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Abstract

Background: Endometrial cancer (EMCA) is the fifth most common cancer among women in the world. Identification
of potentially pathogenic germline variants from individuals with EMCA will help characterize genetic features that
underlie the disease and potentially predispose individuals to its pathogenesis.

Methods: The Geisinger Health System’s (GHS) DiscovEHR cohort includes exome sequencing on over 50,000
consenting patients, 297 of whom have evidence of an EMCA diagnosis in their electronic health record.
Here, rare variants were annotated as potentially pathogenic.

Results: Eight genes were identified as having increased burden in the EMCA cohort relative to the non-cancer
control cohort. None of the eight genes had an increased burden in the other hormone related cancer cohort from
GHS, suggesting they can help characterize the underlying genetic variation that gives rise to EMCA. Comparing GHS
to the cancer genome atlas (TCGA) EMCA germline data illustrated 34 genes with potentially pathogenic variation and
eight unique potentially pathogenic variants that were present in both studies. Thus, similar germline variation among
genes can be observed in unique EMCA cohorts and could help prioritize genes to investigate for future work.

Conclusion: In summary, this systematic characterization of potentially pathogenic germline variants describes the
genetic underpinnings of EMCA through the use of data from a single hospital system.
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Background
Endometrial cancer (EMCA) is the most common can-
cer of the female reproductive tract with an estimated
62,230 new cases and 11,350 deaths estimated in 2018 in
the United States alone [1]. The treatment of EMCA has
become a major issue for the health-care system because
of its increasing incidence and death rate over the past
two decades [2]. Traditional U.S. categorization of
EMCA is based into two broad classifications from the
National Comprehensive Cancer Network (NCCN), type
1 and 2, based on histology, steroid hormone receptor
expression, and prognosis [3]. Type 1 is more common,
and is characterized by endometrioid histology, is

estrogen potentiated, estrogen receptor (ER) and proges-
terone receptor (PR) positive, and generally carries a fa-
vorable prognosis [2–4]. Type 2 is ER/PR negative and
carries a much poorer prognosis [4]. Epidemiological
studies confirm an association of EMCA with obesity
[5], early menarche, late menopause, nulliparity, exogen-
ous factors (estrogen only use), and other lifestyle factors
related to low physical activity [3, 6]. While type 1 is
treated by surgery followed by radiation for high risk
features, type 2 is treated by radiotherapy or surgery
followed by systemic chemotherapy. Nevertheless, treat-
ment has high variability in efficacy and side effects [7].
Of those diagnosed with endometrial cancer, 90% is
sporadic while the remaining 10% is hereditary [8].
Lynch syndrome or hereditary nonpolyposis colorectal
cancer (HNPCC), is an autosomal dominant disorder
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that not only represents an increased risk of colon can-
cer, but an increased risk also of EMCA for women [8].
Additionally, it is characterized by a mutation in one of
a group of DNA mismatch repair genes (MSH1, MSH2,
MLH6, PMS2 or EpCAM) [9, 10]. However, not all fam-
ilies that meet clinical criteria for Lynch syndrome have
an identifiable mutation in these genes [11].
DNA sequencing can identify genetic variants associ-

ated with different types of cancer. For most cancers,
EMCA included, somatic mutations and matched con-
trols have been used to generate insights as to the po-
tential pathogenicity of the variants (Single Nucleotide
Variants (SNVs) and insertions/deletions (indels)) [12–
15]. A motivating factor behind studying the germline is
supported by the “two hit hypothesis” [16], which de-
scribes when a tumor suppressor gene is inactivated ini-
tially by a germline mutation followed by a somatic
mutation on another allele that leads to tumorigenesis.
While there remain open questions related to this hy-
pothesis, the investigation of loss of heterozygosity
(sometimes referred to as “allelic loss”) of a tumor sup-
pressors has provided support for this theory [17–20].
Furthermore, the analysis of germline variants has im-
proved the detection of driver mutations when somatic
variants have also been available [21, 22]. The Cancer
Genome Atlas (TCGA) illustrated that cancer suscepti-
bility genes could be identified across several cancer
types using data produced from the germline, including
but not limited to EMCA, by searching for enrichment
of rare variants that resulted in truncations [23]. More-
over, germline data has been used to identify genes pre-
viously unknown to be associated with ovarian cancer
[24]. Thus, investigating germline variants serves as a
tool to assist in the characterization of potential genetic
drivers underlying cancer.
Though a number of studies have generated significant

findings related to the underlying genetic architecture of
EMCA using only germline or matched samples [22, 25,
26], there are growing number of hospital-systems and
country-wide genetic studies that have primarily generated
germline level data [25]. These projects offer new ways to
potentially investigate EMCA. For instance, our group and
others have reported the use of patient-participant billing
codes extracted from electronic health records (EHR) and
common variants from patient-participants to perform as-
sociation studies [26–28]. A recent study identified predis-
position mutations in an EMCA cohort using a multiplex
PCR panel [29]. However, it is largely unknown if compar-
ing rare germline variants from whole exome sequencing
between case and control cohorts from a single institution
can reproduce what is known and identify novel genetic
underpinnings related to EMCA, however it is unmistak-
able that this strategy could be used by a variety of institu-
tions and in other disease contexts.

In 2007, Geisinger Health System (GHS) launched
MyCode, a system-wide biobanking program to link
samples and electronic health record (EHR) data for
broad research use [30]. GHS is an integrated health sys-
tem, serving a stable patient population, and with longi-
tudinal EHR data that documents patients’ treatment
and clinical outcome [30]. These features of MyCode
can be used to compare genetic variants in individuals
with and without cancer in a large clinical population.
Recently, we reported the results of analysis of more
than 50,000 MyCode DNA samples that had undergone
whole exome sequencing (WES) as part of the Disco-
vEHR study [31]. Among DiscovEHR participants were
297 patient-participants who had been diagnosed with
EMCA. We hypothesized that characterization of germ-
line variants in WES data in a cohort of participants
with EMCA would lead to insights into the genetic basis
of EMCA. In this study, we describe the identification of
rare, potentially pathogenic variants in DiscovEHR
EMCA, a non-cancer cohort, and other hormone related
malignancy cancer cohort from a single hospital system.

Methods
Patient-participant cohorts
This study consisted of GHS patients who consented to
participate in the MyCode Community Health Initiative
[30]. MyCode participants agree to provide samples for
broad research use and linking of samples to data in the
EHR database as part of the DiscovEHR study. EMCA
participants were identified through ICD-9 code and
then validated through manual chart review of the path-
ology report (N = 297). Demographic information in-
cluding age and BMI at the time of diagnosis, histology,
stage, treatment and overall survival were obtained from
the EHR by a Gynecologic oncologist. The elderly
non-cancer control cohort (NCC, N = 2120) consisted of
females older than 70 years old, with no history of can-
cer diagnosis (absence of ICD9/ICD10 encounter/prob-
lem list diagnosis codes related to cancer). The other
hormone related malignancy (OHRM) cohort (N = 1463)
was generated by identifying female participants in Dis-
covEHR who have ICD-O (international classification of
diseases for oncology) codes related to breast (c50x) or
ovarian cancer (C48.0, C48.1, C48.2, and C56.9). For fur-
ther analysis, stages 1 and 2 were defined as “early”,
while 3 and 4 EMCA were defined as “late”. The FIGO
and TNM staging systems were used. U.S. treatment
guidelines were from the National Comprehensive Can-
cer Network (NCCN) [3].

Exome sequencing and variant calling
WES data was collected from MyCode participants from
the DiscovEHR database and processed with slight modifi-
cations [31]. Raw reads were aligned using BWA-mem.
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Mapping and alignment to GRCh37.p13 was then per-
formed and variants were called using Genome Analysis
Toolkit (GATK) “best practices” [32]. Described in brief,
after indel realignment, and base recalibration using BQSR
(Base Quality Score Recalibration) for the entire GHS co-
hort, and gVCFs (genomic VCF) are called. The gVCF files
were then combined into a merged gVCF and the recali-
brated haplotypes are then called using GATK Haplotype-
Caller. These gVCFs were then filtered for high quality
variants using variant quality score recalibration (VQSR).
Another filtering step was used to obtain variants with
genotype quality ≥ 20 [33].

Variant filtration and annotation
Participant VCFs were selected from the DiscovEHR
study project that were associated with each cohort.
Additional file 1: Figure S1 summarizes the process by
which variants were characterized as potentially patho-
genic. Variants that fell within the genomic boundaries
(RefSeq annotations using VEPv91) of genes (635 unique
genes) from the TARGET database (https://software.
broadinstitute.org/cancer/cga/target (version 3)) and/or
Cancer Gene Census (CGC, https://cancer.sanger.ac.uk/
census (downloaded on March 7th, 2017)) were carried
forward [34]. Variants were then filtered based on their
likelihood of being pathogenic [35–37]. Those variants
with 1 or more star or called as either “likely pathogenic”
or “pathogenic” in Clinvar [35] or were “High” in VEP
(Variant Effect Predictor) were also included [36]. Vari-
ants with a minor allele frequency greater than 1% in ei-
ther the DiscovEHR cohort, Exome Aggregation
Consortium (EXaC [38]), NHLBI GO Exome Sequencing
Project (ESP [39]) and 1000 Genomes Project were re-
moved [40]. This procedure was based on recommenda-
tions from the American College of Medical Genetics
and Genomics [41]. Variants that made it through this
pipeline were then included in downstream analysis.
To reformat, summarize, and visualize the data, the fol-

lowing R packages were used: ggplot2, dplyr, tidyr, Gen-
VisR, and reshape2. Typically, only one transcript isoform
made it through the variant filtration and annotation pipe-
line. Variants were grouped into three categories, syn-
onymous, non-synonymous, and predicted loss of
function (pLoF) for further analyses. These definitions ad-
here closely to previous work [31]. If the VEP consequence
was synonymous_variant the variant was categorized as
“synonymous”. If the VEP consequence was missense_var-
iant, stop_retained_variant, initiator_codon_variant, infra-
me_deletion, inframe_insertion, or splice_region_variant
the variant was categorized as “non-synonymous”. If the
VEP consequence was stop_gained, stop_lost, start_lost,
splice_donor_variant, splice_acceptor_variant, frame-
shift_variant, disruptive_inframe_deletion, disruptive_in-
frame_insertion, or protein_protein_contact the variant

was categorized as “pLoF”. If the splice_region_variant
co-occurred with a synonymous, missense, or pLoF vari-
ant it was called as synonymous, missense, or pLoF, re-
spectively. If the variant was located in lower confidence
region (e.g. UTR, upstream_gene_variant, downstream_-
gene_variant, intron_variant, or TF) the variant was ex-
cluded from analysis. Variants were excluded if they were
not targeted by probes in the exome-capture process. The
average EMCA patients with a variant per control group
patient was calculated for each gene by: (VariantsGeneX in

EMCA patients/297 EMCA patients)/ (VariantsGeneX in control

patients/2120 control patients). The average OHRM pa-
tients with a variant per control group patient was calcu-
lated for each gene by: (VariantsGeneX in OHRM patients/1486
OHRM patients)/ (VariantsGeneX in control patients/2120 con-
trol patients). Graphical and statistical analysis was per-
formed in R.

Comparison to TCGA Germline Uterine Cancer data
Uterine Corpus Endometrial Carcinoma (UCEC) germ-
line and somatic variants were retrieved from the Broad
GDAC Firehose (https://gdac.broadinstitute.org). The
germline VCFs were processed in the same manner as
the DiscovEHR data (see previous section) to identify
variants in the list of genes from TARGET and CGC
(Additional file 1: Figure S1).

Results
Demographics and histology of cancer and non-cancer
cohorts
The Geisinger MyCode community health initiative in-
cludes over 150,000 participants who have agreed to
provide blood samples for broad research use [30]
(www.geisinger.edu). In the first 50,726 participants to
undergo WES analysis, we identified 297 patients with a
diagnosis of EMCA (Additional file 5: Table S1). The
average age of individuals with EMCA in our study was
61, which is similar to the national average, e.g. 60 years
old (cancer.org). While most women diagnosed with
EMCA in the U.S. are older than 45, the age range is
from 27 to 87 in this study. However, 94% of our sam-
ples came from individuals older than 45, suggesting our
cohort represents a similar age as is seen nationally. The
DiscovEHR cohort as a whole has an average BMI of 30
kg/m2 [31], and the average BMI in the EMCA cohort
was 38 kg/m2 (Additional file 5: Table S1). This result is
consistent with previous research which has found an
increased risk of uterine-related cancer with increasing
BMI [42].
Chart review revealed that most EMCA cases were of

endometrioid histology, and early stage and grade
(Additional file 5: Tables S2-S5). An elderly female
non-cancer cohort (NCC, N = 2120) was used to identify
potential EMCA-associated genetic variants by selecting

Miller et al. BMC Medical Genomics           (2019) 12:59 Page 3 of 12

https://software.broadinstitute.org/cancer/cga/target
https://software.broadinstitute.org/cancer/cga/target
https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
https://gdac.broadinstitute.org
http://www.geisinger.edu
http://cancer.org


older individuals who have no record of cancer.
Additionally, a separate hormone related malignancy
(OHRM) cancer cohort (N = 1463), consisting of indi-
viduals with breast or ovarian cancer, was also analyzed.
Since the OHRM cohort represents estrogen-driven
cancer etiology similar to EMCA, it provides an oppor-
tunity to identify EMCA-specific variants as opposed to
other hormone-related cancers. Our control cohort has
an average BMI of 27 kg/m2 which while overweight, is
on average lower than the entire DiscovEHR cohort as
a whole. The average BMI of the OHRM cohort is 29
kg/m2, which is close to an obese classification, and
consistent with the association between obesity and
cancer [43]. The total number of patients with endome-
trioid EMCA was 265, while 2 had non-endometrioid
EMCA that are grade 3 (Additional file 5: Tables S2
and S4). The DiscovEHR and TCGA cohorts had simi-
lar distributions of grade 2 samples, but TCGA had
many more grade 3, and fewer grade 1 (Additional file
5: Table S4). Grade one and two U.S. estimates were
similar to the other cohorts [44]. Compared to U.S. es-
timates, TCGA has more grade 3 as a percentage and
DiscovEHR had a smaller percentage (Additional file 5:
Table S4). Downstream analysis of all grades and stages
are performed together unless otherwise noted. The
average time of follow up after diagnosis was 6 years,
and most patients were disease free in the absence of
further therapy (Additional file 5: Tables S1 and S5). All
patients who were stage 3 or 4 received surgery
(Additional file 5: Table S5).

Identifying rare pathogenic germline variants in cancer
and non-cancer cohorts
To identify variants that are relevant to EMCA a bio-
informatics pipeline was created to identify variants that
are predicted to be likely pathogenic or pathogenic
(Additional file 1: Figure S1). Only genes that were in
the TARGET or Cancer Genome Census (CGC) data-
base (635 genes total) were included to increase confi-
dence that variants we identify are related to cancer or
therapeutic outcomes [34, 45]. Variants were binned into
the 635 TARGET and/or CGC genes, then annotated
using ClinVar and variant effect predictor (VEP) to iden-
tify likely pathogenic or pathogenic variants. Only vari-
ants with minor allele frequency (MAF) less than 1% in
the Geisinger DiscovEHR population, and not greater
than 1% in any total or sub population from Exome Ag-
gregation Consortium (ExAC [38]), Exome Sequencing
Project (ESP [39]), or 1000 genomes project [40] were
included. This process identified variants in 28 to 32% of
the participants across the three cohorts (Table 1). The
number of total and unique variants across the three co-
horts is summarized in Table 1. Therefore, all variants

described from here forward are considered likely patho-
genic or pathogenic.

Exploring EMCA histology and rare variants
The variants were visualized in a participant centric
graph using a co-mutation plot, sometimes referred
to as a waterfall plot (Fig. 1). There did not appear to
be enrichment of a specific EMCA histology, and/or
patient status among genes that are often mutated
(i.e. APOBEC3B) compared to those with few variants
(i.e. ARID1B) (Fig. 1). Generally, most participants
had variants associated with the most common diag-
nosis (i.e. endometrioid histology). Of the 297 partici-
pants with EMCA, six had been previously clinically
diagnosed with Lynch syndrome, however, only two
contained a rare pathogenic variant that met our
workflow criteria (Additional file 2: Figure S2). The
participants had a frameshift variant in MSH2, a
Lynch syndrome gene [46].

Characterization of pathogenic germline variants between
EMCA, OHRM and NCC cohorts
The variants across the three cohorts included a mixture
of indels and single nucleotide variants (SNVs) (Fig. 2a).
Based on criteria (see methods) from previous work,
SNVs and indels were grouped together based on
whether they were synonymous, non-synonymous or
variants that are predicted to cause a loss of function
(pLoF). No synonymous variants were identified as po-
tentially pathogenic. Most of the non-synonymous vari-
ants were missense, while most pLoF variants were stop
gained or frameshift (Fig. 2b). Non-synonymous and
pLoF made up similar percentages of the variants in all
three cohorts (Fig. 2b). In a previous analysis of variants
from more than 50,000 DiscovEHR participants,
non-synonymous and synonymous variants made up a
greater number of sites with variants than did pLoF [31].
However, after our rare variant annotation algorithm
(Additional file 1: Figure S1) was applied to the cohorts
in this study, synonymous variants were filtered out
leaving mostly pLoF and some non-synonymous vari-
ants (Fig. 2a). These results demonstrate that the al-
gorithm enriches for rare variants with potential
pathogenic influence.
The number of unique variants and genes that con-

tained variants are described in Table 1. The genes over-
lapping between the 3 cohorts is shown in Fig. 2c. While
there was considerable overlap between the cohorts, 4
genes were unique to the EMCA cohort (e.g. CDK4,
LIFR, MALT1, and MSH2). Two genes were identified
only in the EMCA and OHRM cohorts (e.g. PMS2 and
TMPRSS2). A comparison of unique variant loci showed
differences among the cohorts compared to gene-wise
comparison (Fig. 2d). The vast majority of genes present
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in the EMCA cohort could be found in the other two
cohorts. This result suggests that to identify more genes
with EMCA relevant genetic variation, an alternate
metric such as calculating the difference in frequency
between the genes with rare pathogenic variants in
EMCA and the other cohorts could be useful.

Comparing rare variant burden between cancer and NCC
cohorts
We next evaluated whether analysis of variant burden
could identify genes that are more likely to be associated
with EMCA. The number of variants per individual was
compared in the EMCA and NCC cohorts (Table 1) (see

Table 1 Summary of rare pathogenic variant distribution across cohorts

EMCA NCC OHRM

Participantsa 297 2120 1486

Participants with variants after filterb 85 (28.6%) 628 (29.6%) 462 (31.1%)

Genes with variants after filterc 62 211 205

Loci with variantsd 73 485 371

Rare variant burden across participants in each cohorte 99 791 593

Summary level data of participants from WES and rare variant analysis. The total number of participants included in each cohort (a). The total number of
participants from “a” that had at least one rare variant that met criteria from Fig. 1 workflow, (b). The number of genes with at least one rare variant that met
workflow criteria (c). The number of unique variants present after filtering using the bioinformatics pipeline in Fig. 1 (d). The total number of unique and non-
unique rare variants present across the participants in the cohort (e)

Fig. 1 Waterfall plot of all genes with pathogenic variants. Waterfall plot of all EMCA samples that contained rare variants that passed the filter
from Additional file 1: Figure S1. The main heatmap contains columns which represent an individual participant (N = 86), and rows that represent
genes, while the color that fills in the cell represents the type of variant present for a specific participant in a specific gene. The heatmap below
illustrates that histology, cancer stage and patient survival status, each column represents a different participant. “Undiff” refers to undifferentiated
histology. The graph to the left shows the percentage of participants who have a rare variant in a gene, relative to all participants with variants,
while the bar plot above the main graph represents the variant burden for each participant
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methods). Only genes with at least two variants across the
EMCA and NCC cohorts were considered. There was
only one gene, ERCC2, with a higher burden of non-syn-
onymous variants in EMCA participants compared to the
NCC cohort (Fig. 3a and b). Seven genes showed at least a
2-fold enrichment in the EMCA cohort compared to
NCC using pLoF variants (Fig. 3c and d; ECT2L, BLM,
APBEC3B, PCM1, ZFHX3, ERCC3, and AFF3). To verify
that the increased burden among EMCA participants is
specific to EMCA and not hormone related cancers, the
burden between OHRM and the NCC cohort was also
measured (Additional file 3: Figure S3 and Additional file
4: Figure S4). Only RNF213 was found to have increased
pLoF variant burden in the OHRM cohort, however this
was not observed in the EMCA cohort (Additional file 4:
Figure S4 and 3D). Since there were no shared genes with
at least 2-fold enrichment among EMCA and OHRM
relative to the NCC, all of the genes with high variant bur-
den in the EMCA cohort are unique to EMCA compared
to the OHRM cohort. We used a difference of proportions
test to evaluate the differences between EMCA and NCC
or OHRM and NCC (Additional file 6). While several
genes had a p-value less than 0.05, they were not signifi-
cant after correcting for multiple tests. These results

suggest a larger sample size or different experimental de-
sign is necessary for capturing statistically significant re-
sults (Additional file 6).

DiscovEHR germline variants are reproduced in TCGA
study
We also compared germline variants in the DiscovEHR
EMCA cohort to the uterine cancer samples in the
Cancer Genome Atlas (TCGA) Research Network.
TCGA performed a comprehensive, multiplatform ana-
lysis of type 1 and 2 EMCA using array- and
sequencing-based technologies, including WES [47].
DiscovEHR and TCGA had 89 and 81% endometrioid
histology, respectively, however median follow-up time
was much greater for the DiscovEHR EMCA cohort (67
months) relative to TCGA (32months) [47]. A total of
553 rare variants from TCGA germline variants met the
criteria of the workflow in Fig. 1 that was applied to the
EMCA DiscovEHR data (Fig. 4). Of these likely patho-
genic variants, only eight were also found in the Disco-
vEHR EMCA cohort (Fig. 4a). The 73 Geisinger Health
System germline variants were in 62 different genes, 34
of which were also identified in the TCGA EMCA co-
hort (Fig. 4b). Of the eight genes that had higher burden

A

B D

C

Fig. 2 Distribution of types of rare variants across cohorts. The total number of unique variants are represented by their VEP annotation. Additionally,
each type of variant is grouped by the variant category (a). The percentage of each variant category represented in each cohort (b). The overlap
between genes with variants represented in each cohort (c). The number of unique loci (variants) that overlap between each cohort (d)
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in the EMCA cohort relative to NCC, four (e.g. BLM,
ECT2L, ERCC2, and ERCC3) were present in the 34
genes represented in both DiscovEHR and TCGA. Add-
itionally, MALT1 and MSH2, two genes that were only
observed to have variants in the EMCA only cohort
(Fig. 2c) were among the 34 genes that replicated. These
results support the concept that rare variants binned

into genes can do a better job of capturing replication
relative to being located in the same loci across individ-
uals [48]. Furthermore, the relatively high congruency
between the two studies at the gene level highlights how
germline variation in EMCA participants is reproducible
for this study. Only one variant (e.g. nonsense variant in
the gene ETV4) was found to replicate between the

Fig. 3 Non-synonymous and pLoF variants among EMCA to non-cancer control cohort. a For each gene with at least two variants in both EMCA
and NCC, the ratio of non-synonymous variants across the EMCA cohort was divided by those in the NCC after adjusting for differences in cohort
size. Orange, blue and red lines are used to delineate 2, 1 and 0.5 fold EMCA burden relative to the NCC cohort. b The total number of rare
non-synonymous variants from each cohort for each gene. c and d the same as a and b, respectively, except pLoF variants were used
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Geisinger germline results and the TCGA somatic
mutations.

Discussion
While significant progress has been made identifying
somatic variants associated with EMCA [47, 49], a num-
ber of studies have pointed to the usefulness of looking
at germline variants as an alternative means to
characterize the genetic etiology of EMCA [29, 50]. In
this work, we describe the landscape of germline vari-
ants from participants diagnosed with EMCA using the
WES data from the DiscovEHR study. We identified rare
variants in 4 genes that were unique to the EMCA co-
hort. Rare variants in the genes CDK4, LIFR, MALT1,
and MSH2 were identified in the DiscovEHR EMCA co-
hort but not NCC and OHRM. CDK4 promotes progres-
sion of the cell cycle and increased expression is
observed in 34–77% of endometrioid endometrial car-
cinoma (EEC) [51]. Additionally, the specific activity of
CDK4/6 has been illustrated to be a biomarker for pre-
dicting recurrence of EEC in pathologically low-risk
group of patients [52]. Recent evidence suggests the ex-
pression of leukemia inhibitory factor receptor (LIFR) af-
fects multiple signaling pathways in the endometrium of
patients with adenomyosis during the window of im-
plantation for in vitro fertilization [53, 54]. Chromo-
somal translocation of MALT1 associated with MALT
lymphoma is often restricted to the endometrium [55].
Individuals with germline mutations in MSH2 can be di-
agnosed with Lynch Syndrome, which in turn is associ-
ated with a high risk of colorectal cancer, including but
not limited to EMCA [56]. Since an extensive literature
exists on all but MALT1, it suggests further work should
be devoted to teasing out its connection to EMCA.

APOBEC3B was the gene most often identified as hav-
ing a rare variant among EMCA participants. APO-
BEC3B is a member of a gene family, which consists of
seven members, that cause cytosine-to-uracil deamin-
ation of single-stranded DNA [57]. These cytosine de-
aminases mediate intrinsic immunity to retroviruses and
endogenous retrotransposons [58, 59]. Mutation or low
expression of the tumor suppressor p53 is associated
with an increase in expression and activity of APO-
BEC3B in endometrial cancer and other types of cancer
as well [57]. PCM1 and BRCA2 were found to have the
second most rare variants among EMCA participants
(N = 5 each). PCM1 codes for a protein that is respon-
sible for anchoring microtubules to centrosomes and has
previously been associated with thyroid cancer, leukemia,
and T-cell lymphoma [60–63]. However, PCM1 does not
have a previously known connection to EMCA, suggest-
ing it is a novel candidate for investigating its relation-
ship to EMCA. Alternatively, previous work found
carriers of BRCA mutations, especially BRCA1, had in-
creased risk of EMCA [64].
Our data also suggests that relying only on the EMCA

cohort or looking for variation that does not overlap with
other cohorts to investigate the genetic etiology of EMCA
is problematic, as several genes can be missed. Whereas a
burden-based approach appeared to be a superior method
for finding genes that have EMCA-associated variation.
Only four genes were identified as having variants unique
to the EMCA cohort, whereas the burden-based approach
identified eight genes, and importantly, controlled for
genes which have many variants in the NCC or OHRM
cohorts. Together, these results suggest a burden-based
approach can lead to the identification of more genes that
help characterize germline variation and account for genes
that are more prone to germline variants in EMCA

A B

Fig. 4 Overlap between DiscovEHR and TCGA germline variants from EMCA and uterine cancer samples. Rare potentially pathogenic variants
were identified from the germline uterine cancer cohort in TCGA. The overlap between TCGA variants and those from this study (DiscovEHR) is
illustrated in the Venn diagram (a). The overlap of genes from TCGA and the genes with variants from this EMCA cohort from this study (b)
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patient-participants. Several genes that were identified
using the burden-based approach regulate DNA repair or
transcription. For instance, ERCC2 and ERCC3 are a part
of the general transcriptional machinery TFIIH and nu-
cleotide excision repair [65]. The transcription factor
AFF3 associated with lymphoid development and neur-
onal differentiation [66, 67]. ZFHX3 is also a transcription
factor, it acts as a tumor suppressor in multiple cancer
types [68, 69]. Though these observations are consistent
with a previous body of work which has found a connec-
tion between developmental processes and cancer [70], we
found that rare variants in these genes may be acutely
important for understanding EMCA.
To evaluate how reproducible and biologically relevant

the rare variants are among EMCA cohorts we compared
the variation observed in our cohort to that were seen in
TCGA germline samples. This comparison illustrates con-
sistent variation at the gene level, but not at the variant
level. Moreover, these results support a known feature of
genetic variation, that while rare variants are infrequently
observed at the same exact loci across individuals, trends
do appear once the rare variants are analyzed in the con-
text of a gene or pathway [48]. Replication is especially im-
portant to look for here since rare variants may be
spurious [48]. Thus, our ability to find reproducible vari-
ation increases confidence that variation within genic re-
gions will be helpful for characterizing EMCA on a
molecular level. The genes identified may play a role in
the development of EMCA, therefore this work may pro-
vide a useful strategy for identifying possible therapeutic
targets either through drug or mutation. While the EMCA
cohort from DiscovEHR had a similar distribution of
stages, there were more grade 3 samples in TCGA. Thus,
when comparing the two, the interpretation should con-
sider that the overlap was between samples of varying
stages and grades. As discussed below, larger sample sizes
in the future may allow for stratified analyses. Nonethe-
less, because most EMCA diagnoses in the U.S. are esti-
mated to be grade 1/2 and stage 1, it is possible that
results from DiscovEHR can be generalized.
Previous work has demonstrated how individual germ-

line variants contribute to EMCA [49]. Here we utilized
WES data obtained from participants of a single health
system as part of the DiscovEHR study. By performing a
manually curated chart review, there was added confi-
dence in the identification of those diagnosed with EMCA.
An advantage of performing the study using the Disco-
vEHR cohort is that due to the location, the participants
have similar demographics, suggesting that ancestry and
socio-economic status likely play a smaller role in explain-
ing variation between participants in the DiscovEHR co-
hort. Conversely, future studies with larger cohorts that
have less homogenous ancestry and cancer types could
provide important insights into the etiology of EMCA

across different subpopulations. A larger cohort, with
more individuals across ancestries, stages, treatments, and
outcomes could also provide a useful platform for charac-
terizing our genetic understanding of EMCA and per-
forming more risk assessment related analyses.
An outstanding obstacle in the field of EMCA research

is the difficulty in risk assessment for individuals who
already have EMCA. While this work did not address
that issue, we look forward to future work that applies
the use of EHR and WES to that specific clinical applica-
tion. For instance, obesity is a risk factor, but it could
also independently be associated with the variant bur-
den. Future studies will need to be carefully designed in
order to test for this effect. Having said that, the genes
identified in this study may play a role in the initiation
or inception of EMCA, and with experimental functional
validation could be prioritized as potential therapeutic
targets. In summary, this study suggests that WES from
a single hospital system can provide useful insights into
the molecular signatures for which to distinguish vari-
ation in EMCA from that in NCC and OHRM cohorts.
Moreover, these genes and variants may help identify
causal links to the pathogenesis of EMCA.

Conclusions
The purpose of this study was to investigate the differences
and similarities between potentially pathogenic germline
variants among patient participants from EMCA, OHRM,
and NCC cohorts using EHR. Although larger sample sizes
or alternative approaches will be needed to capture statisti-
cally significant associations, a number of conclusions can
be made from this analysis which characterize EMCA in
new ways. Binning potentially pathogenic variants from the
DiscovEHR WES data into genes illustrated greater overlap
between cohorts compared to looking at the overlap of loci.
Only four genes had variants unique to the EMCA cohort,
where as a burden-based approach detected eight genes
that were enriched with potentially pathogenic variants.
High concordance between the DiscovEHR and TCGA co-
horts illustrates that reproducible potentially pathogenic
germline variation can be observed in multiple studies. In
summary, there are many overlapping genetic features be-
tween EMCA and non-EMCA cohorts, however, a
burden-based approach can best help to characterize the
genetic underpinnings of EMCA.

Web resources
Variant sites and frequencies with basic annotations from
the DiscovEHR study is hosted in the following database
and webserver: www.discovehrshare.com. Further infor-
mation concerning the reproduction of results described
in this article is available upon reasonable request and
subject to a data use agreement. The TARGET database
(https://software.broadinstitute.org/cancer/cga/target
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(version 3)) and Cancer Gene Census (CGC, https://can-
cer.sanger.ac.uk/census (downloaded on March 7th,
2017)) were used in this work. Uterine Corpus Endomet-
rial Carcinoma (UCEC) germline and somatic variants
were retrieved from the Broad GDAC Firehose (https://
gdac.broadinstitute.org).

Additional files

Additional file 1: Figure S1. Bioinformatics workflow for detecting
pathogenic variants. Variants are first binned into the 635 genes from
TARGET and CGC. They are then carried forward if they meet certain
criteria from multiple variant annotation databases (e.g. Clinvar and VEP).
Finally, variants with a MAF > 1% In the MyCode cohort, or any total or
subpopulation from EXaC, ESP and 1000 genomes. (PPTX 43 kb)

Additional file 2: Figure S2. Variants in Lynch Syndrome Participants.
The main figure is a heatmap of columns for each of the 6 participants
who have been previously diagnosed with Lynch syndrome. The rows
represent the genes in which these variants reside in and the color is the
type of variant (see key to right). The variant burden for each participant
and the individual genes are represented has histograms above and to
the left of the main figure, respectively. Below the main heatmap is
another diagram which illustrates the histology, stage and patient status
along with reporting that all 6 participants had a Lynch diagnosis.
(PPTX 50 kb)

Additional file 3: Figure S3. Non-synonymous variants among OHRM
and NCC cohorts. (A) For each gene with two variants in both cohorts,
the ratio of non-synonymous variants across the EMCA cohort was
divided by those in the NCC after adjusting for differences in cohort size.
Orange, blue and red lines are used to delineate 2, 1 and 0.5 fold EMCA
burden relative to the NCC cohort. The graph inset represents the raw
number of variants at each gene between the OHRM and NCC cohort.
(B) The number of rare non-synonymous variants from each cohort.
(PPTX 73877 kb)

Additional file 4: Figure S4. pLoF variants among OHRM and NCC
cohorts. For each gene with two variants in both cohorts, the ratio of
non-synonymous variants across the OHRM cohort was divided by those
in the NCC after adjusting for differences in cohort size. Orange, blue and
red lines are used to delineate 2, 1 and 0.5 fold EMCA burden relative to
the NCC cohort. The graph inset represents the raw number of variants
at each gene between the OHRM and NCC cohort. (B) The number of
rare pLoF variants from each cohort. (PPTX 73879 kb)

Additional file 5: Table S1. DiscovEHR and TCGA participant
demographic information. Table S2. DiscovEHR and TCGA EMCA
participant demographic information. Table S3. Distribution of stages
between races and studies as a percentage*. Table S4. Distribution of
grades across studies for EMCA*. Table S5. Total patient information for
therapy and outcomes among DiscovEHR EMCA cohort. (DOCX 18 kb)

Additional file 6: Difference of proportions test. After binning variants
into genes, a difference of proportions test was performed across all
genes between variants in the EMCA and the control or OHRM cohort.
P-values were adjusted for multiple tests using FDR. (XLSX 16 kb)
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