles induces robust CD1b-restricted T cell activation, 
although this was not tested on primary CD1b+ Siglec-7+ myeloid 
DCs (112).

In addition to transcriptional regulation of CD1 expression, T 
cell autoreactivity is controlled by the availability of self-ligands. 
Although determination of the repertoire of lipids bound to CD1 
molecules is technically challenging, mass spectrometry analysis 
of lipids eluted from secreted CD1d molecules has revealed the 
presence of several types of phospho and sphingolipids acquired 
during biosynthesis (113, 114), the majority of which are non-
antigenic (89). Moody and co-workers used a recently established 
lipidomic platform to compare self-lipids associated with all CD1 
molecules and the results confirmed the ability of CD1 molecules 
to bind a variety of molecules (49). It is now also well established 
that the range of glycosphingolipids (GSL) and phospholipids 
expressed by cells varies amongst cell types and with cellular acti-
vation (115). TLR activation of myeloid cells has marked effect 

on the expression of key genes involved in GSL biosynthesis (54, 
116–118), which translate in detectable biochemical changes (54, 
119). This has been shown to lead to increased CD1b-restricted 
and iNKT cell autoreactivity (54, 116–118).

MR1 and MAiT Cells

The MHC-related molecule MR1 (8) presents antigens to a family 
of innate-like T cells bearing a semi-invariant TCR and known 
as MAIT (10). In humans, the MAIT TCR consists of the Vα7.2 
TCR-α chain mostly joined to Jα33 segments (TRAJ33) and 
paired to a limited number of TCR-β chains (mainly TRBV6 and 
TRBV20).

MR1 molecules are non-polymorphic and highly conserved 
among mammalian species, leading to functional cross-reactivity, 
which is reminiscent of the species conservation in the CD1 
antigen-presenting system (120). Like iNKT cells, MAIT cells are 
selected in the thymus by double-positive cortical thymocytes 
(121), but unlike iNKT cells they leave the thymus as naïve cells 
and complete their maturation in the periphery (122, 123). MR1 
expression on peripheral B cells and the intestinal flora are crucial 
for MAIT cells survival, expansion, acquisition of a memory 
phenotype, and effector functions (9).

Due to their anatomical mucosal localization and innate-like 
properties with a Th1-like effector phenotype, MAIT cells are in 
a unique position to act as early sentinels in response to respira-
tory and intestinal pathogens. Indeed, they have been shown to 
be activated in response to a variety of bacterial and fungal infec-
tions (124, 125) and to play a role in infectious models with BCG, 
Francisella tularensis, Klebsiella penumoniae (126–128), and MTB 
(129). Despite the well-characterized antimicrobial activity of 
MAIT cells, the antigens bound to MR1 remained for a long time 
elusive, until a major breakthrough in 2012 demonstrated that 
MR1 molecules present vitamin B2 metabolites to MAIT cells 
(11). These vitamins are not produced by mammals, hence they 
can be considered as molecular signatures of microbial infection. 
Consistently, microbes lacking the ability to synthesize ribofla-
vins (such as Streptococcus pyogenes or Enterococcus faecalis) are 
unable to induce MR1-dependent MAIT cell activation (11).

Like iNKT cells and γδ cells, however, MAIT cells can also 
be activated in a TCR/MR1-independent manner, through the 
stimulatory activity of IL-12 and IL-18 secreted by activated 
APCs (130). Hence, it is possible that MAIT cells may play an 
immunoregulatory role also during infections with viruses and 
with bacteria lacking the riboflavin synthetic pathway or in sterile 
inflammation.

MR1 Ligands
MR1 molecules are ubiquitously expressed, although barely 
detectable at the cell surface (131), unless cells are incubated with 
vitamin ligands that increase MR1 expression (11, 132, 133). Two 
types of vitamin ligands have been described, stimulatory (ribo-
flavin intermediates) and not (folic acid derivatives). Both classes 
of ligands have been shown to stabilize MR1 molecules, covalently 
binding through a Schiff base complex; however, crystallographic 
studies revealed that TCR recognition is exquisitely sensitive to 
the ribityl moiety present only in the riboflavin derivatives (134). 
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To date, two classes of stimulatory riboflavins are known, ribityl-
lumazine and pyrimidines [more powerful agonists, but highly 
unstable unless trapped by MR1 molecules (135)]. While initially 
the ribityllumazine rRL-6-CH2OH was the bacterial ligand 
(from Salmonella enterica serovar Typhimurium supernatants) 
thought to bind to MR1 (11), subsequent elegant studies with 
Gram+ (Lactococcus lactis) and Gram− (E. coli) bacterial strains 
defective for key enzymes in the riboflavin synthesis pathway 
unveiled the intermediate compound, 5-A-RU (5-amino-6-d-
ribitylaminouracil) as the key precursor for pyrimidines and 
ribityllumazines (133, 135). Bacterial-derived 5-A-RU itself is 
not stimulatory, but it reacts with bacterial or host cell-derived 
small glyoxal compounds to form pyrimidines, which then can 
condense to form ribityllumazine.

Future studies will be needed to identify the molecular mecha-
nisms of vitamin antigen presentation through MR1. For example, 
the relative contribution of host-derived versus bacterial-derived 
glyoxal compounds that react with 5-A-RU remains to be 
determined, as is the cellular compartment where this condensa-
tion and the subsequent MR1 loading occur. Furthermore, the 
observation that some non-activating ligands [Ac-6-FP (132)] 
can induce rapid and prolonged upregulation of MR1 molecules 
suggests different effects on MR1 trafficking. Finally, the cur-
rently identified ligands are all bound in an aromatic cradle in 
the A′ pocket of the MR1 binding groove [although with different 
orientations (134)], and there remains the possibility that other 
classes of ligands might extend in the more exposed F′ pocket.

MR1 Tetramers and MAIT Cell Heterogeneity
With the discovery of MR1 ligands, MR1 tetramers have been 
developed to characterize the MAIT cell population, previously 
identified solely as TRAV1.2+, CD161+ CD8+ cells (136). In 
peripheral blood, rRL-6-CH2OH-loaded MR1 tetramers bind 
to a population of CD3+ CD4− CD161+ cells with comparable 
frequency to the TRAV1.2 antibody. The advantage of tetramer 
over antibody stainings, however, is that tetramers are able to 
detect MAIT cells that have downregulated CD161 expression, 
such as post activation or during HIV infection (137). Single cell 
sorting of CD161+ TRAV1.2+ cells and CD161+ MR1-tetramer+ 
cells and multiplex analysis of their TCR genes revealed the use of 
alternative rearrangements (particularly TRAJ20 and TRAJ12) in 
addition to the canonical TRAV1.2-TRAJ33 (136). These alterna-
tive rearrangements have also been identified by different inves-
tigators that performed deep sequencing of mRNA from MAIT 
cells sorted on the basis of TRAV1.2 and CD161 co-expression 
(138) and on MAIT populations that specifically secreted TNF-α 
in response to selected pathogens (139). Diversity in the CDR3β 
region due to amino acid additions and a diverse use of TCR-β 
chains (in addition to TRBV6.4 and TRBV20) have also been 
observed, suggesting an unexpected heterogeneity of the periph-
eral MAIT T cell repertoire.

Interestingly, the canonical MAIT TCRs as well as those bear-
ing TRAJ12 and TRAJ33 segments have a conserved Tyr95 residue 
in the CDR3α-chain, which is essential in forming a hydrogen 
bond with the ribityl tail of activating ligands (134). These three 
TCRs also adopt a very similar docking mode on MR1–antigen 
complexes (132, 140–142). However, other recently described 

MR1-restricted TCRs lack the Tyr95α residue (139) and future 
studies will be required to confirm that these TCRs do indeed 
confer MR1-restricted reactivity and to determine the molecular 
details of their antigen recognition.

Furthermore, the non-canonical TCR α-chains paired almost 
exclusively with TRBV6.4 (136), raising the possibility that the 
TCR β-chain repertoire might impact antigen recognition, as 
observed with iNKT cells (143, 144). Indeed, structural and 
biophysical data have provided experimental evidence that the 
CDR3β loops can fine-tune the MAIT–TCR interaction and 
responsiveness to MR1, in an antigen-dependent manner (132).

The functional correlate of the phenotypic heterogeneity of 
the MAIT repertoire is currently unclear, and an interesting 
hypothesis is that it may be a surrogate signature of specific 
pathogen infections. Along these lines, Gold and co-workers 
reported selective use of MAIT cell TCRs in response to three 
different pathogens (Mycobacterium smegmatis, Salmonella 
typhimurium, and Candida albicans) in individual subjects 
(139). In this data set, however, no unique TCR sequence was 
found to be associated with individual pathogens across indi-
viduals. In these donors, functionally responsive MAIT cells for 
TCR sequencing were identified by TNF-α secretion, however, in 
the absence of blocking experiments with MR-1 antibodies it is 
unknown whether the responses were entirely TCR dependent 
or co-stimulated by cytokines. Nevertheless, these results are 
of interest, as they suggest that the MAIT cell TCR repertoire 
potentially reflects the host’s microbial exposure history because 
of qualitative differences in the class of antigens presented by 
different pathogens, and that MAIT cells could exhibit immu-
nological memory. However, an alternative interpretation is that 
different subsets of MAIT cells are differentially activated by 
pathogens in function of their TCR-β sequence heterogeneity 
(and hence of their TCR affinity), according to quantitative rather 
than qualitative differences in antigen availability in different 
microbes. Consistently, recent work by Lantz and co-workers 
using bacteria with mutations in the riboflavin biosynthetic 
pathway, suggested limited MR1 ligand heterogeneity between 
Gram+ and Gram– bacteria (133).

Ultimately, longitudinal studies with well-defined microbial 
exposures (for example MTB, Salmonella typhi or paratyphi) will 
be needed to further explore these alternative hypotheses. In addi-
tion, it will be of interest to compare the MAIT T cell repertoire 
in the naïve thymus, in cord blood and in adults as MAIT cells 
undergo antigen-driven expansion at birth (122, 123). So far, the 
only study that analyzed by deep sequencing sorted TRAV1.2+ 
CD161+ MAIT from peripheral blood of three donors after a 
5-month-interval showed that the oligoclonal TCRβ repertoire is 
stable in the absence of infection (138).

MAIT Cells in Sterile Inflammation
Although the predominant role of MAIT cells is protection 
against infections, there is some evidence that they may be 
implicated in autoimmune responses. Murine transgenic MAIT 
cells protect from the induction and progression of experimental 
autoimmune encephalomyelitis, and in MR1-deficient mice, 
which lack MAIT cells, EAE is exacerbated (145). MAIT cell 
TCR sequences were identified by single-strand polymorphism 
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analysis in autoptic material of patients with MS (146), and one 
study reported a decrease in the frequency of MAIT cells in the 
blood of MS patients, proportional with the severity and activity 
of the disease (147). It has been shown that IL-18 in the serum 
of MS patients drives MAIT cell activation and increased expres-
sion of VLA4, an integrin that mediates migration across the 
blood–brain barrier (148).

Reduction of MAIT cell frequencies has been reported in the 
small intestine of celiac disease patients (149), while an increase 
was observed in the inflamed mucosa of patients with inflam-
matory bowel disease, with a clear activated phenotype (150). 
In both disease settings, changes in frequency and phenotype 
of tissue resident and circulating MAIT cells might be driven by 
compromised gut barrier function and bacterial overgrowth, as 
also observed during HIV infection (137, 151).

Mucosal-associated invariant T cells have been identified 
amongst the IL-17-producing cells in psoriatic skin, although 
percentages were not significantly different compared to healthy 
skin (152). It is currently unclear whether MAIT cells are acti-
vated in the psoriatic skin via microbial ligands or as a result of 
the general inflammation. Finally, it has been reported that the 
frequency of peripheral blood CD8 and double-negative (DN) 
MAIT cells is reduced in lupus and rheumatoid arthritis (RA) 
patients, with an accumulation of MAIT cells in the synovial fluid 
in RA (153). This reduction was more pronounced in patients 
with highly active disease. Also the capacity of MAIT to secrete 
IFN-γ was reduced in response to both bacterial and PMA/
ionomycin stimulation, although this was shown to be unrelated 
to their increased expression of PD-1 (153).

While enumeration of MAIT frequencies on the basis of the 
sole expression of Vα7.2 and CD161 might lead to some prelimi-
nary interesting observations, further studies will need to include 
MR1-tetramer staining or qPCR analysis of the invariant TCR, to 
avoid underestimation of frequencies, as CD161 is often down-
modulated following activation (154). Furthermore, the lack of a 
suitable animal model, due to very low frequency of MAIT cells 
in inbred laboratory mice may hinder the understanding of the 
functional relevance of the above phenotypic analysis.

Recent results have brought MAIT cells to the center stage 
in chronic inflammatory settings associated with obesity and 
diabetes, possibly as a consequence of the altered composition 
of the gut microbiota in both diseases (155). The frequency of 
circulating MAIT cells, as determined by both MR1 tetramer 
staining and TRAV7.2 and CD161 staining, was significantly 
reduced as compared to healthy controls. The remaining MAIT 
cells showed a phenotype consistent with activation (upregula-
tion of CD25 and CD69) and an inflammatory cytokine bias 
(higher secretion of IFN-γ, IL-2, IL-7, granzyme B). Conversely, 
MAIT cells were increased in subcutaneous and omental adipose 
tissue as compared to the blood, suggesting preferential tissue 
recruitment. Adipose tissue MAIT cells also secreted more IL-17 
in obese as compared to lean patients. Interestingly, the authors 
observed an attenuation of MAIT cell abnormalities after weight 
loss following bariatric surgery. It is possible that IL-7 produced 
by adipose tissue stromal cells facilitates MAIT cell activation, as 
previously observed in the liver (156). In addition to cytokines, 
changes in gut microbiota and permeability might release a 

variety of bacterial ligands, which could react with increased 
endogenous levels of methylglyoxals to form MAIT cell agonists.

MAiT interactions with APCs
As mentioned before, MR1 is ubiquitously transcribed, although 
cell surface expression is very low and it is only transiently 
upregulated following infection or incubation with some of the 
synthetic ligands (27, 131–133). Upon infection, MAIT cells can 
be activated in a MR1-dependent way by a variety of cells, includ-
ing DC, macrophages, epithelial cells, and fibroblasts (124, 125). 
By secreting a plethora of regulatory cytokines (138), activated 
MAIT like iNKT cells may be able to modulate the antimicrobial 
function of other cells. Likewise, by secreting chemokines like 
CCL4 they can recruit NK, monocytes, and other inflammatory 
cells to infected tissues (138). Furthermore, it is likely that MAIT 
cell activation will provide an early source of IFN-γ during infec-
tions, facilitating the development of Th1 immunity, as described 
for NK cells (157), γδ (87), and iNKT cells (158). However, it is 
currently unknown whether MAIT cells are capable of inducing 
effective DC maturation in vivo, and if so the relative contribution 
of cytokines and CD40–CD40L interactions, which are key for 
DC licensing by CD1-restricted cells (103).

Post-natal MAIT cell expansion depends on bacterial flora 
and B cells (9). In vitro, primary B cells and EBV-transformed B 
cell lines have been shown to induce MAIT cell activation in an 
MR1-dependent manner following infection with commensal or 
pathogenic intestinal bacteria (159). Lack of titration of MAIT 
cell activation and reduced stimulation by paraformaldehyde 
fixed B cells, however, suggest a possible contribution of soluble 
factors, which was not addressed. Consistent with this, IFN-γ 
secretion by activated MAIT cells was only partially blocked by 
the anti MR1 antibody 26.5.

Finally, despite known expression of the CD161 ligand LLT1 
by activated B cells and DC (160, 161), its role in modulating 
MAIT cell reactivity remains to be addressed, and could be of 
relevance considering the profound CD161 downmodulation 
observed with MAIT cell activation (154).

Concluding Remarks

Our current understanding of innate-like T cell populations has 
been widened in the past few years by few key technological 
advances, such as the identification of novel agonists and the 
capacity to refold antigen-presenting molecules to generate 
tetramers to enumerate qualitatively and quantitative these cells 
in health and disease settings. Biophysical and crystallographic 
studies, coupled with extensive mutagenesis, have elucidated 
the fine molecular details of antigen recognition, highlighting 
the existence of conserved (for iNKT, MAIT, and GEM T cells) 
and more variable (for CD1a and CD1c-restricted T cells) TCR 
footprints over the cognate antigen-presenting molecules (40). 
In the future, a better understanding of the fine details of antigen 
presentation through MR-1 may open new avenues aimed at 
therapeutically harnessing MAIT cells in promoting the cross 
talk between the innate and adaptive arms of the immune 
system. Given the higher frequencies of MAIT cells over iNKT 
cells in humans, and their enrichment at mucosal sites, MAIT 
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cell agonists might prove effective adjuvants to promote mucosal 
immune responses.

Finally, functional and phenotypical enumeration of MAIT 
cells and GEM T cells with tetramers may become a valuable 
immuno-monitoring tool. For example, it has been shown that 
MAIT cell frequencies are reduced in the blood of individuals 
with active MTB infection but they normalize after therapy (154), 
hence it should be explored whether they could be considered a 
marker of disease status, possibly to identify individuals at risk 

of progression to clinically active disease. Additional population 
of invariant T cells are being discovered by next-generation 
sequencing of the TCR-α chain repertoire (162) and may be used 
to probe antigenic exposure at a population level.
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