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A B S T R A C T   

Background and purpose: Convolutional neural networks (CNNs) are increasingly used to automate segmentation 
for radiotherapy planning, where accurate segmentation of organs-at-risk (OARs) is crucial. Training CNNs often 
requires large amounts of data. However, large, high quality datasets are scarce. The aim of this study was to 
develop a CNN capable of accurate head and neck (HN) 3D auto-segmentation of planning CT scans using a small 
training dataset (34 CTs). 
Materials and Method: Elements of our custom CNN architecture were varied to optimise segmentation perfor-
mance. We tested and evaluated the impact of: using multiple contrast channels for the CT scan input at specific 
soft tissue and bony anatomy windows, resize vs. transpose convolutions, and loss functions based on overlap 
metrics and cross-entropy in different combinations. Model segmentation performance was compared with the 
inter-observer deviation of two doctors’ gold standard segmentations using the 95th percentile Hausdorff dis-
tance and mean distance-to-agreement (mDTA). The best performing configuration was further validated on a 
popular public dataset to compare with state-of-the-art (SOTA) auto-segmentation methods. 
Results: Our best performing CNN configuration was competitive with current SOTA methods when evaluated on 
the public dataset with mDTA of (0.81 ± 0.31) mm for the brainstem, (0.20 ± 0.08) mm for the mandible, 
(0.77 ± 0.14) mm for the left parotid and (0.81 ± 0.28) mm for the right parotid. 
Conclusions: Through careful tuning and customisation we trained a 3D CNN with a small dataset to produce 
segmentations of HN OARs with an accuracy that is comparable with inter-clinician deviations. Our proposed 
model performed competitively with current SOTA methods.   

1. Introduction 

The 3D segmentation of organs-at-risk (OARs) is a crucial step in the 
radiotherapy pathway. However, segmentation or delineation by clini-
cians is slow, expensive and prone to inter- and intra-observer variability 
even among experienced radiation oncologists [1]. Fully convolutional 
neural networks (CNNs) are now the state-of-the-art for automated 
medical image segmentation [2]. Recently, a considerable number of 
methods are have been proposed and implemented to perform seg-
mentation faster and with higher consistency [3–7]. Cutting-edge 
radiotherapy workflows use auto-segmentation models to suggest con-
tours which experienced radiographers will confirm and edit if required 
[8]. 

Supervised training of CNN models traditionally requires large 

amounts of high quality annotated data (often >1000s of examples) [9]. 
In this application full volumetric segmentation by radiographers, 
ideally with the same level of expertise and following the same guide-
lines, is needed for every image. As a result, high-quality sets of training 
data for auto-segmentation are often limited in size. Large institutions 
and commercial systems regularly use datasets containing 100s of im-
ages [10,11]. However, very few researchers have access to such large 
datasets. For 2D tasks, transfer learning from large, pre-trained back-
bone models, such as ResNet, is often used to improve performance 
when limited training data is available. Analogous backbone models are 
not yet readily accessible in 3D. 

This study aimed to develop a custom 3D CNN model capable of 
accurate auto-segmentation of head and neck (HN) OARs using a small, 
publicly available dataset (34 CTs) for training. The design space of CNN 
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models is extensive and in addition to the volume of training data 
available, choices in the CNN architecture and training protocols can 
heavily impact model performance. We selected three key design ele-
ments to optimise in the development of our custom CNN. 

2. Materials and methods 

2.1. CNN model architecture 

Our base segmentation CNN was founded on the 3D UNet design 
[12]. This consists of an encoding pathway of repeating zero-padded 
3x3x3 convolutional and pooling layers, followed by a decoding 
pathway of similar convolutions and up-sampling (Fig. 1). Residual skip 
connections were added to smooth the training process. These residual 
connections were implemented with 1x1x1 convolutional layers to 
match the channel number on either side of the convolutional block 
[13]. Multi-level deep supervision was introduced at each level in the 
decoding portion of the network to accelerate convergence. The deep 
supervision connections contain bottleneck 1x1x1 convolutions 
reducing the number of model parameters and enabling training on a 
single graphics processing unit (GPU). 

2.2. Multiple input channels with specific contrast settings 

Generally, images are pre-processed before being used as input for a 
CNN. Routine pre-processing consists of normalising images to have μ =

0 and σ = 1 or mapping the image onto the range [0,1]. 
An advantage of working with computed tomography (CT) scans is 

that voxel intensities are calibrated to Hounsfield units (HU), a scale of 

tissue density with fixed reference values at air (-1024 HU) and water (0 
HU). Clinicians use windowing or grey-level mapping when visualising 
CT images to enhance the contrast of different tissues and highlight 
particular structures, for example, narrow windows are used for soft 
tissues with similar attenuation and wide windows for visualising bone. 
Image brightness is adjusted with the window level (L) and contrast is 
adjusted with the window width (W). 

L and W define a ramp function that is used to map all intensities in a 
given image as shown in Fig. 2. Our proposed approach used three input 
channels, normalised with distinct contrast settings. The chosen W and L 
contrast settings are used by radiologists to specifically view soft tissue, 
bony anatomy and brain tissue [14]. The three distinctly contrasted CT 
volumes were concatenated along the “channels” axis and fed through 
the CNN simultaneously. This approach is analogous to separate RGB 
channels in 2D natural images. 

We compared our proposed method with a comparison baseline that 
used a single input channel where the CT image is normalised with a full- 
width window. Practically this involved setting L = 488 and W = 3024, 
standardising the entire intensity range of the image onto the range [0,
1]. 

2.3. Resize convolutions 

Transpose convolutions are frequently used to mimic the inverse 
convolution operation, increasing an image’s spatial dimensions by 
dilating the input [15]. However, transpose convolutions can produce 
checkerboard artefacts in CNN-generated images [16]. Resize convolu-
tions (up-sampling followed by a standard convolutional layer) have 
been proposed as a drop-in replacement to remedy such artefacts. We 

Fig. 1. The CNN architecture used in this study. The base model used was a 3D Res-UNet with deep supervision. In this figure we highlight the three modifications 
that form the presented experiments. We compared using multiple contrast settings for the model input (1), resize or transpose convolutions in the decoder portion 
(2) and three different loss functions (3). When using transpose convolutions (orange), we did not perform tri-linear up-sampling. 
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compare model configurations using traditional transpose and resize 
convolutions in the decoder portion of the segmentation CNN. In this 
work, 3D resize convolutions were implemented using tri-linear up- 
sampling prior to a zero-padded 3x3x3 convolutional layer. 

The increase in CNN model size was negligible when using multiple 
input channels (4, 896, 693→4,897,621 parameters). Resize convolu-
tions use 3x3x3 kernels, which added many more parameters when 
compared to transpose convolutions which use 2x2x2 kernels (4, 896,
693→6, 530,997 parameters). Model configurations using three input 
channels and resize convolutions contained 6, 531,925 parameters. 

2.4. Loss functions 

We performed experiments with three loss functions: a simple 
overlap metric; a linear combination of an overlap metric and cross- 
entropy; and a similar combination with added non-linearities. 

In segmentation tasks, overlap loss metrics have gained popularity 
due to their easy implementation and quick convergence. The first 
metric we evaluated was the multi-class weighted Soft Dice (wSD) loss 
function which is based on the Dice similarity coefficient (DSC). The 
wSD loss is given by 

LwSD = wl
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where V is the CT volume and l is the OAR label. In 3D volumes there is 
often a significant class imbalance between background and labelled 
voxels which can be several orders of magnitude, especially for small 
OARs. OAR-specific weights, wl, are often added to address class- 
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with α = 1/3. 
Cross-entropy (XE) is a popular loss function that evaluates target 

and prediction similarity with log-probabilities. The second metric 
implemented was composed of a linear combination of wSD and 
weighted XE (wSD + XE). 

Wong et al. proposed an “Exponential Logarithmic Loss” function 
(ExpLogLoss) for segmentation of objects with high unbalanced object 
sizes. This loss function was originally designed for segmenting 3D brain 
MR images and is formed of a sum of logarithmic SD and weighted XE. 
We evaluated the impact of using an ExpLogLoss function with the 
suggested settings outlined in [17]. The ExpLogLoss function was 
calculated as 

LELL = E[( − ln(Dicel)
0.3
] +E[wl(− ln(pl(x)))0.3

] (3)  

where Dicel was the Dice similarity coefficient for OAR l, -ln(pl(x)) was 
the negative log likelihood loss and α = 0.5 for wl. 

2.5. Implementation details 

All our models were implemented in PyTorch 1.6.0. All network 
training was performed on a 16 GB NVidia Tesla V100 GPU. Individual 
model training took ∼5hrs. Segmentation inference took <1s per 3D CT 
image. 

Extensive data augmentation was used to improve the robustness of 
the model. This was essential to prevent over-fitting when using a small 
training dataset. Throughout training the original CT images and gold 
standard segmentation masks were transformed with random sequences 

Fig. 2. a) The windowing ramp function to map CT image intensities. b) Contrast settings for the full-width window baseline approach. c-e) Window width and level 
contrast settings selected for our multiple input channels approach. 
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of augmentations. The 3D augmentation operations include: lateral 
mirroring (with probability, p = 0.5); shifting of ±4 voxels maximum in 
each direction (p = 1,±4 mm in-plane & ±10 mm axially); rotations 
between ±10◦ to imitate cervical flexion, extension and rotation (p =

0.75); and volumetric scaling between 90–110% (p = 0.5). All aug-
mentations were implemented using the numpy and scipy libraries. 

The Adam optimiser was used with an initial learning rate of 10− 2, 
which was reduced by a factor of 10 each time the validation loss pla-
teaued for 100 epochs. Models were allowed to train for up to 1000 
epochs, with early stopping implemented if the validation loss failed to 
improve for 250 epochs. Due to the size of the 3D CNN and input CT 
volumes, the batch size was restricted to one. However, gradient accu-
mulation was used to delay model parameter updates, which simulated a 
batch size of four. 

2.6. Data and experimental setups 

For model development we used a publicly-available open dataset of 
34 CT images (https://github.com/deepmind/tcia-ct-scan-dataset) 
[11]. Each of the 34 HN CTs, with voxel resolution of 1x1x2.5 mm, have 
OAR delineations from two doctors. One set of delineations was treated 
as the gold standard and used for training. The CNN model was trained 
for 3D segmentation of the mandible, brainstem, parotid glands and the 
cervical section of the spinal cord. We performed experiments to assess 
every configuration of the three loss functions, multiple- vs. single- 
channel contrast input and resize vs. transpose convolutions. Before 
segmentation the CTs were automatically cropped to anatomically 
consistent sub-volumes with the dimensions of 200x200x56 voxels using 
in–house software [18]. 

A 5-fold cross-validation was performed for each model configura-
tion [19]. In each fold, a CNN model was trained from scratch using 24 
training images and 3 validation images. In such a cross-validation, 
training data is used to adjust model parameters, whereas the valida-
tion data informs adjustments to the learning rate and when to terminate 
the training process. Sets of 7 testing images were held out and used to 
evaluate the final segmentation performance of the fold. 

2.7. Segmentation performance metrics 

Model segmentation performance was compared to the measured 
deviation between the two doctors, using both the 95th percentile 
Hausdorff distance (HD95) and mean distance-to-agreement (mDTA). A 
Wilcoxon signed-rank test of the second clinician and CNN HD95 sam-
ples was performed for each OAR with the null hypothesis that the 
differences of the medians are zero. 

Overlap metrics such as DSC and the Jaccard index are often reported 
for semantic segmentations works. However, such metrics are heavily 
biased towards structure volume, insensitive to fine details as bulk 
overlap can hide clinically relevant differences between structure 
boundaries [3,20]. In radiotherapy, small deviations in the borders of 
segmentations can have a potentially serious impact, e.g. increasing the 
risk of side effects for the patient through unplanned irradiation of an 
OAR. 

As such, distance metrics, such as the mDTA and HD95 [21], are 
preferred [22] and reported in this paper. To calculate these metrics, 
distance transform maps were created for the reference segmentation 
and sampled on the voxels on the boundary of the evaluated segmen-
tations. We evaluated these distances symmetrically, i.e. using distance 
maps from the golden standard and sampling on the boundary voxels of 
the predicted segmentation and vice versa. These distances were then 
summarised by their mean (mDTA) and by their 95th percentile 
maximum distance (HD95). mDTA serves to assess the overall results 
and HD95 the worst matching region. 

2.8. External validation 

Our optimal model configuration was further validated on the public 
MICCAI Head and Neck Auto Segmentation Challenge 2015 dataset 
(version 1.4.1) [23]. This dataset (MICCAI’15 set) contains 48 patients 
which were originally divided into; 25 for training, 8 for optional 
additional training, 10 for offsite testing and 5 for onsite testing. We 
retrained our best configured model using the original set of 25 for 
training, the 5 onsite testing images for validation and the 10 offsite 
testing images for testing. The 8 samples in the original “optional 
training” set do not have all OARs delineated so were not included. 
Unfortunately, this dataset does not contain spinal cord delineations. 

Our proposed model’s results on the MICCAI’15 set were compared 
to the state-of-the-art (SOTA) results published on the same dataset by 
Huang et al. [4], Zhang et al. [5], Gao et al. [6], Gou et al. [7] and 
Kawahara et al. [27]. Each comparison method published either the 
HD95, the average surface distance (ASD), equivalent to mDTA, or 
neither of these. However, all five studies published DSC results, so we 
additionally calculated DSC results for our model on the MICCAI’15 set 
for comparison. 

3. Results 

3.1. Model development 

Descriptive results of the HD95 and mDTA metrics for every model 
configuration are shown in Table 1. 

All models had similar HD95 performance on the spinal cord with the 
results consistently reflecting the CT slice thickness (2.5 mm). This 
suggests most models made errors in the spinal cord length by a single 
slice. Otherwise, across all OARs and both metrics, our consistently top- 
performing models were trained with the ExpLogLoss function. 

To more closely examine models trained with the ExpLogLoss func-
tion, we compared the mDTA values for all such model configurations 
using box-plots in Fig. 3. The best performing model configuration used 
multiple input channels, transpose convolutions and was trained using 
the ExpLogLoss function. This configuration produced parotid gland, 
spinal cord and mandible segmentations with a similar level of accuracy 
to inter-clinician deviation. The only significant difference was found for 
the brainstem (p = 0.00008, Wilcoxon signed-rank test). However, the 
segmentation performance in the brainstem was still good, with a me-
dian HD95 of (3.37 ± 1.50)mm and median mDTA of (0.95 ± 0.37) mm. 

Model configurations with multiple input contrast channels consis-
tently outperformed the single input channel counterparts for segmen-
tation performance in the soft tissue organs (brainstem, parotid glands 
and spinal cord). The segmentation performance was equivalent in the 
mandible regardless of input type. 

When training with wSD and the wSD + XE combination loss func-
tions, the transpose and resize convolutions performed very similarly. 
However, when training with the ExpLogLoss function, the transpose 
convolutions performed marginally better. 

3.2. External validation 

Our best-performing model configuration (three-channel input, 
transpose convolutions and ExpLogLoss function) was then re-trained 
and evaluated on the MICCAI’15 set. In Table 2 the HD95, mDTA and 
DSC metric results for our proposed method are presented. 

In Fig. 4 we illustrate example segmentations produced by our pro-
posed method. Fig. 4a and 4b show 2D axial and sagittal slices of a 
patient from our original dataset. Fig. 4c and 4d are examples of a pa-
tient from the MICCAI’15 set used for external validation. 

4. Discussion 

CNNs, which are now being used for auto-segmentation in 
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radiotherapy planning, typically require large datasets to train effec-
tively. We developed a CNN model capable of accurate HN CT seg-
mentation when trained on a small dataset. This was achieved through 
careful tuning of a customised 3D CNN. Varying particular elements of 
our model provided insight into what impacts the performance of CNN 
auto-segmentation methods, in particular UNet-based architectures. 

Using multiple contrast settings for the model input was a key 
strategy to improve segmentation performance for soft-tissue OARs. We 
compared our three pre-selected contrast channels to a baseline input 
using a single full-width window. We did not exhaustively compare each 
contrast window individually or in combinations as this would have 
greatly increased the number of experiments. It is possible that using just 
one of our contrasted channels could be sufficient in some situations (e. 
g. for the mandible). However, identifying these specific situations adds 
considerable complexity to the auto-segmentation task and using all 

three channels adds little computational load in both training and 
inference stages. Additionally, we did not optimise the contrast settings 
used in this study, instead relying on values sourced from literature [14]. 
In 2018, Lee et al. developed a window setting optimisation module that 
implements contrast normalisation as a learnable parameter of the 
model [24]. It would be interesting to discover whether a similar module 
could be deployed successfully within our methodology. 

The loss function is a crucial component of training a deep learning 
model. We found the ExpLogLoss function, originally developed by 
Wong et al. [17], produced higher accuracy segmentation models 
compared to simpler soft Dice and cross-entropy combination functions. 
Lu et al. reported concurring results for a similar loss function when 
applied to 3D stroke lesion segmentation in T1 weighted MR images 
[25]. In future work it would be of interest to evaluate the recently 
introduced “Unified Focal” loss function which performs well for highly 

Table 1 
Median values of the HD95 and meanDTA metrics for every model configuration. Lower values show closer agreement between the CNN predicted segmentations and 
the gold standard. In this table T and R indicate models using either Transpose or Resize convolutions in the decoder portion respectively. These results are summarised 
by the median and standard deviation of the metrics for each OAR across all patients in the five test set folds. The best performing configurations for each OAR are 
highlighted in bold font and are determined with more significant figures than shown. For the HD95, the majority of the spinal cord results reflect the CT image slice 
thickness (2.50 mm). This suggests most models made errors in the spinal cord length by a single slice. Model configurations trained with the ExpLogLoss function 
consistently produce better segmentations.  

Loss Conv. In-ch. Brainstem Mandible L Parotid R Parotid Spinal cord 

HD95 (mm) 
wSD T 1 4.5 ± 1.4 1.1 ± 0.8 5.1 ± 2.8 5.2 ± 2.5 2.5 ± 1.5 

T 3 4.1 ± 1.4 1.1 ± 0.9 4.1 ± 3.9 4.9 ± 3.4 2.5 ± 1.3 
R 1 4.6 ± 1.2 1.1 ± 0.8 6.1 ± 4.0 5.7 ± 2.5 2.6 ± 2.4 
R 3 4.0 ± 1.9 1.2 ± 0.7 5.0 ± 4.2 5.3 ± 3.6 2.5 ± 1.3 

wSD + XE T 1 4.4 ± 1.4 1.0 ± 0.4 5.8 ± 2.9 5.9 ± 3.1 2.5 ± 1.4 
T 3 3.9 ± 1.4 1.2 ± 0.7 4.7 ± 3.4 5.0 ± 3.3 2.7 ± 1.5 
R 1 4.9 ± 1.6 1.1 ± 0.6 5.9 ± 2.4 5.5 ± 2.7 2.5 ± 1.7 
R 3 3.5 ± 1.4 1.3 ± 0.7 4.6 ± 3.2 4.8 ± 3.5 2.5 ± 1.7 

Exp Log Loss T 1 4.1 ± 1.3 1.0 ± 0.4 5.0 ± 2.2 5.8 ± 2.9 2.5 ± 1.5 
T 3 3.4 ± 1.5 1.0 ± 0.6 4.4 ± 3.4 4.8 ± 2.8 2.5 ± 1.4 
R 1 4.1 ± 1.7 1.0 ± 0.6 4.9 ± 3.4 5.1 ± 3.2 2.5 ± 1.3 
R 3 3.4 ± 1.7 1.2 ± 0.8 4.0 ± 3.6 4.6 ± 2.6 2.5 ± 3.6 

Doctor comparison 2.5 ± 0.8 1.0 ± 0.5 3.9 ± 4.9 3.9 ± 2.4 2.0 ± 3.6         

mDTA (mm) 
wSD T 1 1.1 ± 0.4 0.2 ± 0.1 1.1 ± 0.4 1.2 ± 0.5 0.5 ± 0.3 

T 3 1.1 ± 0.3 0.2 ± 0.1 1.0 ± 0.5 1.1 ± 0.6 0.5 ± 0.2 
R 1 1.3 ± 0.4 0.2 ± 0.1 1.3 ± 0.5 1.3 ± 0.5 0.6 ± 0.3 
R 3 1.1 ± 0.4 0.2 ± 0.1 1.2 ± 0.5 1.3 ± 0.6 0.5 ± 0.2 

wSD + XE T 1 1.5 ± 0.4 0.1 ± 0.1 1.4 ± 0.6 1.5 ± 0.6 0.6 ± 0.2 
T 3 1.1 ± 0.4 0.2 ± 0.1 1.1 ± 0.4 1.1 ± 0.6 0.5 ± 0.3 
R 1 1.5 ± 0.4 0.2 ± 0.1 1.5 ± 0.6 1.4 ± 0.6 0.6 ± 0.3 
R 3 1.1 ± 0.4 0.2 ± 0.1 1.1 ± 0.5 1.1 ± 0.7 0.5 ± 0.2 

Exp Log Loss T 1 1.2 ± 0.4 0.1 ± 0.1 1.1 ± 0.4 1.2 ± 0.6 0.5 ± 0.2 
T 3 0.9 ± 0.4 0.1 ± 0.1 1.0 ± 0.5 0.9 ± 0.5 0.5 ± 0.2 
R 1 1.2 ± 0.4 0.1 ± 0.1 1.2 ± 0.6 1.2 ± 0.7 0.6 ± 0.2 
R 3 1.0 ± 0.5 0.1 ± 0.1 0.9 ± 0.4 1.0 ± 0.5 0.5 ± 0.6 

Doctor comparison 0.6 ± 0.2 0.1 ± 0.1 0.8 ± 0.4 0.8 ± 0.3 0.4 ± 0.2  

Fig. 3. Boxplots comparing the mDTA for the four 
model configurations trained using the best perform-
ing loss function, ExpLogLoss, and the deviation be-
tween doctors for reference (blue boxes). For this 
figure, lower values indicate better segmentations. 
Configurations using 3-channel input (3 R&T) 
outperform the single-channel counterparts (1 R&T) 
in all soft tissue OARs. Models with traditional 
transpose convolutions (T) produce marginally better 
segmentations, with the best-performing model high-
lighted in green.   
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imbalanced class segmentation [26]. 
Unexpectedly, the checkerboard artefacts from transpose convolu-

tions, described in Section 2.3, did not noticeably degrade segmentation 
performance. Resize convolutions have become fairly prevalent among 
published methods to avoid this issue. However, our proposed method 
produced better segmentations when using transpose convolutions. 
Additionally, models with transpose convolutions trained ∼15% quicker 
as a result of containing ∼1.6 million fewer parameters. 

Once the development phase was complete, our best model config-

uration was evaluated on a public dataset which has been used as a 
benchmark for several SOTA methods. The results published by Huang 
et al. [4], Zhang et al. [5], Gao et al. [6] and Gou et al. [7] are shown in 
Table 2 for comparison. From these comparison results on the MIC-
CAI’15 set, we can see that our proposed model performed competitively 
with the SOTA models. The model of Gao et al. performs very well in the 
HD95 metric and was best for the brainstem, left and right parotid 
glands. Our method was best in the HD95 metric for the mandible. In the 
ASD/ mDTA metric our model performs best for all of the brainstem 
(0.81 ± 0.31mm), mandible (0.20 ± 0.08mm), left (0.77 ± 0.14mm) 
and right parotid glands (0.81 ± 0.28mm). The methods of Zhang et al. 
and Gao et al. share honours for the DSC score results, however, all five 
approaches perform closely. The external validation additionally 
confirmed that our model was more widely applicable than just the 
original model development dataset. Amjad et al. recently proposed a 
custom HN auto-segmentation CNN with a similar Res-UNet3D archi-
tecture to ours [28]. However, this model was trained with the MIC-
CAI’15 dataset and 24 additional CT scans so we could not include their 
results in Table 2. 

Our method has been specifically developed to leverage limited data, 
allowing for custom models to be trained on small datasets to segment 
different OARs or according to an updated protocol. Protocol-specific 
models can then be deployed in applications such as retrospective 
modelling studies or clinical trials to improve consistency. A natural 
extension for this study would be to further evaluate how model per-
formance changes as the size of the training set changes. Siciarz et al. 
recently explored this question, showing segmentation performance to 
degrade as the number of training examples decreased [29]. However 
the fewest number of training samples considered by Siciarz et al. was 
still almost twice the size of the dataset used in this study. 

In this study, we showed that through careful tuning and custom-
isation a 3D CNN can be trained with a small dataset to segment the 

Table 2 
HD95, ASD/mDTA and DSC comparison results on the MICCAI’15 set. Bold font 
indicates the best performing model. Dashes indicate that results for the OAR are 
not reported. *Kawahara et al. reported a single DSC for the parotids.  

OAR Brainstem Mandible Left Parotid Right 
Parotid 

HD95 (mm)  
Gao et al. [6] 2.32 ±

0.70 
1.08 ± 0.45 1.81 ±

0.43 
2.43 ± 2.00 

Gou et al. [7] 2.98 ± 0.61 1.40 ± 0.02 3.48 ± 1.28 3.15 ± 0.67 
Ours 2.83 ± 1.05 1.00 ±

0.73 
2.87 ± 0.89 3.55 ± 1.35 

ASD/ mDTA (mm)  
Huang et al. [4] 1.28 ± 0.45 0.56 ± 0.27 0.86 ± 0.24 1.02 ± 0.38 
Gou et al. [7] 1.19 ± 0.16 0.47 ± 0.11 1.21 ± 0.34 1.14 ± 0.22 

Ours 0.81 ±
0.31 

0.20 ±
0.08 

0.77 ±
0.14 

0.81 ± 0.28 

DSC  
Huang et al. [4] 87.9 ± 2.4 91.6 ± 2.1 88.4 ± 1.5 87.8 ± 2.0 
Zhang et al. [5] 91 ± 2 95 ± 3 87 ± 3 87 ± 7 
Gao et al. [6] 88.2 ± 2.5 94.7 ± 1.1 89.8 ± 1.6 88.1 ± 4.2 
Gou et al. [7] 88 ± 2 94 ± 1 87 ± 3 86 ± 5 

Kawahara et al.  
[27] 

88 - 81* 81* 

Ours 88.3 ± 3.6 93.4 ± 1.9 88.6 ± 1.6 87.2 ± 3.1  

Fig. 4. Example segmentations produced by our CNN model (green). In the top row, a) and b), we show 2D axial and sagittal views of a patient from the dataset we 
used for model development. This dataset contained segmentations produced by two doctors which are shown and red and blue. On the bottom row, c) and d), we 
show axial and sagittal 2D slices of a patient from the MICCAI’15 set. The gold-standard segmentations for this set are shown in purple. 
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mandible, parotid glands and spinal cord with an accuracy that is similar 
to the magnitude of inter-clinician deviation. We evaluated our pro-
posed model on a popular public dataset and produced high-quality 
segmentation results that were competitive with current state-of-the- 
art methods in multiple metrics. 
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