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Abstract: Copper layers with thicknesses of 12, 25, and 35 nm were thermally evaporated on silicon
substrates (Si(100)) with two different deposition rates 0.5 and 5.0 Å/s. The microstructure of pro-
duced coatings was studied using atomic force microscopy (AFM) and powder X-ray diffractometer
(XRD). Ellipsometric measurements were used to determine the effective dielectric functions <ε̃> as
well as the quality indicators of the localized surface plasmon (LSP) and the surface plasmon polariton
(SPP). The composition and purity of the produced films were analysed using X-ray photoelectron
spectroscopy (XPS).

Keywords: thin copper layers; optical properties; microstructure

1. Introduction

Copper is commonly used in electronics due to its high electrical conductivity and
low cost [1]. The optical properties of noble metals and their nanostructures have led
to the development of materials for, e.g., optical nanosensors and in surface-enhanced
spectroscopies [1–5]. In these systems, an optical response in the form of a localized surface
plasmon (LSP) is used. The occurrence of LSP is theoretically possible for all metals,
semiconductors, and their alloys, which have a large negative real dielectric constant and
a small imaginary dielectric constant. However, gold and silver are the most commonly
used in plasmonics [6], whereas the low cost of copper (compared to Au and Ag) means
that Cu is currently gaining popularity in plasmonic applications [7,8]. However, the main
disadvantage of this material is the formation of an oxide layer [9], which, in the case
of plasmonic applications, is not desirable, because such a layer strongly suppresses the
localized surface plasmon (LSP) [6]. The QLSP quality factor is a measure of the quality
of LSP. McPeak et al. obtained, for copper deposited at rate of 35 Å/s at pressure of
3 × 10−8 Tor, a value of QLSP of about 44 and 40 for a wavelength range of 650 nm and
1000 nm, respectively, [10].

The microstructure and, consequently, the optical properties (including plasmonic) of
the produced metallic layers are influenced by many factors such as the properties of the
deposited material and the used substrate (e.g., reactivity, surface energies, wettability). It
is also important to choose the method and parameters of the layer deposition (deposition
rate, atmosphere (or vacuum level—residual gases [11]), substrate temperature, etc.) [10].
The selection of appropriate PVD (physical vapor deposition) conditions and parameters
is crucial to optimize plasmonic film properties. As shown by McPeak [10], with proper
optimization of the deposition rate, the quality factor QLSP on copper layers can have
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similar values or even higher (for wavelengths above 1000 nm) than a gold layer of the
same thickness. The authors also indicated that the better performance than reported by
Palik (for Au, Ag, and Cu) [12] and Rakić (for Al) [13] may be due to the fact that their
layers are much thicker, which makes the grains much larger, and this may result in lower
losses at the grain boundaries scattering.

In this research, we investigated the optical and plasmonic properties of thermally de-
posited copper nanolayers obtained with low rates at low vacuum conditions. Then, the mi-
crostructure of the obtained coatings was examined using the atomic force microscopy
(AFM) and powder X-ray diffractometry (XRD). We have shown how the dielectric func-
tions as well as the QLSP (quality factor of localized surface plasmon) and QSPP (quality
factor of surface plasmon polariton) of Cu films change with thickness and deposition
rate. These properties were determined on the basis of ellipsometric measurements. Low-
vacuum formation of layers is associated with a risk of residual gas contamination, so we
performed X-ray photoelectron spectroscopy (XPS) studies to investigate the concentration
of oxygen in the produced films.

2. Materials and Methods

The copper thin layers were evaporated on the polished silicon wafers (Si100) using
the thermal evaporation technique, where the pressure was below 2 × 10−5 mbar [14–16].
Pieces of Cu (99.99%) wire were placed in a molybdenum spiral evaporator. Samples ware
deposited at two deposition rates: 0.5 and 5.0 Å/s. The thicknesses of the copper films were
12, 25, and 35 nm. The deposition rate and thickness were controlled by a QCM—quartz
crystal microbalance (6.0 MHz), which, together with the substrate holder, was 20 cm above
the spiral evaporator.

The surface topography of the obtained coatings was examined using an atomic
force microscope (AFM) Innova from Bruker (Billerica, MA, USA) with standard silicon
tips dedicated for the tapping mode. The surface roughness parameters were calculated
based on the AFM images of 1 µm × 1 µm area using the NanoScope Analysis software
(version 1.40). The average roughness (Ra) and the root mean square roughness (Rq) were
defined as:

Ra =
1
N

N

∑
k=1
|Zk|, (1)

and

Rq =

√√√√√ N
∑

k=1
|Zk|2

N
, (2)

where Zk—the current surface height value, and N—the number of measured points.
The powder X-ray diffraction (XRD) patterns were performed using the Phillips

X’Pert (Malvern Panalytical Ltd., Malvern, UK) system with Cu Kα radiation (wavelength
1.5418 Å) and the X’Celerator Scientific (Malvern Panalytical Ltd., Malvern, UK) detector.
These measurements were made in the range from 2θ = 15 to 90◦.

The chemical composition of the deposited layers was estimated using the X-ray
photoelectron spectroscopy (XPS) technique. The photoelectrons were detected by a
VG-Scienta R3000 (Uppsala, Sweden) spectrometer with energy step set at ∆E = 0.2 eV.
The XPS measurements were performed in an ultra-high vacuum (UHV, base pressure
below 2 × 10−10 mbar) using an Al Kα source (1486.6 eV). The dwelling time was 100 ms,
and the number of scans was 15 iterations for each region. Spectra were analyzed using
CasaXPS software (v. 2.3.16, Casa Software Ltd., Teignmouth, UK).

The thickness, optical constants, and plasmonic properties of the prepared Cu thin
films were investigated by means of the V-VASE device from J.A. Woollam Co., Inc. (Lincoln,
NE, USA). Ellipsometric azimuths (Ψ, ∆) were measured for three angles of incidence
light (65◦, 70◦, and 75◦) in the spectral range 193–2000 nm (0.6–6.5 eV). The analysis of
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ellipsometric data was performed using the WVASE32 software. The complex dielectric
function fully describes electronic response of a material and is given by a formula:

ε̃ = ε1 + iε2, (3)

where ε1 and ε2 are real and imaginary parts of the dielectric function, respectively. If, for a
certain frequency, the real part of the dielectric function (ε1) is less than zero, it is possible
to excite the surface plasmon resonance, the quality of which will depend on the imaginary
part of the dielectric function (ε2). On the basis of these two parts of the dielectric function,
it is possible to determine the quality factors for the localized surface plasmon (QLSP) and
the surface plasmon polaritons (QSPP). The quality factors are described by the following
formulas [17]:

QLSP = −ε1/ε2, (4)

and

QSPP = ε2
1/ε2. (5)

3. Results and Discussion

The surface topographies of Cu layers with thicknesses of 12, 25, and 35 nm produced
at evaporation rates of 0.5 and 5.0 Å/s are presented in Figures 1 and 2, respectively.
The films produced with a lower evaporation rate are made of grains of larger lateral sizes
than that the layers fabricated with the deposition rate of 5 Å/s. Generally, the largest
size of grains is about 2 and 4 nm for v = 0.5 and 5 Å/s, respectively. For the coatings
obtained at the rate of 0.5 Å/s, the roughness parameters—the average roughness (Rq) and
the root mean square roughness (Ra)—are even twice as high as for the layers obtained at
the deposition rate of 5 Å/s (see Table 1). These parameters also increase with increasing
thickness of the copper films. Generally, the obtained layers are relatively smooth, and
the roughness parameter values are below 1.4 nm. The maximum roughness (Rmax) of Cu
coatings is in the range 12.7 to 14.4 nm and 6.1 to 7.6 nm for v values of 0.5 and 5 Å/s,,
respectively.

Table 1. The average roughness (Rq) and the root mean square roughness (Ra) parameters of the Cu
thin films (for a scan size 1 µm × 1 µm) estimated using AFM.

Sample Rq (nm) Ra (nm) Rmax (nm)

Cu(35) v = 5.0 Å/s 0.93 ± 0.02 0.75 ± 0.02 7.6
Cu(35) v = 0.5 Å/s 1.37 ± 0.04 1.08 ± 0.03 12.7
Cu(25) v = 5.0 Å/s 0.71 ± 0.02 0.88 ± 0.01 6.6
Cu(25) v = 0.5 Å/s 1.35 ± 0.02 1.05 ± 0.02 14.4
Cu(12) v = 5.0 Å/s 0.40 ± 0.10 0.30 ± 0.10 6.1
Cu(12) v = 0.5 Å/s 0.90 ± 0.10 0.67 ± 0.05 13.3

The XRD patterns recorded for the 35 nm copper films are presented in Figure 3.
Diffraction peaks related to Cu are observed at 2θ = 43.3◦ (111) and 50.5◦ (200) [18]. Diffrac-
tion peaks for 2θ above 69◦ (400) and 78◦ (331) are associated with the Si substrate [19].
The average sizes of Cu crystallites in the 35 nm layers (<D>) are about 21 and 28 nm for
an evaporation rate of 0.5 and 5.0 Å/s, respectively. The <D> values were calculated by
the Scherrer formula [20]:

< D >=
0.9λ

β cos(2θ)
. (6)

where λ—the X-ray wavelength, and β—the full-width at half-maximum (FWHM) of the
Bragg diffraction peak at angle 2θ.
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(a) (b) (c)

Figure 1. AFM images (1 µm × 1 µm) of the (a) 12 nm, (b) 25 nm, and (c) 35 nm Cu films prepared at the deposition rate
0.5 Å/s.

(a) (b) (c)

Figure 2. AFM images (1 µm × 1 µm) of the (a) 12 nm, (b) 25 nm, and (c) 35 nm Cu films prepared at the deposition rate
5.0 Å/s.

Figure 3. XRD patterns for 35 nm Cu films deposited with rate 0.5 and 5.0 Å/s. All peaks marked
with an ellipse orginate from the silicon substrate.

Figures 4 and 5 present the XPS spectra showing the composition of the 35 nm copper
layers obtained at the rates of 0.5 and 5.0 Å/s, respectively. Measurements were made at
different depths of the film. For this purpose, the coating was sputtered with the ion beam
(Ar+) for 0, 5, 15, 25, and 35 min. In part (a) of Figures 4 and 5, there are spectral fragments
containing two peaks derived from copper. These peaks are around 933.0 eV (2p3/2) and
952.8 eV (2p1/2). After 25 min of ion sputtering, the intensity of the Cu peaks decreased
significantly, while a substrate peak (Si 2s) appeared (around 151 eV; see Figures 4d and 5d),
which indicates that the layers had been removed. Figure 4b,c show carbon and oxygen
regions of the spectrum, respectively. The C 1s peak centered at 285 eV corresponds to
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carbon adsorbed from the atmosphere to the surface when the samples were removed from
the vacuum chamber. As can be seen from the spectrum after 5 min of sputtering, there is
no carbon left in the sample. The situation is similar for oxygen, after 5 min of sputtering
with the ion beam, the oxygen is undetectable. The oxygen (O 1s) peak is in the region of
530–533 eV and has two components. Decomposition of O 1s peak is presented at Figure 6.
The first one (O1, at 531 eV) is the most probably associated with CuO and the other one
Cu2O (O2, at 532.5 eV) may be related to copper hydroxides formed at the surface [21].
For the layer produced with an evaporation rate of 0.5 Å/s, the oxygen peaks are visible
after 25 min of ion sputtering. After this time, the Si peak is also visible; thus, the O 1s
signal can be associated with the native oxide of the silicon substrate. It should be noted
that the oxygen was not found in the inside of the copper film.

Figure 4. XPS spectra for 35 nm Cu layers prepared at the deposition rate 0.5 Å/s. The Si 2s spectra for 0 min and 5 min of
ion sputtering were not recorded.

Figure 5. XPS spectra for thin Cu layers prepared at the deposition rate 5.0 Å/s. The Si 2s spectra for 0 min and 5 min of ion
sputtering were not recorded.
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Figure 6. X-ray photoelectron spectroscopy (XPS) spectra (Cu 2p and O 1s peaks) of the sample deposited at room
temperature (RT) with evaporation rate: (a) 0.5 Å/s and (b) 5.0 Å/s.

The results of spectroscopic ellipsometry (SE) measurements and the optical model of
sample (substrate-Si\SiO2\Cu\ambient, where SiO2 is the native oxide with a thickness
of 2.5 nm) were used to determine the thickness (dSE) and the effective complex dielectric
function (<ε̃>) of the Cu films. The optical constants of Si and SiO2 were taken from
the database of optical constants [22]. An example of the experimental and calculated
ellipsometric data are presented in Figure 7. Based on the Ψ and ∆ azimuths collected in
the measurement, the real and imaginary parts of the dielectric function were determined
(see Figure 8).

We use an effective dielectric function (<ε̃>), due to the fact that our coatings are not
perfect and contain imperfections related to the roughness of the layer and the existence
of voids between the grains. The effective dielectric function of the copper films was
parameterized as in the following formula [22,23]:

< ε̃ >= ε∞ −
(
h̄ωp

)2

E2 − iE(h̄Γ)
+ ∑

k
Lor.(Ak, Ek, γk) + LorPB(A, Etop, γ, Ebot). (7)

In Equation (7), ε∞ is the high-frequency dielectric constant, E is the energy of incident
light, and h̄ωp and Γ represent the unscreened plasma energy and the free-carrier damping,
respectively. Ak,j, Ek,j, and γk,j are the amplitude, energy, and broadening of the kth and
jth absorption band, respectively. The parabolic band model (LorPB) is an oscillator that
converts narrowly broadened Lorentz oscillators with a parabolic JDOS (joint density of
states) function [22]. This oscillator can be used to model the optical properties of noble
metals (Au, Ag, and Cu) and their alloys [24]. The parameters of the effective dielectric
function (<ε̃>) (Equation (7)) were varied to minimize the reduced mean squared error
χ2 [22,23]:

χ2 =
1

M− P ∑
l

(Ψmod
l −Ψexp

l
σΨl

)2

+

(
∆mod

l − ∆exp
l

σ∆l

)2
, (8)

where M—the total number of measured Ψ and ∆ values, and P—the number of fitted
model parameters. The quantities with the superscript mod and exp correspond to the
calculated and measured ellipsometric azimuths, respectively. Quantities σΨl and σ∆l
represent the standard deviations of the experimental data. The χ2 value is less than 1.9 for
all those fits.
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Figure 7. Ψ and ∆ angles measured for three angles of incidence (65◦, 70◦, 75◦) and their model fits
for the Cu (35 nm, v = 5.0 Å/s), solid lines for experimental data, dashed lines are calculated spectra.

Figure 8. (a) Real (<ε1>) and (b) imaginary (<ε2>) parts of the effective dielectric function for the
produced samples.

In the spectra of 200–600 nm, peaks related to electronic transitions are visible.
At 600 nm, the band characteristic for copper is visible, corresponding to the 5d10–6s1

interband transition [25]. In the 800–2000 nm region, a strong increase in <ε2> can be
observed. This feature is related to the Drude term, which is associated with interaction
of the incident light with free carriers. This fact proves the metallic nature of the film
(the film is electrically conductive). In this region, for layers obtained at a rate of 0.5 Å/s,
a large peak related to the granular structure of the film is visible. As the coating thickness
increases, this peak shifts in the spectrum towards shorter wavelengths. This effect is
better seen in Figure 9, which shows the decomposition of <ε2> components (mathematical
functions described particular parts of the <ε2> spectrum). As can be seen for the 12 nm
layer, this peak is centered at 1500 nm and then shifted to about 1200 nm (for the d = 25 nm
layer) and, finally, to about 1000 nm (for the 35 nm film). This shift shows that as the
coating thickness increases, the grain size decreases. The change in film thickness clearly
influences the grain size change, which affects on the effective dielectric function. As was
mentioned earlier, the <ε̃> includes the Drude term. Its parameters (plasma energy—h̄ωp;
free-carrier damping—Γ) are summarized in Table 2. In general, the plasma energies for
the layers made with v = 0.5 Å/s exhibit higher values than those for the films obtained
at evaporation rate of 5.0 Å/s (taking into account the same thicknesses of the Cu layer).
The lowest h̄ωp value of 6.92 eV was achieved for a coating with a thickness of 25 nm
(v = 0.5 Å/s), whereas the lowest value of plasma energy was obtained for the layer 12 nm
(0.5 Å/s) − 5.18 eV.
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Figure 9. Decomposition of <ε2> (solid lines: (a) Cu(12 nm), (b) Cu(25 nm), and (c) Cu(35 nm)) on the Drude term (dashed
lines) for the Cu films deposited at v = 5.0 Å/s (color line) and v = 0.5 Å/s (black lines) and interband transitions (see
inserts). The doted lines represent additional absorption band.

Based on the Drude parameters, we can calculate the mean relaxation time of con-
duction electrons (τ) and the optical resistivity (ρopt.). Their parameters are given by
Equations [22,23]:

ρopt. =
Γ

ε0ω2
p

, (9)

and
τ = Γ−1, (10)

where ε0 is free-space permittivity. The τ value increases with increases in the thickness of
the layer and the deposition rate. The lowest value of τ is ∼0.8 fs, and the highest is 11.6 fs
for 12 nm (0.5 Å/s) and 35 nm (5.0 Å/s), respectively. The value of optical resistivity (ρopt.)
decreases with the increase in the thickness and the evaporation rate. This parameter is the
lowest for the 35 nm Cu film and is 6.05 and 10.9 µΩcm for the v equal 5.0 and 0.5 Å/s,
respectively. The highest ρopt. value of 226 µΩcm is for the 12 nm (0.5 Å/s) layer, but this
result is subject to a relatively high mismatch error.

Table 2. The thickness of Cu layer (dSE) determined from spectroscopic ellipsometry measurements,
the plasma energy (h̄ωp), the free-carrier damping (h̄Γ), the mean relaxation time of conduction
electrons (τ) and the optical resistivity (ρopt.).

Sample dSE (nm) h̄ωp (eV) h̄Γ (eV) τ (fs) ρopt. (µΩcm)

Cu(35) v = 5.0 Å/s 49.9 ± 0.2 8.34 ± 0.01 0.0567 ± 0.0009 11.60 ± 0.20 6.1 ± 0.1
Cu(35) v = 0.5 Å/s 47.3 ± 0.1 6.32 ± 0.02 0.0586 ± 0.0024 11.20 ± 0.50 10.9 ± 0.5
Cu(25) v = 5.0 Å/s 31.9 ± 0.2 8.42 ± 0.01 0.0684 ± 0.0010 9.63 ± 0.15 7.2 ± 0.1
Cu(25) v = 0.5 Å/s 37.3 ± 0.5 6.92 ± 0.02 0.0835 ± 0.0016 7.88 ± 0.15 13.0 ± 0.3
Cu(12) v = 5.0 Å/s 15.1 ± 0.1 8.13 ± 0.02 0.0758 ± 0.0007 8.68 ± 0.08 8.5 ± 0.1
Cu(12) v = 0.5 Å/s 18.1 ± 0.1 5.18 ± 0.28 0.8160 ± 0.0970 0.81 ± 0.10 226 ± 36

Using Equations (4) and (5) and determined <ε1> and <ε2>, we calculated the quality
factors (Q) for localized surface plasmon (LSP) and surface plasmon polaritons (SPP),
which are shown in Figure 10. For layers prepared with v = 5.0 Å/s the maximum of QLSP,
in the investigated wavelength range, is at about 1000 nm. The maximum QLSP values are
11.4, 13.4, and 16.1 for coatings with thickness 12, 25, and 35 nm, respectively, whereas
the maximum QSPP is at 2000 nm and is 1265, 1531, and 1823 for films with thickness
12, 25, and 35 nm, respectively, while the films obtained at lower deposition rate have
much lower quality factors. It means that the surface plasmons in these layers are more
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strongly suppressed. This may be because these films are more rougher. The QLSP and
QSPP values for selected incident wavelengths are presented in Table 3. It is clearly visible
that values of quality factors are several times (about one order of magnitude) lower for
coatings produced with an evaporation rate of 0.5 Å/s than for layers produced with a rate
of 5.0 Å/s.

Figure 10. Comparison of calculated quality factor for (a) local surface plasmon and (b) surface plasmon polariton of
produced samples.

Low values of the Ra and Rq parameters (see Table 1) and the layer’s thickness
determined from ellipsometric measurements (dSE; see Table 2), which are several dozen
percentage points higher than the thickness determined from QCM (d), indicating the
nanoporous structure of the films. The presence of nanopores in the coatings may also
reduce the value of the quality factors QLSP and QSPP. Additionally, the plasmonic effects
can be attenuated by the oxidated surface of the films (oxygen was not detected inside the
layer).

Table 3. The values of the quality factor for LSP and SPP at certain incident wavelengths 650, 1000,
and 1550 nm.

Sample QLSP QSPP

650 nm 1000 nm 1550 nm 650 nm 1000 nm 1550 nm

Cu(35) v = 5.0 Å/s 12.6 16.1 13.0 231.7 627.6 1330.9
Cu(35) v = 0.5 Å/s 1.7 1.6 4.2 19.6 30.3 202.1
Cu(25) v = 5.0 Å/s 10.8 13.4 10.8 200.1 531.9 1119.8
Cu(25) v = 0.5 Å/s 2.5 2.1 3.3 37.2 57.2 199.4
Cu(12) v = 5.0 Å/s 8.1 11.4 9.6 129.5 407.5 915.0
Cu(12) v = 0.5 Å/s 0.9 0.7 0.1 8.4 11.5 0.9

4. Conclusions

The investigated copper layers with thicknesses of 12, 25, and 35 nm were thermally
deposited on silicon substrate under very low vacuum. In fact, despite the low vacuum
during the deposition of the films, the films are not contaminated inside with oxygen
(residual gases), as shown by XPS measurements. Oxygen exists only at the surface of
the layer, and this is the result of oxidation and hydro-oxidation of the sample surface
after they are removed from the vacuum chamber. More oxygen was adsorbed on coatings
evaporated at a lower deposition rate (v = 0.5 Å/s). This is related to the more extended
surface, as indicated by AFM images and roughness parameters. The dielectric functions
of the Cu layers obtained at v = 0.5 Å/s show the existence of a strong absorption peak in
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them related to the granular structure of the film (the size effect), which shifts to shorter
wavelengths with increasing coating thickness (this was to be expected). Electrons are
more efficiently scattered in these layers, which causes the films to have a higher optical
resistance than layers produced at higher evaporation rates. The scattering phenomenon
also adversely affects the plasmonic properties of the coatings. The values of QLSP and
QSPP parameters are much higher for the films fabricated with the deposition rate of
5.0 Å/s, so they are the ones that show better plasmonic properties. In this manuscript, we
showed that the thickness of a layer and the deposition rate are crucial parameters which
affect properties of the copper produced films. Moreover, we have explained the influence
of growing conditions on microstructure and optical properties of the metallic layers and
thus on their plasmonic properties.
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