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Abstract

Objective: To identify the risk-predictive baseline profile patterns of demographic, genetic, immunologic, and metabolic
markers and synthesize these patterns for risk prediction.

Research Design and Methods: RuleFit is used to identify the risk-predictive baseline profile patterns of demographic,
immunologic, and metabolic markers, using 356 subjects who were randomized into the control arm of the prospective
Diabetes Prevention Trial-Type 1 (DPT-1) study. A novel latent trait model is developed to synthesize these baseline profile
patterns for disease risk prediction. The primary outcome was Type 1 Diabetes (T1D) onset.

Results: We identified ten baseline profile patterns that were significantly predictive to the disease onset. Using these ten
baseline profile patterns, a risk prediction model was built based on the latent trait model, which produced superior
prediction performance over existing risk score models for T1D.

Conclusion: Our results demonstrated that the underlying disease progression process of T1D can be detected through
some risk-predictive patterns of demographic, immunologic, and metabolic markers. A synthesis of these patterns provided
accurate prediction of disease onset, leading to more cost-effective design of prevention trials of T1D in the future.
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Introduction

Type1 Diabetes (T1D) is an autoimmune disorder that has a

diverse pathogenesis, clinical phenotype, and outcome [1]. It is

associated with a progressive immune-mediated loss of insulin-

secreting islet cells, leaving a trail marked by characteristic

immunologic and metabolic signs that provide predictive markers

of disease [2], such as the 2 hour glucose and C-peptide markers.

The increasing understanding of the immune pathogenesis of T1D

has led to the possibility that preventive interventions could delay

or prevent its occurrence. Some prevention trials, such as the

European Nicotinamide Diabetes Intervention Trial and the

Diabetes Prevention Trial-Type 1 (DPT-1), have been launched to

test interventions in individuals with autoimmune pre-diabetes [3–

5]. They have shown that individuals with certain degree of risk

can be recruited through the assessment of relatives of T1D

patients by autoantibody and metabolic testing.

Despite the possibility of predicting T1D on the basis of genetic,

immunologic, and metabolic markers [2,6–8], there are still a

substantial proportion of those classified as high risk who do not

progress to clinical diabetes within five years of detection.

Therefore, a number of studies have been conducted to refine

the prediction of T1D to improve accuracy and efficiency, by

developing risk score models using all the potential risk markers

[6–8]. For example, a risk score is developed in [6], which was

shown to be helpful for the prediction of T1D in relatives of

patients who are autoantibody-positive. The Cox proportional

hazards regression model (CPH) has been the most commonly

used model in the past. The CPH model is appealing due to its

mathematical simplicity and computational convenience, in which

the baseline survival function does not need to be modeled

explicitly in the model training. However, the CPH model was

essentially designed to measure the effects of covariates on

changing the hazard function but not modeling individual patient

risk. In other words, the CPH model is not suitable to predict an

individual’s risk since the hazard function is incomplete without

the baseline survival function. Although it is possible to fit a non-

parametric baseline survival function after the CPH model is

trained on data, its applicability is still limited by its proportional

hazards assumption. As a result, existing risk-scores models [6–8]

are only capable of stratifying subjects into different risk levels,

rather than assessing individual’s risk and predicting the disease

onset.

The difficulty in developing a risk score model comes from the

heterogeneity of T1D and the complex interplay among diverse

risk factors. It is known that within the same genetically

predisposed children, pre-diabetic subjects may have very
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heterogeneous characteristics with regards to the expected rates of

seroconversion to islet autoantibody positivity as well as diagnosis

of T1D [9]. Existing research on T1D risk model development has

shown that a combination of multiple markers may produce high

predictive accuracy for early disease prediction [6–8,10].

In this paper, we seek to explore whether genetic, immunologic,

and metabolic markers tend to occur in a predictable pattern that

might be captured by statistical analysis and could therefore be

used to dissect out individual’s disease risk. We use the powerful

rule-discovery algorithm, the RuleFit [11], to systematically

explore the possible risk-predictive baseline profile patterns,

defined as ‘‘rules’’. Then, we develop a novel latent trait model

to model the association of the rules with the underlying disease

risk and further link the disease risk with the clinical outcome,

forming the basis for risk estimation and outcome prediction. Our

main contributions are: 1) we have identified novel and

meaningful risk-predictive rules from the DPT-1 participants,

which may lead to a better understanding of disease progression

and high prediction accuracy for T1D; 2) we have developed a

novel latent trait model which is capable of synthesizing the rules

for prognosis, and, by extracting the item information curves (IIC)

from the latent trait model, it is also possible to investigate the

distribution of prognostic power of each rule over the spectrum of

disease severity, revealing which marker measurements produce

superior prognostics for a given cohort. Such a prognostic model

with consideration of baseline profile patterns that involve

interactions between markers, will enable more homogeneous risk

grouping as well as identification of intermediate checkpoints and

surrogate end points, which may lead to novel cost-effective

screening strategies for future clinical trial design in preventing

T1D.

Methods

1. Data
The Diabetes Prevention Trial-Type 1 (DPT-1) was one of the

largest randomized, prospective studies in North America from

1995 to 2003, with the objective to determine if T1D can be

prevented or delayed by a preclinical intervention of oral insulin

intake or low-dose insulin injections. The DPT-1 consists of two

separate trials, one of oral insulin (to induce oral tolerance) and the

other of parenteral insulin with daily subcutaneous low-dose

insulin and annual intravenous insulin. A total of 103,391 first-

and second-degree non-diabetic relatives of individuals were

screened for ICA-positive subjects. The 3,483 relatives positive

for islet-cell antibodies (ICA) were then staged to quantify the

projected five-year risk of diabetes [12]. Of those, 372 subjects

whose five-year risk was considered to be 25% to 50% with normal

oral glucose tolerance test (OGTT) were entered into the oral

insulin trial; 339 subjects whose five-year risk was considered to be

50% to 70% with abnormal OGTT or loss of FPIR to an

intravenous glucose tolerance test (IVGTT) were entered into the

parenteral trial. The criteria for eligibility can be found in [12]. All

subjects (and/or their parents) signed a written consent form

approved by the participating study center’s human subjects

committee.

To study the natural history of the disease, only the subjects who

were randomized to the control arms of the studies were used in

this analysis (186 from oral trial placebo arm and 170 from

parenteral trial observation arm). We plan to focus on demo-

graphic, immunologic, and metabolic markers. Specifically, we

will use the titer values for different autoantibodies for assessment,

including ICA, IAA, GAD, ICA512, and MIAA (micro-insulin

autoantibodies). For metabolic indices, we have fasting glucose,

glycated hemoglobin (HbA1c), fasting insulin, first-phase insulin

response (FPIR) from IVGTTs, and Homeostasis model assess-

ment of insulin resistance (HOMA-IR). From OGTTs, in addition

to 2-hour glucose and fasting glucose, we have collected blood

samples for C-peptide measurements in the fasting state and then

30, 60, 90, and 120 minutes after oral glucose. We also have

computed peak C-peptide as the maximum point of all measure-

ments and AUC (area under curve) C-peptide using the trapezoid

rule. Furthermore, we also include age and Body Mass Index

(BMI), which have been typically included as covariates in most of

the existing risk models for T1D. The baseline statistics of the

study subjects are presented in Table 1.

2. Statistical methods
Let X~½X1,X2,:::,Xp�denotes the p pvariables corresponding to

candidate risk markers introduced in Section 2.1. Our hypothesis

is that there are unknown baseline profile patterns, indicating risk

levels for individuals, which can be characterized as rules over

these markers. As these baseline profile patterns are largely

unknown and a risk estimation mechanism using these patterns is

also lacking, in this paper, we propose an integrated framework of

an existing rule-discovery algorithm, the RuleFit [11] and a novel

latent trait model that will be developed in this paper, to fill in

these gaps. Specifically, the rule-discovery algorithm can be used

to discover the hidden rules that may be predictive to the disease

risk. The latent trait model will be used to model the associations

between the identified rules with the underlying disease risk and

further estimate individual disease risk by probabilistic inference,

based on these associations.

2.1. Rule discovery by RuleFit. We use rules to define the

baseline profile patterns, sincerules can be easily interpreted, easily

handle heterogeneity and complex interaction between markers.

Essentially, a rule defines the abnormal range of some markers.

With the presence of an abnormality, the disease risk increases.

Thus, a comprehensive set of risk-predictive rules act as a set of

sensors dispersed over the whole course of disease progression,

providing us the evidences for risk estimation by looking into each

individual’s profile of abnormalities. On the other hand, this set of

rules for characterizing T1D progression is currently lacking, as

the etiology of T1D is still not fully understood [13]. As traditional

epidemiology studies mostly focus on studying hypotheses regard-

ing individual risk factors, knowledge about the heterogeneity and

complex interplay between risk factors that are crucial on defining

the rules remains largely unknown.

We use RuleFit[11] to discover the hidden rules that may be

predictive of the disease risk. RuleFit is a high-dimensional

computational algorithm for rule discovery, which is capable of

exhaustively searching for potential rules on a large number of

candidate risk markers. It has two phases, the ‘‘rule generation

phase’’ and ‘‘rule pruning phase’’: 1) Rule generation: At this

stage, random forest [14] is used to exhaustively search for

candidate rules over the potential risk factors. Random forest is a

high-dimensional rule discovery approach that extends traditional

decision tree models. Specifically, a random forest estimates a

number of trees, with each tree being estimated on a relatively

homogenous subpopulation generated by bootstrapping the

original dataset. Since each tree employs a set of rules to

characterize a subpopulation, the random forest is actually a

comprehensive collection of rules that are able to characterize the

whole dataset. On the other hand, as a heuristic and exhaustive

search approach, the random forest may produce a large number

of less-predictive or redundant rules, which requires the following

second step to refine the learning results. 2) Rule pruning: As the

random forest will generate many rules that can be redundant or

A Rule-Based Prognostic Model for Type 1 Diabetes
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Table 1. Baseline statistics of the study subjects.

Oral Insulin Trial N = 186 Parenteral Insulin Trial N = 170

IDDM (%) 53(28%) 70(41%)

Age -year (mean) 12.30(8.60) 15.34(9.92)

BMI Z-score (median) * 20.90(22.3520.38) 21.48(23.0420.01)

Race n(%)

White 163(89.07%) 128(95.18%)

African American 2(1.09%) 1(0.60%)

Hispanic 14(7.65%) 5(3.01%)

Other 7(3.76%) 6(3.53%)

Gender n(%)

Male 105(56.45%) 89(52.35%)

Female 81(43.55%) 81(47.65%)

Relationship to patient w/diabetes n(%)

Sibling 108(58.06%) 113(66.47%)

Offspring 53(28.49%) 39(22.94%)

Parent 7(3.76%) 5(2.94%)

Second Degree 18(9.68%) 13(7.65%)

HLA genotype:

Priamryhaptype

0101/0501 27(14.59) 14(8.24)

0102/0604 10(5.41%) 16(9.41%)

0201/0201 12(6.49%) 10(5.88%)

0301/0301 19(10.27%) 11(6.47%)

0301/0302 77(41.62%) 75(44.12%)

0501/0201 16(8.65%) 17(10.00%)

Other 25(13.44%) 10(5.88%)

Secondayhaptype

0301/0301 8(4.32%) 12(7.06)

0301/0302 71(38.38%) 45(26.47%)

0501/0201 69(37.30%) 81(47.65%)

0501/0301 15(8.11) 15(8.82)

Other 23(12.37%) 17(10.00%)

Immunological factors:

ICA titer (JDF Units**) (median) 80.00(40.00–160.00) 160.00(40.00–320.00)

IAA titer (nU/ml) (median) 192.30(83.30–435.70) 109.25(26.70–295.34)

ICA512 (median) 0.033(0.006–0.677) 0.081(0.003–0.645)

GAD65(median) 0.204(0.027–0.677) 0.322(0.024–0.738)

Metabolic factors:

Fasting Glucose (mmol/L)- IVGTT 4.84(0.51) 4.94(0.49)

Fasting Insulin (mU/L)-IVGTT 15.41(9.68) 12.01(7.76)

FPIR (ul/ml)-IVGTT 158.88(99.16) 72.80(37.10)

HOMA-R-IVGTT 3.39(2.35) 2.69(1.84)

FPIR/HOMA-R-IVGTT 55.64(33.13) 32.90(17.09)

Fasting Glucose (mg/dL)-OGTT 86.20(7.78) 89.22(9.58)

Two-hour Glucose (mg/dL)-OGTT 105.74(19.57) 122.28(31.59)

Peak C-Peptide (nmol/L)-OGTT 5.44(2.19) 4.84(1.97)

AUC C-Peptide(nmol/L)-OGTT 508.70(205.79) 439.28(174.03)

HBA1C 5.33(0.34) 5.38(0.50)

Note: Data are mean (6 SD), n (%), or median (Inter-quartile range).
*BMI Z-score from 2000 CDC Growth chart.
**JDF denotes Juvenile Diabetes Foundation.
doi:10.1371/journal.pone.0091095.t001
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irrelevant to early withdrawal due to overfitting, the sparse

regression model [11,15] will be applied to select a minimum set of

risk-predictive rules, by using all the potential rules as predictors

and the withdrawal status as the outcome. The sparse regression

model is a high-dimensional variable selection model [11,15].

Considering each rule as a ‘‘variable’’, rule pruning is essentially a

variable selection problem. This problem is to selecting a subset of

rules out of a pool of qcandidate rules, denoted as

R~ R1,R2, . . . ,Rq

� �
, which are predictive to the output variable

Y. This problem is particularly challenging in high-dimensional

settings where qis large. Recently, the Least Absolute Shrinkage

Selection Operator (LASSO) is proposed [15], which is a sparse linear

regression model that is capable to identify a subset of relevant

variables out of a huge list of candidate variables. Specifically, the

formulation of LASSO is

min
b
jjY{Rbjj22zljjbjj1

Here, the square error term,jjY{Rbjj22, is used to measure the

model fit. The L1-norm penalty termjjbjj1, defined as the sum of

the absolute values of all elements in b, is used to measure the

complexity of the regression model. The user-specified penalty

parameter,l, aims to achieve an optimal balance between the

model fitness and model complexity – largerlwill result in sparser

estimate for b. Efficient algorithms have been developed to solve

the optimization problem [11,15]. In our study, since the output

variable Y, i.e., the withdrawal status, is a binary variable, the

sparse logistic regression [15] is a better choice than linear

regression, which can be readily implemented in the R package of

RuleFit [15]. More details on RuleFit can be found in [15].

In a summary, RuleFit is computationally efficient since efficient

algorithms have been developed for both Random Forest and

sparse linear regression models. Since it is an integration of

random forest and LASSO, it has several important parameters to

be specified, including the number of trees, the complexity of the

trees that is controlled by the average number of terminal nodes,

and the penalty parameterl. According to the extensive simulation

studies performed in [15], the default parameters values for the

number of trees and the average number of terminal nodes are

333 and 4, respectively. We obtained the optimal values of these

three parameters using the automated cross-validation procedure

in Rulefit in a manner of grid search, which are close to these

default values, e.g., the number of trees and the average number of

terminal nodes are 250 and 4.5, respectively. In our experiments,

we have found that the RuleFit is robust to the specification of

these parameters.

2.2. Latent trait model. Disease risk is a latent trait that is

not directly measureable. As we mentioned earlier, rules are

essentially measureable evidence that are associated with the

underlying disease risk. Specifically, as a rule defines the abnormal

range of some markers, the satisfaction of a rule corresponds to the

presence of an abnormality. It is known that some abnormalities

can most likely be observed at certain progression stages, which

provide us the possibility that we can infer the most possible

disease risk for each subject based on this individual’s profile of

abnormalities, if the associations between the abnormalities with

disease severity can be modeled. This statistical inference problem

bears a resemblance with the classic problem in psychometrics, the

inference of abilities, attitudes or personalities by gathering

evidence from questionnaire responses or tests, using the latent

trait theory.

As traditional latent trait models can only be used to estimate

the associations between the discovered rules with the underlying

disease severity, in this paper, we develop a novel latent trait model

which is not only capable of modeling these associations (as shown

in the box labeled with C1 in Fig. 1), but alsopredicting the disease

onset (as shown in the box labeled with C2 in Fig. 1). With these

associations, the likelihood of endorsement of each rule can be

calculated and the latent trait model will further capitalize on these

likelihoods to infer the underlying disease severity and predict the

disease onset.

To model the association between the disease severity with

disease onset, the latent trait model assumes that the probability of

an individual’s endorsement of a rule is a function of both the

individual’s (latent) disease severity and the association between

this rule and the disease severity, which corresponds to the

information about where the rule stands in the disease severity

continuum and how predictive the rule is. In practice, this

relationship is modeled by a monotonically increasing function

called the item characteristic curve (ICC). For example, the two-

parameter logistic model (2PL) can be specified for rule Rl as

follows:

log
Pl(Rl~1jh)

Pl(Rl~0jh)
~al(h{bl)

Here,Pl Rl~1jhð Þon the left hand side is the probability of an

endorsement of the ruleRl , given the (latent) disease severityh. On

the right side, bl is the item difficulty parameter for rule Rl that

determines the position of the ICC in relation to the disease

severity scale. The item difficulty is the disease severity level

required to achieve a 50% change of an endorsement,

i.e.,Pl Rl~1jh~blð Þ~Pl Rl~0jh~blð Þ~0:5. As bl increases,

the item becomes more useful to identify subjects with higher

disease severity. For example, if a subject endorses a symptom,

Rl~1, that has a large bl , then it is unlikely that the disease

severity his small, since hvblmeansPl Rl~1jh~blð Þv0:5. The

smallerh, the smaller probability of observing Rl~1, which

contradicts with the data. The remaining parameter, al , is the

item discrimination for ruleRl , which determines the amount of

change in the log odds, Pl Rl~1jhð Þ=Pl Rl~0jhð Þ, for one unit of

change in the disease severity. Thus, a larger almeans that the rule

is more sensitive to small changes in the disease severity,

discriminates more clearly among the subjects, and hence is more

informative and reliable. Throughout this paper, we use this two-

parameter item response function due to its flexibility and

interpretability. We also would like to point out that our

Figure 1. Latent trait model for rule synthesis.
doi:10.1371/journal.pone.0091095.g001
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methodology is generic and can be extended to other item

response functions when needed.

It is worthy of mentioning that, the item information curve (IIC)

can be extracted from the ICC, which reflects how much

information a rule may have on measuring the underlying disease

severity [16]. This can be achieved through the derivation of the

fisher information from the 2PL model, as the fisher information

reflects the information about an unknown parameter [16]. The

IIC for the 2PL model is:

I(h)~
(p0(h))2

p(h)½1{p(h)�0

,

wherep hð Þ~Pl Rl~1jhð Þ and p0(h) denotes the first derivative

of p(h)with respect toh.

Another task is to model the association between the disease

severity with disease onset, i.e., as denoted as Y~F h,Zð Þ in C2 of

Fig. 1, where Ydenotes the disease onset, his the disease severity,

and Z1, . . . ,Zt{1f gdenote some other potential predictors which

may provide useful supplementary information besides the rules.

We can use the logistic regression model.E.g.,

P Y~1ð Þ~ 1

1ze{ c1Z1z...zct{1Zt{1zcthið Þ

.

For instance, one exemplary predictor that can be included in

Z1, . . . ,Zt{1f g is the clinician’s subject assessment of the subject’s

disease risk, which may provide valuable baseline assessment.

We have developed a MCMC (Markov Chain Monte Carlo)

algorithm for the model parameter estimation for this latent

variable model. Denote all the parameters as

g~ a1, . . . ,aL,b1, . . . ,bL,h1, . . . ,hn,c1, . . . ,ctf g and D as the whole

dataset that includes all the individual’s measurements

on Y ,R1, . . . ,RL,Z1, . . . ,Zt{1f g. We estimate the unknown pa-

rameters gby maximizing its posterior distribution,P gjDð Þ, whose

explicit expression can be found in the Appendix S1. The MCMC

algorithm provides a computational method to estimate the

posterior distribution, P gjDð Þ, which is a description of the

probabilities of possible values for ggiven the observed data. The

MCMC algorithm is actually a sampling algorithm which draws

samples fromP gjDð Þ. Point estimates of the parameters,g, can

then be obtained using statistics, e.g., mean and mode, of the

posterior samples ofg. A detailed implementation procedure is

given in the Appendix S1.

Results

1. Identified risk-predictive rules on the DPT-1 population
RuleFit has been applied on the previously described DPT-1

dataset to derive a set of risk-predictive rules. There is no need to

standardize or transform the original dataset, since RuleFit uses

random forest to generate the rules, which is able to handle dataset

where variables have different scales. It also has an established

procedure that adapts to missing data by use of surrogate

measures. Specifically, we use the baseline characteristics in

DPT-1, focusing on immunologic and metabolic markers. As

shown in Section 2.1, these markers include ICA, IAA, GAD, ICA

512, MIAA, fasting glucose, HbA1c, fasting insulin, first-phase

insulin response (FPIR), Homeostasis model assessment of insulin

resistance (HOMA-IR), and 2 hr glucose, fasting glucose, C-

Peptide measurements. We have computed peak C-peptide as the

maximum point of all measurements, the timing of this peak C-

peptide, the early C-peptide response (30-0 min C-peptide

difference) and AUC (area under curve) C-peptide using the

trapezoid rule. In addition, we also include age, gender and Body

Mass Index (BMI) into our model. Rules are derived on these

markers by running RuleFit. By tuning the parameters using cross-

validation as suggested in [11], the significant rules identified by

the RuleFit model are shown in Table 2. Note that the support of a

rule is the proportion of the subjects in the cohort who endorse this

rule.

2. Validation of the identified rules by survival analysis
As each derived rule defines two groups, one satisfying the rule

and the other one not, survival analysis can be applied to evaluate

the separation of these two groups. Therefore, to test the

prognostic values of these ten rules, we have performed the

Kaplan-Meier survival analysis on the same 356 subjects for each

of the top 10 rules. The results are shown in Fig. 2. In each plot,

the solid curve represents the survival curve together with their

95% confidence intervals of the group for which the rule is not

endorsed. The dotted curve represents the group for which the

rule is endorsed. We show the p-value(i.e., logrank test) of the

group separation of each rule in Table 3. It is apparent that all the

rules are significant based on both Kaplan-Meier analysis and

logrank test.

3. Modeling the associations between the rules with the
underlying disease risk

We have implemented the MCMC algorithm described in the

Appendix S1 to fit the parameters of the item response functions in

WINBUGS [17]. We draw N = 25000 samples and discard the

initial 5000 samples generated by the MCMC algorithm for

warming-up[17]. Convergence of the MCMC algorithm is

checked according to the guidance provided in [17], e.g., by

comparing the samples obtained from several runs. The means of

the posterior samples of g are used as the parameter estimations.

With the estimated a1, . . . ,aL,b1, . . . ,bL, the curves of the fitted

item response functions can be obtained, which are shown in

Fig. 3. We also report the information curves of the rules in Fig. 4,

which reveal information about within which segment of the

disease risk continuum the rules are most discriminant. From

Fig. 3, it can be seen that there are two kinds of rules, one is ‘‘risk-

increasing’’ as the satisfaction of the rules increases the disease risk;

the other one is ‘‘risk-decreasing’’ as the satisfaction of the rules

decreases disease risk. It is also clear that the relationship between

the rules with disease risk is very different. For example, it can be

seen from Fig. 3 that, when disease risk is low to moderate, rules 4

and 5 are likely to be satisfied. On the contrary, rule 6 is not very

likely to be satisfied until the disease risk is high. This implies that if

a subject endorses rule 6, it is very likely the disease risk is high.

The item information curve of rule 6 in Fig. 4 also demonstrates

that rule 6 is the most informative item on the high-risk segment of

the disease risk continuum. We also observe that the item response

functions of some rules are very similar, such as rule 4 with rule 5,

rule 8 and rule 10.

4. Assessment of the prediction accuracy of the proposed
rule-based method

As mentioned in previous sections, unlike existing risk score

models [6–8] that are only capable of stratifying subjects into

different risk levels, our proposed rule-based prognostic method

A Rule-Based Prognostic Model for Type 1 Diabetes
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can assess individual’s risk and predict the disease onset. Thus, it is

of interest to investigate the risk prediction ability of the proposed

latent trait method. We use an 80/20 validation procedure to

evaluate the performance. Within this cross-validation procedure,

the data is randomly divided into a training set (with 80% of the

whole samples) and a testing set (with 20% of the whole samples).

Rather than using the 10 rules (listed in Table 2) that have been

identified on the whole dataset to fit the prediction model, here, to

avoid overstatement of the prediction performance, we use RuleFit

on the training set to identify the rules. Afterward, again, the latent

trait theory is applied to these rules, fitted on the training data and

gives classification accuracy on the testing data. Since at this stage,

we don’t have prior knowledge on which covariates should be

included as Z1, . . . ,Zt{1f gin the classification model, we only use

the latent disease severity h as the predictor. This 80/20 validation

procedure is repeated 100 times and 100 pairs of AUC values can

be obtained. The average area under curve (AUC) value is 0.82.

For comparison, we also have applied the decision tree, random

forest, logistic regression, SVM (Support Vector Machine)with

linear kernel, Gaussian kernel, polynomial kernel, on the original

variables, but the average AUCs are only 0.71, 0.74, 0.62, 0.67,

0.65, 0.58, respectively. Note that the parameters used in these

models are tuned according to the standard 10-fold cross

validation procedure with a grid search. For example, in tuning

the parameters of the SVM with linear kernel, the only parameter

is the soft margin parameter, while the parameters of the SVM

with Gaussian kernel has one more parameter, the kernel

parameter. In the search of the best combination of the kernel

parameter and the soft margin parameter, a grid search with

exponentially growing sequences is usually used, e.g., in our

case, 2{5,2{3, . . . ,25,27,29
� �

andf2{15,2{13,:::,23,25,27gfor the

two parameters, respectively. Each combination of the parameter

choices is evaluated using the 10-fold cross validation procedure,

and the combination with the best cross-validation accuracy is

picked. All the models for comparison are implemented using the

routines in MATLAB.

We’d like to mention that the rules identified by the Rulefit in

the training datasets are quite consistent with the 10 rules listed in

Table 2. All of them frequently appear in the selected rules on

each training dataset, while only small variations on the cut-off

values are observed on some rules as shown in Table 2.

Furthermore, it is of interest to evaluate the effectiveness of the

proposed rule-based method on other datasets rather than the

DPT-1 baseline data. Six datasets (sonar, liver, pima, breast

cancer, appendicitis, heart) are chosen from the UCI machine

learning data repository that have similar dimensionality and

sample size as the DPT-1 baseline data. We also simulate a dataset

using the following strategy: First, we fit a latent trait model of the

ten rules (as shown in Table 2) using all the samples in the DPT-1

dataset. Then, we randomly generate samples from this latent trait

model, i.e., by randomly generating the values of the ten rules and

then generating the value of the disease onset using the

probabilistic relationships between the rules with the disease

onset. Note that we generate the same number of samples as in the

DPT-1 dataset. Finally, the same 80/20 cross-validation proce-

dure is applied on each of the datasets including the six UCI

datasets and the simulated dataset. The prediction performances

(measured by the AUC values) of all the methods on all these

datasets are shown in Table 4, which clearly demonstrate that the

proposed rule-based method outperforms other competing algo-

rithms across all the datasets.

Discussion

The comprehensive baseline data from DPT-1 provides us the

opportunity to identify some predictable patterns from genetic,

immunologic, and metabolic markers, which can be used to

Table 2. The TOP 10 rules identified by RuleFit.

Rule 1 (support = 33.75%) Rule 6 (support = 8%)

24.5 (0), FPIR ,56.5 (0)

Early C-Peptide Response , 3.9 (0.67) Peak C-Peptide , 4.75 (0.85)

Timing of the Peak C-Peptide . 2.5 (0.12)

Rule 2 (support = 46.88%) Rule 7 (support = 57.19%)

ICA ,240 (0) IAA , 369.7 (3.84)

IAA , 369.7 (4.84) Fasting Glucose (IVGTT) , 103.5 (2.24)

Fasting Glucose (IVGTT) , 98.5 (1.72)

Rule 3 (support = 16.56%) Rule 8 (support = 32.81%)

Age , 13.89 (1.45) ICA . 120 (3.35)

BMI . 19.27 (1.37) AUC C-Peptide , 638.2 (3.61)

2 hr Glucose . 97.5 (4.08)

Rule 4 (support = 59.38%) Rule 9 (support = 40.94%)

Age , 18.24 (0) 2 hr Glucose , 117.5 (2.27)

2 hr Glucose . 87.5 (1.96) FPIR . 70.5 (1.13)

ICA . 30 (0)

Rule 5 (support = 66.25%) Rule 10 (support = 31.25%)

ICA . 30 (0) ICA . 60 (1.39)

FPIR , 155 (0) Early C-Peptide Response , 4.1 (0.67)

7.906 (1.04) , Age , 18.24 (0)

Note: the value in the bracket indicates the standard derivation that is calculated by the 80/20 cross validation as described in Section 3.4.
doi:10.1371/journal.pone.0091095.t002
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separate out underlying disease risk, identify progression types,

and pinpoint the progression stage. Using a unified framework of

RuleFit and latent trait theory, several risk-predictive rules are

identified, and its risk estimation performance is examined by cross

validation. The results in our study suggest that the ten rules in

Table 2, together with the latent trait theory that synthesizes the

information of these rules, provide a good risk estimation model.

The important risk factors that are significantly involved in the

ten rules in Table 2 are ICA, age, 2 hr glucose, IAA, FPIR, fasting

glucose, BMI, and some C-Peptide markers. Among them, ICA,

IAA, GAD, are autoantibodies, which have been found to be

associated with T1D in a number of studies in literature [2,6–

8,12,18]. Existing evidences also show that FPIR, C-Peptide

markers, 2 hr glucose, and fasting glucose are important in the

development of risk score models [12,6,7]. Age and BMI have also

been reported to be predictive of T1D in DPT-1 [6,7] and some

other cohorts [19]. Our results also show that gender is found to be

significantly interacting with the other variables included in our

study. This is consistent with previous findings that incidence

trends generally do not differ between genders [20].

In these derived rules by RuleFit, the cutoff points of the

markers in the rules are consistent with reported results in existing

Figure 2. Kaplan-Meier survival curves (with their 95% confidence intervals) of the two groups defined by each rule: one satisfies
the rule (dotted curve) and one doesn’t (solid curve).
doi:10.1371/journal.pone.0091095.g002

Table 3. P-values of the logrank test of the ten rules.

Rules P-value of the Logrank test Rules P-value of the Logrank test

Rule 1 0.0091 Rule 6 4.44e–15

Rule 2 1.98e–13 Rule 7 8.95e–10

Rule 3 2.36e–07 Rule 8 1.12e–12

Rule 4 3.5e–10 Rule 9 3.55e–11

Rule 5 1.13e–07 Rule 10 1.73e–09

doi:10.1371/journal.pone.0091095.t003
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studies. For example, the studies in [21,22] classified subjects into

three risk categories according to FPIR: low risk group if FPIR .

80–100 mU/L, intermediate risk group if 80 mU/L . FPIR .

65 mU/L, high risk group if FPIR , 65 mU/L. Similar results

were also shown by the study conducted by the Islet Cell Antibody

Registered Users Group in [21], which classified subjects into

three risk categories according to FPIR: low risk group if FPIR .

100 mU/L, intermediate risk group if 100 mU/L . FPIR .

50 mU/L, high risk group if FPIR , 50 mU/L. Our results are

similar with theirs: i.e., in Rule 6, FPIR , 56.5 mU/L is

considered as a sign of high risk which is close to the cutoff point,

65 mU/L; In Rule 9, FPIR . 70.5 mU/L is considered as low

risk, which is close to the cutoff point, 80–100 mU/L. The slight

differences between the cutoff points in our study with theirs may

be due to the fact that both Rule 6 and Rule 9 involve interactions

of FPIR with other markers.

The 2 hr glucose level is involved in Rules 4, 8, and 9. Among

these three rules, Rules 4 and 8 are risk-increasing rule, while Rule

9 is a risk-decreasing rule. According to 1999 WHO diabetes

criteria, the normal range of 2 hr glucose level is , 140 mg/dL,

the impaired glucose tolerance is .140 mg/dL, and the diabetes

mellitus is .200 mg/dL. The cutoff point in Rule 9 is consistent

with these criteria, as 2 hr glucose , 117.5 mg/dL is not

considered a risk by the 1999 WHO diabetes criteria as well. An

interesting discovery is that the cutoff points in Rules 4 and 8 are

87.5 mg/dL and 97.5 mg/dL, respectively, beyond which the

subject is predicted with increased risk. As 87.5 mg/dL or

97.5 mg/dL are within the normal range, our results indicate

that even the 2 hr glucose is in its normal range, it is still possible

that it will be indicative of T1D risk. A similar result was reported

(that was also conducted on DPT-1 cohort), which revealed to

reveal that the 2 hr glucose . 114 mg/dL is the optimal cutoff

point for classifying the progressor from nonprogressor. A few

studies [10] have shown that some markers within their

conventionally defined normal ranges may still be predictive of

disease risk. One explanation is that, in Rules 4 and 8, the 2 hr

glucose level is considered in conjunction with Age, ICA and C-

Peptide, i.e., ICA . 30 JDF Unit and ICA . 120 JDF Unit have

been derived in Rules 4 and 8, respectively. As ICA . 10 JDF

Unit is usually considered as evidence of risk, e.g., that was used in

DPT-1 protocol, a larger ICA value may push the normal range of

2 hr glucose to a smaller value than 140 mg/dL. Existing research

in literature has shown that the cutoff point of one marker may

depend on some other markers. For example, in [23], authors

stated that the cutoff point of HOMR-IR depends on BMI, i.e.,

HOMA-IR . 4.65 if BMI . 28.9 kg/m2, or HOMA-IR . 3.6 if

BMI . 27.5 kg/m2; both cut-offs are indicative of insulin

resistance.

The fasting glucose level derived from IVGTT is considered as

risk-decreasing in Rules 2 and 7, if IVGTT , 98.5 mg/dL and

IVGTT , 103.5 mg/dL, respectively. These cutoff points are

similar with existing studies [10], where IVGTT , 96 mg/dL was

definedwithin the normal range. However, the interpretation of

Rules 2 and 7 needs extra caution, since ICA , 240 is involved in

Rule 2 and IAA , 369.7 is involved in Rule 7. As ICA . 10 JDF

Unit and IAA . 80 nU/mL [4,5,24] (or IAA . 39 nU/mL [25])

are usually considered as evidence of risk, there seems a

contradiction. One explanation is that IVGTT , 98.5 mg/dL

and IVGTT , 103.5 mg/dL are risk-decreasing evidence, which

outweigh the risk-increasing evidence, ICA , 240 and IAA ,

369.7. As such, these two rules maybe only statistically meaningful.

The clinical underpinning of these two rules needs to be further

investigated, since the support of these two rules are as high as

46.88% and 57.19%, respectively, which indicates that a

considerable proportion of subjects in DPT-1 cohort express these

patterns.

The AUC C-Peptide and Peak values of C-Peptide are involved

in Rules 6 and 8. In our study, the observation that AUC C-

Peptide , 638.2 indicates risk is consistent with a previous study

on the DPT-1 cohort [10], which showed that AUC C-Peptide ,

595 indicated risk. The Peak value of C-Peptide , 4.75 is also

close to the reported result in [10], in which Peak value of C-

Peptide , 5.3. In addition, we also find that the timing of the Peak

C-Peptide and the early C-Peptide response are both important

risk factors. Particularly, as early C-Peptide response is related to

insulin secretion, the cutoff point used in Rule 1, as low as 3.9,

indicates loss of insulin secretion. Also, both Age and BMI are two

common risk factors in predicting T1D, such as the risk score

models in [6,7]. It is interesting to observe that these two risk

Figure 3. Item response functions of the 10 rules.
doi:10.1371/journal.pone.0091095.g003 Figure 4. Item information curves of the 10 rules.

doi:10.1371/journal.pone.0091095.g004
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factors form a single rule, Rule 3, without interacting with another

risk factor.

The latent trait theory has also revealed a considerable

heterogeneity of the relationships between the rules with the

underlying disease risk, indicating that the biological underpin-

nings of these rules maybe quite different. It successfully

distinguishes the risk-increasing rules from the risk-decreasing

rules, i.e., Rules 2, 7 and 9, which are consistent with the Kaplan-

Meier survival analysis as shown in Fig. 2. From Figs. 3 and 4, it

can be seen that the ten rules provide a pretty good coverage of the

middle part of the disease risk continuum, i.e., the moderate-risk

part, but less informative at higher levels of disease risk, and least

informative at lower levels of disease risk. This indicates that the

ten rules may lead to accurate risk estimation on the subjects that

have moderate-risk of developing T1D, with smaller statistical

error than the risk estimation of low-risk or high-risk group. If

more accurate estimation is needed for ascertaining how low or

how high the risk is, more rules that cover these two groups are

needed.

By utilizing the relationships between rules with the underlying

disease risk, the prediction results in Section 3.4 have demon-

strated that the latent trait theory is capable of providing accurate

assessment of disease risk. In summary, these results show that the

latent trait theory is a powerful model that can be used to identify

the roles of the rules, model the relationships between rules with

the underlying disease risk, and synthesize the rules for an overall

personalized risk estimation.

There are limitations of this study. First, note that the rules are

identified from the DPT-1 cohort. The conclusions are contingent

upon the presence of ICA, since ICA positivity is used as the

inclusion criteria in DPT-1. As such, further validation on some

other cohorts is needed to investigate to what extent the identified

rules and the corresponding risk estimation model can be applied

to other populations. Second, the rules and the corresponding risk

estimation model may not be fully applicable if the methodologies

for glucose and C-Peptide measurements are different from those

used in DPT-1. Third, the proposed statistical methodology can be

further improved to incorporate domain knowledge, since it is

developed on pure statistical considerations. Therefore, some rules

that are indeed predictive and clinically significant may be missed

since they will not add extra predictive capability to the existing

pool of rules. A more intelligent rule pruning method may be

developed. It is also of interest to develop more flexible latent trait

models, e.g., nonparametric latent trait models, which can allow us

to make more flexible assumptions about the item response

functions. Therefore, better prediction accuracy maybe obtained

from such nonparametric latent trait models.

As far as we know, our work is the first personalized risk model

that is ever developed for T1D, as existing risk scores models [6–8]

are only capable of stratifying subjects into different risk levels. By

identifying a comprehensive set of risk-predictive rules from data,

which act as a set of sensors dispersed over the whole course of

disease progression, the risk estimation can be performed by

looking into each individual’s profile of abnormalities. The unified

statistical framework we proposed has several advantages over

many existing risk score models. First, it can deal with the

heterogeneity of the T1D population. Second, it can deal with a

mix of nominal, ordinal, count or continuous variables; it can also

combine a mixture of variables of different biological nature

without interpretation difficulty, as rules can provide a clear

representation of complex data. Third, as rules are scale

independent, data do not need to be standardized. Fourth, the

rules can be associated with the underlying disease progression by

the latent variable model, leading to nice interpretation and new
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knowledge for clinical decision making that is not provided by

existing risk score models.

It may further increase the predictive capability if more markers

and clinical variables can be included in the model. Another

approach is extending it to longitudinal data to incorporate

predictive patterns based on the change of some markers over

time. While the results in this study seem promising, we do not

suggest this is the final model to be applied in clinical practice,

given that the underlying biological contents of the rules are not

delineated. It may also be of interest to evaluate the predictive

performance of this model on some surrogate end-points, such as

the appearance of autoantibodies. In conclusion, the unified

framework proposed in this study is shown to be a promising tool

to identify risk-predictive rules from baseline characteristic data,

while the prognostic values of the rules are demonstrated by both

survival analysis and latent trait theory. The identified rules,

together with the latent trait theory that synthesizes the

information of these rules, can be used to identify individuals at

risk and monitor T1D progression. Last but not least, although the

MCMC algorithm is efficient in our case since both the number of

variables and the sample size are not large, as it has been known

that the MCMC algorithm is usually computational demanding,

particularly on high-dimensional problems, we will explore

approaches for accelerating the MCMC algorithm on high-

dimensional problems in our future study.
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