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Abstract. Lung cancer is a common malignancy worldwide. 
The aim of the present study was to investigate differen-
tially expressed genes (DEGs) between non‑small‑cell lung 
cancer (NSCLC) and normal lung tissue, and to reveal the 
potential molecular mechanism underlying NSCLC. The 
Gene Expression Omnibus database was used to obtain 
three gene expression profiles (GSE18842, GSE30219 and 
GSE33532). DEGs were obtained by GEO2R. Gene Ontology 
and pathway enrichment analyses were performed for DEGs 
in the Database for Annotation, Visualization and Integrated 
Discovery. A protein‑protein interaction (PPI) network of 
DEGs was constructed and analyzed using the Search Tool 
for the Retrieval of Interacting Genes/Proteins database and 
Cytoscape software. A survival analysis was performed and 
protein expression levels of DEGs in human NSCLC were 
analyzed in order to determine clinical significance. A total 
of 764 DEGs were identified, consisting of 428 upregulated 
and 336 downregulated genes in NSCLC tissues compared 
with normal lung tissues, which were enriched in the ‘cell 
cycle’, ‘cell adhesion molecules’, ‘p53 signaling pathway’, 
‘DNA replication’ and ‘tight junction’. A PPI network of 
DEGs consisting of 51 nodes and 192 edges was constructed. 
The top 10 genes were identified as hub genes from the PPI 
network. High expression of 4 of the 10 hub genes was associ-
ated with worse overall survival rate in patients with NSCLC, 
including CDK1, PLK1, RAD51 and RFC4. In conclusion, the 
present study aids in improving the current understanding of 
aberrant gene expression between NSCLC tissues and normal 
lung tissues underlying tumorgenesis in NSCLC. Identified 

hub genes can be used as a tumor marker for diagnosis and 
prognosis or as a drug therapy target in NSCLC.

Introduction

Lung cancer is the leading cause of cancer‑associated 
mortality worldwide. In 2015, an estimated 221,200 new cases 
(115,610 in men and 105,590 in women) of lung and bronchial 
cancer were diagnosed, and 158,040 deaths (86,380 in men 
and 71,660 in women) were estimated to occur as a result of 
the disease worldwide (1). Following diagnosis, only 16.8% of 
all patients with lung cancer live beyond 5 years (2). This is 
primarily attributed to the lack of early effective diagnostic 
measures and high recurrence rates. Approximately 50% of 
patients are diagnosed with advanced lung cancer, whose 
5‑year survival rate is <15% (3‑5).

Currently, molecular biomarkers are used to diagnose lung 
cancer. ProGRP, SCC‑Ag, Cyfra21‑1 and CEA are widely used 
as lung cancer serum biomarkers (6). However, a meta‑analysis 
study reported that the sensitivity levels of ProGRP, SCC‑Ag, 
Cyfra21‑1 and CEA in the serum of patients with lung cancer 
were <60% (6). Thus, investigating the molecular mechanism 
underlying tumorigenesis, and discovering new biomarkers 
can help improve diagnosis. In recent years, a number of 
high‑throughput platforms, such as microarray technology, 
have been widely used to study gene expression during tumori-
genesis. Now, a new approach combined with microarray 
technology and bioinformatics analysis allows the comprehen-
sive analysis of gene expression changes in non‑small cell lung 
cancer (NSCLC) (7‑9).

In the present study, taking into account the microarray 
results of false positives, three mRNA microarray datasets 
were analyzed in order to investigate differentially expressed 
genes (DEGs) between NSCLC and normal tissue. Gene 
Ontology (GO) and pathway enrichment analysis were 
combined in order to identify functional DEGs, followed by 
protein interaction and survival analysis to identify hub genes 
in NSCLC.

Materials and methods

Microarray data. The Gene Expression Omnibus (GEO; 
http://www.ncbi.nlGSE18842m.nih.gov/geo) is a public 
repository for the storage of data, such as microarray and 
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next‑generation sequencing data, which is freely available 
to users. The GEO database was used to obtain three gene 
expression profiles. GSE18842, GSE30219 and GSE33532 
(10‑12) were obtained from the GEO database. Experiments 
with the selected three datasets were performed in the 
Affymetrix Human Genome U133 Plus 2.0 Array microarray 
platform (GPL570; version 2.0; Affymetrix; Thermo Fisher 
Scientific, Inc.).

Identification of DEGs. GEO2R (13) is an online interac-
tive network tool that allows users to compare two or more 
sets of samples in order to identify the DEGs in a GEO data 
series. The results are presented as a table of genes ordered by 
significance. The present study used GEO2R to screen DEGs 
between NSCLC and normal lung samples. The adjusted 
P‑values (adj. P) were used to correct the occurrence of false 
positive results. The adj. P<0.01 and |logFC| >1 were set as the 
cut‑off criterion as an indicator of significance.

GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis. The Database for Annotation, 
Visualization and Integrated Discovery (DAVID; version 6.7; 
http://david.abcc.ncifcrf.gov) is an online interactive tool that 
provides a comprehensive set of functional annotation tools 
for researchers to understand the biological meaning behind 
numerous different genes (7). The GO and KEGG pathway 
enrichment analysis panels in the DAVID were applied in 
order to identify DEGs. P<0.05 was set as the cut‑off criterion 
for indicating significance.

Protein‑protein interaction (PPI) network construction 
and module selection. The Search Tool for the Retrieval of 
Interacting Genes (STRING; http://string.embl.de) data-
base was applied to construct a PPI network of DEGs (14). 
The confidence score ≥0.4 was set as the cut‑off criterion. 
Subsequently, the Molecular Complex Detection (MCODE) 
panel in the Cytoscape software (version 3.7.2) was applied 
to screen significant modules in the PPI network (15). The 
degree cutoff=2, node score cutoff=0.2, k‑core=2, and max.
depth=100 were set as the cut‑off criterion (16). The functional 
enrichment analysis of genes in the selected module was also 
performed by KEGG and GO panels in the DAVID.

Survival analysis and protein expression in human NSCLC. 
Kaplan‑Meier plotter (2018 version; http://kmplot.com/anal-
ysis) is an online, meta‑analysis‑based web tool that is used 
for biomarker assessment. The tool is capable of assessing the 
effect of 54,675 genes on survival rate using 10,461 cancer 
samples. The present study used this online tool to investigate 
the prognostic value of DEGs for patients with NSCLC in 
a large public clinical microarray database (http://kmplot.
com/analysis/index.php?p=service&cancer=lung) (17).

Protein expression in NSCLC tissues and normal lung 
tissues was determined from The Human Protein Atlas (2018 
version, www.proteinatlas.org).

Results

Identification of DEGs. GSE18842 included 46 NSCLC 
samples and 45 normal samples. GSE30219 consisted of 229 

NSCLC cancer samples and 14 healthy lung samples. The 
array data of GSE33532 included 80 NSCLC tissue samples 
and 20 normal samples. All samples were confirmed by 
histopathology. Based on the GEO2R analysis, a total of 3,153, 
2,479 and 2,746 DEGs were identified from the GSE18842, 
GSE30219 and GSE33532 datasets, respectively. A total of 
1,573 genes were screened out by taking an intersection of all 
three GEO datasets (Fig. 1). Among them, 764 genes exhibited 
the same trend in expression, consisting of 428 upregulated 
and 336 downregulated genes in NSCLC tissues compared 
with normal lung tissues (Table SI).

GO and KEGG pathway enrichment analysis. In order to 
further determine the function of DEGs, the present study 
used the DAVID for the functional and pathway enrichment 
analysis. The GO analysis revealed that upregulated DEGs 
were primarily involved in ‘M phase’ and ‘cell cycle phase’, 
while downregulated DEGs were primarily involved in ‘plasma 
membrane part’, and ‘vasculature development’. Notably, the 
KEGG pathways analysis demonstrated that upregulated DEGs 
were enriched in the ‘cell cycle’, ‘p53 signaling pathway’ and 
‘DNA replication’, (Fig. 2A and Table I) while downregulated 
DEGs were enriched in ‘vascular smooth muscle contraction’, 
‘cell adhesion molecules’ and ‘tight junction’ (Fig. 2B and 
Table I). Overall, a total of 115 genes were enriched, including 
68 upregulated DEGs and 47 downregulated DEGs (Table SII). 
The 115 genes were used for further PPI analysis.

PPI network construction and modules selection. The PPI 
network of DEGs consisted of 51 nodes and 192 edges, including 
33 upregulated and 18 downregulated genes (Fig. 3A). Degrees 
≥10 were set as the cut‑off criterion (Table SIII). The top 10 
genes were selected as hub genes, including cyclin‑dependent 
kinase 1 (CDK1), checkpoint kinase 1 (CHEK1), budding 
uninhibited by benzimidazoles 1 (BUB1), replication factor 
C 4 (RFC4), polo‑like kinase 1 (PLK1), RAD51 recombinase 
(RAD51), minichromosome maintenance complex component 
(MCM) 2, MCM4, MLF1 interacting protein (MLF1IP) and 
MCM6; all of which were upregulated. Furthermore, the most 

Figure 1. Identification of differentially expressed genes in three expression 
profiling datasets GSE18842, GSE30219 and GSE33532.
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significant module was identified from the PPI network using 
the MCODE app, including 14 nodes and 85 edges (Fig. 3B). 
The GO and KEGG pathway enrichment analyses revealed 

that genes in this module were significantly associated with 
‘mitotic cell cycle’, ‘DNA unwinding involved in DNA replica-
tion’ and ‘DNA replication pathway’ (Table II).

Figure 2. Enriched GO terms of differentially expressed genes in non‑small cell lung cancer. DEGs were classified by GO analysis into three groups including 
biological process (blue), cellular component (red) and molecular function (green). (A) The number of genes upregulated for each functional classification. 
(B) The number of genes downregulated for each functional classification.
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Survival analysis and protein expression in human NSCLC. 
The degree cutoff>16, node score cutoff=0.2, k‑core=2, and 
max.depth=100 were set as the cut‑off criterion for PPI anal-
ysis, applied to predict PPI network of DEGs. The 6 genes were 

selected as core hub genes, including CDK1, CHEK1, BUB1, 
RFC4, PLK1 and RAD51. The prognostic value of the hub 
genes was evaluated using Kaplan‑Meier plotter. The overall 
survival rate analysis demonstrated that high expression of 

Table I. GO and KEGG pathway enrichment analysis of upregulated and downregulated genes.

(A) Upregulated 

Term	 Function	 Gene count	 %	 P‑value

GO:0000279	 M phase	 48	 12.8 	 1.00x10‑24

GO:0022403	 Cell cycle phase	 53	 14.1 	 1.30x10‑24

GO:0007049	 Cell cycle	 69	 18.4 	 5.70x10‑23

GO:0000087	 M phase of mitotic cell cycle	 38	 10.1 	 8.10x10‑22

GO:0022402	 Cell cycle process	 57	 15.2 	 2.10x10‑21

GO:0005694	 Chromosome	 46	 12.3 	 2.20x10‑17

GO:0044427	 Chromosomal part	 41	 10.9 	 2.20x10‑16

GO:0000793	 Condensed chromosome	 23	 6.1 	 8.10x10‑14

GO:0000775	 Chromosome, centromeric region	 22	 5.9 	 3.50x10‑13

GO:0043228	 Non‑membrane‑bounded organelle	 102	 27.2 	 1.20x10‑9

GO:0005524	 ATP binding	 51	 13.6 	 3.00x10‑4

GO:0032559	 Adenyl ribonucleotide binding	 51	 13.6 	 4.10x10‑4

GO:0030554	 Adenyl nucleotide binding	 53	 14.1 	 4.20x10‑4

GO:0001883	 Purine nucleoside binding	 53	 14.1 	 6.00x10‑4

GO:0001882	 Nucleoside binding	 53	 14.1 	 7.00x10‑4

KEGG:hsa04110	 Cell cycle	 20	 5.3 	 7.70x10‑11

KEGG:hsa04115	 p53 signaling pathway	 11	 2.9 	 4.20x10‑6

KEGG:hsa03030	 DNA replication	 7	 1.9 	 1.90x10‑4

KEGG:hsa00670	 One carbon pool by folate	 5	 1.3 	 4.70x10‑4

KEGG:hsa04114	 Oocyte meiosis	 8	 2.1 	 1.70x10‑2

(B) Downregulated

Term	 Function	 Gene count	 %	 P‑value

GO:0044459	 Plasma membrane part	 84	 27.5	 1.70x10‑11

GO:0005886	 Plasma membrane	 117	 38.4 	 1.40x10‑10

GO:0001944	 Vasculature development	 23	 7.5 	 2.10x10‑10

GO:0001568	 Blood vessel development	 22	 7.2 	 8.40x10‑10

GO:0048514	 Blood vessel morphogenesis	 19	 6.2 	 1.50x10‑8

GO:0007155	 Cell adhesion	 32	 10.5 	 6.40x10‑7

GO:0022610	 Biological adhesion	 32	 10.5 	 6.60x10‑7

GO:0003779	 Actin binding	 20	 6.6 	 2.20x10‑6

GO:0008092	 Cytoskeletal protein binding	 24	 7.9 	 1.10x10‑5

GO:0050431	 Transforming growth factor beta binding	 5	 1.6 	 1.40x10‑5

GO:0031226	 Intrinsic to plasma membrane	 44	 14.4 	 2.20x10‑5

GO:0005887	 Integral to plasma membrane	 42	 13.8 	 6.20x10‑5

GO:0009986	 Cell surface	 19	 6.2 	 8.20x10‑5

GO:0051015	 Actin filament binding	 7	 2.3 	 2.40x10‑4

GO:0032403	 Protein complex binding	 12	 3.9 	 4.40x10‑4

KEGG:hsa04270	 Vascular smooth muscle contraction	 9	 3.0 	 1.20x10‑3

KEGG:hsa04514	 Cell adhesion molecules	 9	 3.0 	 3.50x10‑3

KEGG:hsa05414	 Dilated cardiomyopathy	 7	 2.3 	 7.90x10‑3

KEGG:hsa04530	 Tight junction	 8	 2.6 	 1.40x10‑2

KEGG:hsa05410	 Hypertrophic cardiomyopathy	 6	 2.0 	 2.20x10‑2

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; has, homosapien.
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CDK1 [hazard ratio (HR), 1.84; 95% confidence interval (CI), 
1.62‑2.10; P<1x10‑16; Fig. 4A] caused the low overall survival 
rate for NSCLC, which was the same as PLK1 (HR, 1.66; 
95% CI, 1.46‑1.89; P=3.3x10‑15; Fig. 4B), RAD51 (HR, 1.84; 
95% CI, 1.62‑2.09; P<1x10‑16; Fig. 4C), RFC4 (HR, 1.73; 95% 
CI, 1.52‑1.97; P<1x10‑16 Fig. 4D), BUB1 (HR, 1.21; 95% CI, 
1.07‑1.38; P=0.0025; data not shown), but not CHEK1 (HR, 
1.42; 0.99‑2.04; P=0.052; data not shown). HR>1.5 and P<0.05 
were set as the cut‑off criterion for the survival analysis. 
According to these cut‑off criteria, four genes were identified 
as potential tumor markers for NSCLC, including CDK1, 
PLK1, RAD51 and RFC4. In order to determine the clinical 
relevance of hub gene expression, the present study then 
analyzed the expression of proteins from clinical specimens 
in The Human Protein Atlas database. The database indicated 
that CDK1 (P=1.03x10‑3) was highly expressed in NSCLC 
compared with the low expression observed in normal lung 
samples, which was also true for PLK1 (P=4.73x10‑9), RAD51 
(P=2.93x10‑3) and RFC4 (P=7.27x10‑4) (Fig. 5).

Discussion

The development of NSCLC is a multi‑step process that 
involves interactions between genetic, epigenetic aberrations 
and environmental factors, which leads to disorders of key 
oncogenes and tumor repressors  (1,18). Knowledge of the 
molecular mechanism underlying NSCLC is essential for diag-
nosis and treatment. The development of microarrays and high 
throughput sequencing techniques that can simultaneously 
detect mRNA expression levels of thousands of genes has 

benefited the prediction of potential diagnostic and therapeutic 
target genes for NSCLC (10). The present study extracted data 
from three gene expression profiles, GSE18842, GSE30219 and 
GSE33532. A total of 428 upregulated and 336 downregulated 
genes were identified between NSCLC samples and normal 
lung tissues. GO and KEGG annotations revealed that DEGs 
were enriched in the ‘cell cycle’, ‘cell adhesion molecules’ and 
‘tight junction’. Further PPI analysis, survival analysis and The 
Human Protein Atlas identified 4 hub genes that can be used 
as a tumor marker for diagnosis and prognosis or as a drug 
therapy target in NSCLC.

GEO2R (13) is an online interactive network tool used to 
identify the DEGs in GEO datasets. In the present study, a total 
of 764 DEGs were screened out between NSCLC samples and 
normal lung tissues with the GEO2R analysis, consisting of 
428 upregulated and 336 downregulated genes. The GO and 
KEGG functional annotations revealed that upregulated DEGs 
were enriched in the ‘cell cycle’, ‘p53 signaling pathway’ and 
‘DNA replication’, while downregulated DEGs were enriched in 
‘vascular smooth muscle contraction’, ‘cell adhesion molecules’ 
and ‘tight junction’. In accordance with Singhal  et  al  (19), 
Voortman et al (20) reported that an imbalance of G2‑M‑phase 
arrest in the cell cycle can lead to the occurrence of NSCLC, 
which is one of its primary causes (21). Furthermore, the majority 
of NSCLC cases have p53 mutations and, as a result, an imbal-
anced expression of p53 target genes, such as p21, Bax and 
PUMA, which ultimately prompts the growth of tumor cells (22).

A total of 10 genes that had a high degree in the PPI 
network were selected as hub genes. The top 10 degree hub 
genes were as follows: CDK1, CHEK1, BUB1, RFC4, PLK1, 

Figure 3. PPI network of DEGs and modular analysis. (A) The Search Tool for the Retrieval of Interacting Genes/Proteins database was applied to predict the 
PPI network of DEGs. The PPI network of DEGs consisted of 51 nodes and 192 edges, including 33 upregulated genes and 18 downregulated genes. (B) The 
most significant module from the PPI network, including 14 nodes and 85 edges. All genes in this module were upregulated. PPI, protein‑protein interaction; 
DEGs, differentially expressed genes.
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RAD51, MCM2, MCM4, MLF1IP and MCM6. All these genes 
are upregulated in NSCLC. The GO and KEGG analyses 
revealed that the top 10 genes were enriched in ‘mitotic cell 
cycle transition’, ‘ATP binding’, and ‘DNA replication’. It has 
been reported that the cell cycle checkpoint facilitated cellular 
responses to DNA damage, and an aberrant cell cycle facili-
tated the risk of cancer developing (23).

Survival analysis of the 10 genes revealed that selected hub 
genes were significantly associated with worse overall survival 
rate in patients with NSCLC, including CDK1, PLK1, RAD51 
and RFC4. CDK1 is a member of the Ser/Thr protein kinase 
family (24). CDK1 was a master regulator of mitosis and meiosis, 
as a SUMO target both in vivo and in vitro involved in the initiation 
and transformation process through mitosis of the cell cycle (25). 
A number of studies have demonstrated that CDK1 inhibitors can 
block cell cycle progression through blocking mitosis and also 
have the potential to treat cancer due to their ability to control cell 

proliferation or inhibit tumor growth (26,27). PLK1 belongs to the 
CDC5/Polo subfamily and is a Ser/Thr protein kinase (28). PLK1 
is highly expressed during mitosis. PLK1 promotes cell prolif-
eration and has also been observed to be upregulated in different 
types of human cancer. The deletion of PLK1 in cancer cells 
significantly inhibits cell proliferation and induces apoptosis (28). 
RAD51 was another selected hub gene. RAD51 is known to be 
involved in the homologous recombination and repair of DNA by 
interacting with the single stranded DNA‑binding protein RPA 
and RAD52 (29). RAD51 is also involved in promoting tumori-
genesis through interacting with BRCA1 and BRCA2, which are 
tumor suppressors (30‑32). RFC4 is a member of the RFC family, 
which functions as a clamp loader that loads PCNA onto DNA 
and is involved in DNA repair activities (33,34). Xiang et al (35) 
reported that RFC4 is upregulated in patients with colorectal 
cancer, which could predict its prognosis as it promotes cell 
proliferation and cell cycle arrest.

Table II. Functional and pathway enrichment analysis of genes in the module.

			   False
Pathway ID	 Pathway description	 Gene count	 discovery rate	 Nodes

GO.0000278	 Mitotic cell cycle	 12	 8.58x10‑12	 BLM, BUB1, CHEK1, MCM2, MCM4, 
				    MCM6, MLF1IP, ORC1, ORC6, PLK1, 
				    RFC4, TYMS
GO.0044772	 Mitotic cell cycle phase	 9	 2.87x10‑10	 CDK1, CHEK1, MCM2, MCM4, MCM6, 
	 transition			   ORC1, ORC6, PLK1, TYMS
GO.1903047	 Mitotic cell cycle process	 10	 5.38x10‑9	 BLM, BUB1, CHEK1, MCM2, MCM4, 
				    MCM6, ORC1, ORC6, PLK1, TYMS
GO.0000082	 G1/S transition of mitotic	 7	 1.74x10‑8	 CDK1, MCM2, MCM4, MCM6, ORC1, 
	 cell cycle			   ORC6, TYMS
GO.0006268	 DNA unwinding involved in	 4	 5.66x10‑8	 MCM2, MCM4, MCM6, RAD51
	 DNA replication
GO.0005524	 ATP binding	 11	 9.36x10‑8	 BLM, BUB1, CDK1, CHEK1, MCM2, 
				    MCM4, MCM6, ORC1, PLK1, RAD51, 
				    RFC4
GO.0000166	 Nucleotide binding	 12	 1.62x10‑7	 BLM, BUB1, CDK1, CHEK1, MCM2, 
				    MCM4, MCM6, ORC1, PLK1, RAD51, 
				    RFC4, TYMS
GO.0043168	 Anion binding	 12	 2.27x10‑7	 BLM, BUB1, CDK1, CHEK1, MCM2, 
				    MCM4, MCM6, ORC1, PLK1, RAD51, 
				    RFC4, TYMS
GO.0003697	 Single‑stranded DNA binding	 4	 3.14x10‑5	 BLM, MCM4, MCM6, RAD51
GO.0005654	 Nucleoplasm	 14	 6.79x10‑10	 BLM, BUB1, CDK1, CHEK1, MCM2, 
				    MCM4, MCM6, MLF1IP, ORC1, ORC6, 
				    PLK1, RAD51, RFC4, TYMS
GO.0044454	 Nuclear chromosome part	 7	 8.90x10‑7	 BLM, BUB1, MCM2, ORC1, ORC6, 
				    PLK1, RAD51
GO.0000228	 Nuclear chromosome	 7	 1.45x10‑6	 BLM, BUB1, CHEK1, MCM2, ORC1, 
				    ORC6, PLK1
KEGG:hsa04110	 Cell cycle	 8	 9.91x10‑13	 BUB1, CHEK1, MCM2, MCM4, MCM6, 
				    ORC1, ORC6, PLK1
KEGG:hsa03030	 DNA replication	 4	 1.02x10‑6	 MCM2, MCM4, MCM6, RFC4

GO, Gene Ontology; KEGG, Kyoto Encylopedia of Genes and Genomes; has, homosapien.
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Due to the different selection methods and samples, the 
results of the present study were different from those of 
previous studies, which used the same lung cancer gene 
expression profiles (GSE18842, GSE30219 and GSE33532). 
Sanchez‑Palencia et al (10) reported that KRT15 and PKP1, 
which may be good markers to distinguish squamous‑cell 
carcinoma samples in GSE18842 (10). Rousseaux et al (11) 
reported that EBI3, PIWIL1, TPTE and NBPF4 may be 
potential biomarkers in lung cancer using the GSE30219 
dataset (11). Meister et al (12) also reported that COL4A3, 
COL4A4 and CHRDL1 may be associated with lung cancer 
after analyzing the GSE33532 dataset (12). The present study 
revealed that four hub genes were significantly associated with 
worse overall survival of patients with NSCLC, including 
CDK1, PLK1, RAD51 and RFC4. To the best of our knowledge, 
RFC4 has not been reported as involved in the development of 
lung cancer before. RFC4 is involved in DNA replication as 
a clamp loader (35). In the present study, the results revealed 
that PLK1 and RFC4 were upregulated in NSCLC and were 

present in the cell cycle pathway, suggesting that the two genes 
may be important in the progression of NSCLC via the cell 
cycle pathway. Therefore, further experimental verification is 
required.

Overall, the present study provided a new comprehensive 
bioinformatics analysis to identify DEGs. The screened DEGs, 
including CDK1, PLK1, RAD51 and RFC4, can be used as 
tumor biomarkers for the diagnosis and prognosis, or as a drug 
therapy target, in NSCLC. However, further molecular biology 
experiments are required in order to confirm the underlying 
molecular mechanism of the genes identified in NSCLC.

There is a limitation to the present study. Heterogeneity 
within tumor cell populations is commonly observed in 
the majority of different types of cancer, particularly in 
lung cancer (36), which affects tumor growth rate, invasion 
and metastasis, and drug sensitivity and prognosis  (37). 
NSCLC histopathology for the present study was confirmed 
by conventional paraffin‑embedded tissue section, and the 
control samples were all from normal lung tissues, but not 

Figure 4. Prognostic value of hub genes in patients with NSCLC was investigated using a Kaplan‑Meier plotter, assessing the overall survival rate of patients 
with NSCLC in specified hub genelow and genehigh groups. The hub genes included (A) CDK1, (B) PLK1, (C) RAD51 and (D) RFC4. The Kaplan‑Meier survival 
analysis revealed that patients with NSCLC that exhibited high expression levels of CDK1, PLK1, RAD51 and RFC4 had shorter overall survival rates. 
NSCLC, non‑small cell lung carcinoma; HR, hazard ratio.
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from their corresponding adjacent non‑tumorous lung tissues. 
Fend et al  (38) reported that the intrinsic heterogeneity of 
primary tissues in conventional paraffin sectioning with a 
mixture of various reactive cell populations can influence 
the results and interpretation of molecular studies. The 
authors also stated that a new technology called laser capture 
microdissection (LCM), is able to solve this problem (38). 
LCM is a powerful tool for isolating and studying the gene 
expression patterns of desired cells or tissues from hetero-
geneous populations (38). Isolation of a specific NSCLC cell 
from a heterogeneous tissue helps to obtain more meaningful 
molecular analysis results. Overall, the data from the present 
study suggested that data mining and integration analysis may 
be a useful tool for predicting cancer progression and under-
standing the molecular mechanisms underlying tumorgenesis.
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