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Simple Summary: Immune checkpoints blockade has emerged as an effective approach to prevent
immune escape of tumor cells, and constitutes a powerful anti-cancer therapeutic strategy. Reg-
ulation of the expression of genes encoding immune checkpoint inhibitors has thus become an
increasingly important field of study. Beyond transcription, gene expression is regulated at several
post-transcriptional levels including pre-mRNA 3′-end processing and mRNA translation. More
specifically, the eIF4F translation initiation complex represents an important hub for oncogenic sig-
naling in the etiology of different cancers. The eIF4A RNA helicase component of the eIF4F can be
inhibited by the widely characterized small molecule inhibitor silvestrol. Here, we evaluated the
effect of eIF4A inhibition with silvestrol on the translation of alternatively polyadenylated mRNAs
in melanoma cell lines and activated T cells. We show that silvestrol can selectively inhibit the
translation of alternatively polyadenylated isoforms of genes encoding key immune-related proteins.

Abstract: Targeting the translation initiation complex eIF4F, which binds the 5′ cap of mRNAs, is a
promising anti-cancer approach. Silvestrol, a small molecule inhibitor of eIF4A, the RNA helicase
component of eIF4F, inhibits the translation of the mRNA encoding the signal transducer and activator
of transcription 1 (STAT1) transcription factor, which, in turn, reduces the transcription of the gene
encoding one of the major immune checkpoint proteins, i.e., programmed death ligand-1 (PD-L1)
in melanoma cells. A large proportion of human genes produce multiple mRNAs differing in their
3′-ends through the use of alternative polyadenylation (APA) sites, which, when located in alternative
last exons, can generate protein isoforms, as in the STAT1 gene. Here, we provide evidence that the
STAT1α, but not STAT1β protein isoform generated by APA, is required for silvestrol-dependent
inhibition of PD-L1 expression in interferon-γ-treated melanoma cells. Using polysome profiling
in activated T cells we find that, beyond STAT1, eIF4A inhibition downregulates the translation of
some important immune-related mRNAs, such as the ones encoding TIM-3, LAG-3, IDO1, CD27 or
CD137, but with little effect on the ones for BTLA and ADAR-1 and no effect on the ones encoding
CTLA-4, PD-1 and CD40-L. We next apply RT-qPCR and 3′-seq (RNA-seq focused on mRNA 3′ ends)
on polysomal RNAs to analyze in a high throughput manner the effect of eIF4A inhibition on the
translation of APA isoforms. We identify about 150 genes, including TIM-3, LAG-3, AHNAK and
SEMA4D, for which silvestrol differentially inhibits the translation of APA isoforms in T cells. It
is therefore crucial to consider 3′-end mRNA heterogeneity in the understanding of the anti-tumor
activities of eIF4A inhibitors.
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1. Introduction

Immune checkpoint blockade is one of the most effective approaches to activate
therapeutic antitumor immunity as tumors often use immune-checkpoint pathways as
a major underlying mechanism of immune resistance. This involves immune receptors
that negatively regulate antitumor adaptive T cell (T lymphocyte) responses, such as
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein
1 (PD-1) or its ligand PD-L1. Antibodies targeting these receptors are now widely used to
treat a broad range of cancers. Although these new immunotherapies represent a huge
improvement in the field of cancer therapies, early or late resistance emerge in the majority
of the patients [1,2]. There is thus a high medical need to better understand the mechanisms
underlying the control of immune checkpoint gene expression that is so far essentially
described at the transcription level [3–6].

Following their transcription, most eukaryotic precursor messenger RNAs (pre-mRNAs)
undergo a number of nuclear processing events including (i) a 5′ end capping reaction,
(ii) splicing that is the removal of introns and subsequent ligation of exons, and (iii) a 3′-end
RNA cleavage followed by addition of a polyadenylated tail at a polyadenylation site (pA
site) on the pre-mRNA. The 3′-polyadenylated tail of mRNAs is necessary for their trans-
port to the cytoplasm, their stability and translation [7–10]. Alternative polyadenylation
(APA), which occurs in about two-thirds of human genes, is the alternative usage of distinct
pA sites in genes [11]. APA can lead to the production of mRNAs with different lengths of
their 3′ untranslated region (3′UTR) or with different protein coding capacities. In the latter
case (called intronic polyadenylation; IPA), an alternative pA site located upstream of the
last exon of the gene is used, leading to an alternative last exon (which may or may not be
annotated), and the resulting alternatively polyadenylated mRNA isoform differs not only
in its 3′UTR nature but also in its carboxy-terminal coding region [12–14].

Translational control has emerged as an important regulatory mechanism associated
with many hallmarks of cancer. The eIF4F complex, composed of the 5′-cap-binding
protein eIF4E, the RNA helicase eIF4A and the scaffolding protein eIF4G, is one of the
most extensively studied RNA binding complexes involved in translational control in
cancer [15–18]. eIF4F promotes the recruitment of the 40S ribosomal subunit to the cap.
This recruitment is dependent on several features of the mRNA, including the level of RNA
secondary structure in the 5′UTR, which is controlled by the unwinding activity of the
eIF4A RNA helicase. Thus, specific mRNAs are more dependent on the eIF4F complex and
eIF4A activity [19]. Among numerous small-molecule inhibitors of this complex reported
to exert antitumor effects, silvestrol, a natural small-molecule selective inhibitor of eIF4A,
is one of the most extensively studied [20–22]. eIF4A targeting by silvestrol selectively
inhibits the translation of important oncogenic mRNAs containing a high level of secondary
structure in their 5′UTR, hence exerting antitumoral effects [15,20,23–26].

We recently showed that, in interferon-γ-treated melanoma cells, translation of the
signal transducer and activator of transcription 1 (STAT1) transcription factor is upregulated
in an eIF4F-dependent manner, leading to transcriptional upregulation of PD-L1 [16]. In
fact, the STAT1 gene has two alternative pA sites that generate a short transcript encoding
the STAT1β protein and a long transcript encoding the most studied STAT1α protein.
More generally, many genes were recently described to have alternatively polyadenylated
mRNA variants in human immune cells [27]. With the exception of a few genes [28–30], the
differential functions of protein isoforms encoded by alternatively polyadenylated mRNAs
are poorly documented. Here, we evaluated the effect of inhibiting eIF4A with silvestrol
on the translation of alternatively polyadenylated mRNA isoforms in both melanoma and
T cells.
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2. Materials and Methods
2.1. Cell Culture and siRNA Transfections

A375, SK-MEl-2, WM793, MCF-7, and MDA-MB-231 cells were grown in DMEM (Eu-
robio) containing 10% FBS (Pan Biotech, AidenBach, Germany) and L-Glutamine (Eurobio
Scientific, Les Ulis, France) at 37 ◦C and 5% CO2. siRNA reverse transfections were carried
out in 10 cm tissue culture dishes with Lipofectamine RNAiMAX (Thermo Scientific, Les
Ulis, France). The siRNAs (Dharmacon, Cambridge, UK) were used at a final concentration
of 30 nM; STAT1 α: TGTTATAGGTTGTTGGATA and STAT1 β: CAGAAGAGTGACAT-
GTTTA) as per the manufacturer’s instructions in OptiMEM reduced serum media (Thermo
Scientific). Isolated T cells from PBMCs (whole blood of healthy donors acquired from
Établissement Français du Sang, Île de France) and Jurkat cells were cultured in RPMI
(Eurobio Scientific, Les Ulis, France) supplemented with 10% (v/v) fetal bovine serum
(PAN Biotech, Aidenbach, Germany), 2 mM L-glutamine (Eurobio Scientific, Les Ulis,
France) and maintained at 37 ◦C in 5% CO2. They were stimulated with ImmunoCultTM
Human CD3/CD28/CD2 T Cell Activator (StemCell #10990) and IL-2 (Peprotech 200-02)
for 72 h. For protein analyses: 24 h after transfection, cells were treated with 10 nM or
30 nM silvestrol (MedChemExpress HY-13251, Sollentuna, Sweden). In addition, 48 h after
transfection, cells were washed with PBS harvested on ice. For polysome experiments:
Treatment with silvestrol was performed at a final concentration of 10 nM for 2 h.

2.2. Flow Cytometry Analysis

Cells were harvested by scraping on ice, treated with Fc Block (BD Biosciences, Rungis,
France) in PBS/EDTA/BSA, washed and then incubated with the primary antibody human
PD-L1 (Biolegend 329708, Paris, France) for 30 min. They were then incubated with
PBS/EDTA/BSA containing Zombie NIR (live/dead discriminant) and then resuspended
in 500 µL PBS/EDTA/BSA. An LSRII flow cytometer (BD Biosciences) was used for the
acquisition of stained cells and the analysis of acquired data was performed using the
FlowJo software. During acquisition of stained cells, debris (low FSC and SSC) was
excluded and a selection of single cells that were negative for the live/dead discriminant
was done by gating. An isotype negative control was used to eliminate a non-specific
background signal according to the datasheet supplied with each antibody.

2.3. Western Blot

Cells were harvested on ice in PBS and centrifuged at 400× g for 5 min at 4 ◦C. The cell
pellets were resuspended in RIPA Buffer containing phosphatase inhibitors and protease
inhibitors (EDTA-free) (Thermo Scientific, Les Ulis, France). A dosage of the protein content
in the cell lysates was performed using a bicinchoninic acid protein assay kit (Thermo
Scientific, Les Ulis, France). Protein samples were then loaded onto denaturing NuPAGE
gels (Life Technologies, Alfortville, France), resolved and transferred to a 0.45-mm nitro-
cellulose membrane (Bio-Rad, Marnes-la-Coquette, France). Blocking of the membranes
was carried out in a buffer containing TBS, Tween-20 and 5% milk, following which they
were incubated with the appropriate antibodies. Visualization of proteins was carried out
using an ECL system (Bio-Rad). Relative density was calculated for quantitative analysis of
band intensities using the ImageJ software (Java 1.8.0_172, imagej.nih.gov accessed on 19
January 2022, Bethesda, MD, USA).

The following primary antibodies were used: STAT1 (Cell Signaling Technology 14994)
and SEMA4D (Thermofisher Scientific H00010507-M01).

2.4. Polysomal Fractionation and Profiling

A fractionation of subpolysomal and polysomal ribosome fractions was performed
by sucrose density gradient centrifugation. The cells in culture were collected following a
treatment with 100 µg/mL cycloheximide at 37 ◦C. They were harvested by scraping on
ice in cold PBS containing 100 µg/mL cycloheximide, centrifuged at 400× g for 5 min and
then resuspended in 400 µL of hypotonic buffer (5 mM Tris, pH 7.5, 1.5 mM KCl, 2.5 mM
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MgCl2, complete protease and phosphatase inhibitors) containing 0.5% Triton X-100, 0.5%
sodium deoxycholate, 2 mM DTT, 400 U/mL RNaseOUT and 100 µg/mL cycloheximide.
The lysates were loaded onto a 5–50% sucrose density gradient and centrifuged in an SW41
rotor at 38,000 rpm for 2 h at 4 ◦C. The polysomal profiles were monitored, and the fractions
collected using a gradient fractionation system.

2.5. mRNA Preparation and Real-Time/Quantitative PCR

For the polysome profiling experiments, RNA extraction was performed using the
TRIzol method (TRIzol-LS) from 250 µL of each fraction. The SuperScript IV Reverse
Transcriptase (Thermo Scientific) kit was used for cDNA synthesis using random hexamer
primers according to the manufacturer’s instructions. Equal volume of cDNA from each
fraction was used to carry out the qRT-PCR experiments. For total RNA preparation,
mRNA isolation was performed using TRIzol (Invitrogen, Paris, France) according to
standard procedures. qRT-PCR was performed using the PowerUP qPCR Master Mix
(Thermo Scientific) and SuperScript IV Reverse Transcriptase (Thermo Scientific) and was
monitored on a Viia 7 System (Applied Biosystems, Paris, France). The HPRT gene was
used to normalize the results in 2−∆∆Ct analyses. The primer sequences of each cDNA were
designed using Primer-BLAST (ncbi.nlm.nih.gov accessed on 19 January 2022) (Table S1).

2.6. 3′-Seq Experiments

3′-seq libraries were prepared with QuantSeq 3′ mRNA-Seq Library Prep Kit REV
for Illumina (Lexogen, Vienna, Austria) using 500 ng of polysomal and input (cytosolic)
RNAs (n = 3 for each condition) following manufacturer’s instructions. Purified libraries
were quantified with Quant-iT Picogreen dsDNA kit (ThermoFisher Scientific) and run on
Experion automated electrophoresis system (Bio-Rad). Pooled libraries were quantitated
by qPCR (KAPA Library Quantification Kits Illumina Platforms, Roche), diluted to 12 pM,
and subjected to single-end, 51 bp sequencing using the NovaSeq 2500 machine (Illumina).

2.7. 3′-Seq Bioinformatic Analysis

For all samples, raw reads were trimmed to remove uninformative nucleotides arising
from primer sequences. Trimmed reads of 25 bp or more were aligned on the human
reference genome (hg19) using Bowtie2 (version 2.2.5). [31] Mapping quality score (MAPQ)
was determined and only reads with a score of 20 or more were selected (Samtools version
1.1) for downstream analysis. Clustering of reads was carried out along the genome using
Bedtools (version 2.17.0) [32], allowing a maximum distance of 50 bp and a minimum num-
ber of 5 reads per peak. Peaks with a stretch of 6 consecutive adenosines (or 8 adenosines
out of 9 nucleotides) within 50 bp downstream were filtered out, as they are likely due to
internal priming of oligo-dT. Overlapping peaks from all samples of the conditions under
comparison were merged to define a common set of genomic sequences corresponding
to polyA sites. Location of peaks within genes was annotated using gene coordinates on
the basis of overlapping Refseq transcripts with the same gene symbol. Peaks localized in
the intronic region of a gene were classified as intronic polyA (IPA) peaks and those in the
last exon of a gene were classified as LE peaks. Differential analyses between control and
treated conditions were done with three independent biological replicates per condition.
Comparing of the regulation of each IPA to the regulation of the gene’s last exon (taken
as the sum of the peaks in this exon), we used the version 1.4.5 [33] and the following
statistical model:

Yij = µ + Li + Cj + (LC)ij + Eij

where Yij is the normalized counts of peak i in biological condition j, µ is the mean, Li is
the peak localization (IPA or LE), Cj is the biological condition, (LC)ij is the interaction
between peak localization and biological condition, and Eij is the residual. p-values and
adjusted p-values (Benjamini–Hochberg) were calculated. Data with p < 0.05 are shown.
The complete bioinformatics pipeline (3′-SMART package) explained in this paper is freely
available at GitHub [34] and can be run through a configuration file and a simple command
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line. Annotated polyadenylation sites were retrieved from the Polya_DB 3 and PolyASite
2.0 databases [35,36].

2.8. Statistics

Statistical significance of the differences between experimental and control samples
was assessed by an unpaired t-test and represented using GraphPad Prism (version 9.2.0),
with significance achieved at p < 0.05.

3. Results
3.1. Functional Importance of APA-Generated STAT1 Protein Isoforms for PD-L1 Gene Expression

In order to study the effect of the selective regulation of the two STAT1 protein isoforms
on PD-L1 expression, we depleted each of them separately by using specific siRNAs (Ma-
terials and Methods) in the BRAF V600E mutant A375 melanoma cell line. As previously
shown [16], the presence of PD-L1 at the cell surface (determined by FACS analysis) was in-
hibited by silvestrol in interferon γ (IFN-γ) treated cells (Figure 1A,B). Cells were transfected
with siRNAs that selectively depleted either the STAT1α or STAT1β isoform, as shown by
Western blot with an antibody detecting both protein isoforms (Figures 1C, S1C and S8).
In STATα-depleted cells, IFN-γ-induced PD-L1 expression was almost entirely lost; hence,
no effect of silvestrol was observed on PD-L1 levels. In contrast, in STAT1β-depleted cells,
IFN-γ-induced PD-L1 expression as well as its inhibition by silvestrol were similar to that
observed in control cells (that is, cells transfected with a control siRNA; Figure 1A,B). Thus,
IFN-γ-induced PD-L1 expression is controlled by STAT1α, and this isoform is necessary to
observe silvestrol-dependent inhibition of PD-L1 expression. This was also validated in the
NRAS Q61R mutant cell line SKMEL-2 (Figures 1D and S1A) and in another BRAF V600E
mutant cell line WM793 (Figures 1E and S1B). However, STAT1α depletion had less effects
on PD-L1 expression in IFN-γ-treated WM793 cells (Figure 1E, top), as compared to the two
other tested cell lines. This can be explained by the fact that WM793 cells have higher basal
(without IFN-γ) expression levels of PD-L1, which is approximately three times higher than
A375 (Figure S2). In the absence of IFN-γ, silvestrol did not inhibit PD-L1 expression, and
no significant effect of depleting STAT1α or β isoforms was observed (Figure 1E, bottom).
In addition, in WM793 cells, in spite of a higher basal level expression of PD-L1, there
was still an induction of its expression upon treatment with IFN-γ (Figures S1B and S2).
We therefore looked into this regulation in two other cell lines, namely MDA-MB-231 and
MCF-7 (Figure S3A,B), which are breast cancer cell lines with high basal expression levels
of PD-L1 (Figure S2) [37]. In these cell lines, PD-L1 expression levels were not increased by
IFN-γ and were not decreased by either silvestrol treatment or STAT1 isoform depletion
(Figure S3A,B). Altogether, these results indicate that the STAT1α-dependent silvestrol
inhibition of PD-L1 protein expression levels is strictly manifested upon PD-L1 induction
by IFN-γ, which might be of importance in the context of immunotherapy.

3.2. Both STAT1 mRNA Isoforms Are Regulated by eIF4A Inhibition at the Translational Level

In order to test the effect of silvestrol on the translation of STAT1α and β mRNA
isoforms, we used polysome profiling in A375 cells treated with 10 nM silvestrol in the
presence or not of IFN-γ. Polysome profiling uses sucrose-gradient separation of mRNAs
based on their differential association with ribosomes (Figure 2A). The polysome profiles
showed an overall inhibitory effect of silvestrol on translation as evidenced by a reduced
polysome peak (Figure 2A). The translational status of a specific mRNA species can be
inferred from its relative presence (detected by RT-qPCR) in heavier polysome fractions
where it is bound to multiple ribosomes (i.e., actively translated mRNAs), lighter polysome
fractions (less translated mRNAs), and subpolysomal fractions (untranslated mRNAs). The
analysis of mRNAs encoding STAT1α and STAT1β was done by RT-qPCR using specific
primers (Figure 2B and Table S1) and revealed that both mRNAs shifted from heavy
polysome fractions to lighter polysome fractions upon silvestrol treatment, especially in
IFN-γ-treated cells (Figure 2C). This indicates that silvestrol inhibits the translation of both
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STAT1 mRNA isoforms in IFN-γ-treated cells. Consistently, the level of both STAT1 protein
isoforms, analyzed by Western blot, was decreased by silvestrol in IFN-γ-treated cells
(Figures 2D, S4 and S8), while there was no change in the levels of STAT1 mRNA isoforms
in total cytosolic RNA (Figure S5).

Figure 1. Functional importance of APA-generated STAT1 protein isoforms on PD-L1 gene expression.
(A) PD-L1 was visualized by flow cytometry in A375 melanoma cells treated with IFN-γ (100 ng/mL)
and silvestrol (10 nM or 30 nM); (B) PD-L1 mean fluorescence intensity (MFI) quantification in
A375. The data are presented as the mean ± s.e.m. (n = 3 independent experiments). p-values were
calculated using two-tailed unpaired t-test. Statistical analyses were performed for all data, p-values
are indicated exclusively in the case of statistical significance; (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001)
(C) Western blot analysis of the indicated proteins in A375. Quantification of STAT1 expression was
performed by calculating the relative densities normalized to GAPDH levels (uncropped western
blot original images see Figure S8). (D) same as (B) in SKMEL-2 (E) same as (B) in WM793 with (top)
or without (bottom) IFN-γ.
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1 
 

 

Figure 2 Figure 2. Both STAT1 mRNA isoforms are regulated at the translational level by eIF4A inhibition.
(A) Polysome profiles of A375 cells treated with IFN-γ for 24 h and silvestrol (10 nM) for 2 h. One
representative profile from three independent experiments is shown; (B) primer design for RT-qPCR
detection of STAT1 mRNA isoforms; (C) percentage of transcripts for each STAT1 APA isoform in
each polysomal fraction obtained by sucrose-gradient ultracentrifugation was quantified by RT-qPCR
(n = 3). p-values were calculated using two-tailed unpaired t-test (* p ≤ 0.05); (D) Western blot
analysis to look into the expression of STAT1 APA isoforms in A375 cells treated with IFN-γ for 24 h
and silvestrol (10 nM or 30 nM) for 24 h. Quantification of STAT1 expression was performed by
calculating the relative densities normalized to GAPDH levels. One representative blot from three
independent experiments is shown (uncropped western blot original images see Figure S8).
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3.3. eIF4A Inhibition Regulates the Translation of mRNAs Encoding Key Immune Checkpoint
Proteins in Activated T Cells

Since STAT1 and major immune checkpoint proteins are also expressed on immune
cells, the effect of silvestrol on the translation of mRNAs encoding STAT1 and key im-
mune checkpoint proteins, such as PD-1, CTLA-4, TIM-3 and LAG-3, was examined using
polysome profiling of human peripheral blood T cells isolated from healthy donors and
stimulated with IL-2 and anti-CD3/anti-CD28 antibodies. The polysome profiles showed
an overall inhibitory effect of silvestrol on translation in such activated T cells, as evidenced
by a reduced polysome peak (Figure 3A). Both STAT1 mRNAs isoforms shifted from heavy
polysome fractions to lighter polysome fractions upon silvestrol treatment (Figure 3B),
indicating that silvestrol inhibits the translation of both STAT1 mRNA isoforms in activated
T cells, as observed above in melanoma cells (Figure 2C).

 

2 

 

Figure 3. Cont.
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3 

 

Figure 3 Figure 3. eIF4A inhibition regulates the translation of mRNAs encoding key immune checkpoint
proteins such as TIM-3 and LAG-3, but not PD-1 and CTLA-4, in activated T cells. (A) polysome
profiles of T cells stimulated for 72 h and treated with silvestrol (10 nM or 30 nM) for 2 h. One
representative profile from three independent experiments is shown. (B) Percentage of transcripts for
each STAT1 APA isoform in each polysomal fraction obtained by sucrose-gradient ultracentrifugation
of T cells was quantified by RT-qPCR (n = 3). p-values were calculated using two-tailed unpaired
t-test (* p ≤ 0.05); (C) primer design for immune checkpoint gene mRNA isoforms; (D) percentage
of transcripts for each APA isoform in each polysomal fraction obtained by sucrose-gradient ultra-
centrifugation was quantified by RT-qPCR (n = 3). An asterisk (*) was inserted for each fraction to
indicate a statistically significant difference (p < 0.05).
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Then, the translational status of alternatively polyadenylated mRNA isoforms encod-
ing the key immune checkpoints PD-1, CTLA-4, TIM-3 (APA within the last exon) and
LAG-3 (APA in alternative last exons) was investigated by RT-qPCR using specific primers
(Figure 3C). We found that silvestrol inhibited the translation of TIM-3 mRNA isoforms
#1 and #2, of LAG-3 isoform #2 (albeit less efficiently), but had no effect on translation
of TIM-3 isoform #3 and all PD-1 and CTLA-4 mRNA isoforms, and had less effect on
LAG-3 isoform #1 (Figure 3D). These results prompted us to extend the analysis to a few
more immune-related genes. We found that silvestrol inhibited the translation of both
alternatively polyadenylated mRNA isoforms transcribed from the CD137, CD27 and IDO1
genes, while it had no effect on the translation of alternatively polyadenylated mRNA
isoforms transcribed from the CD40-L gene, and little effect on ADAR-1 and BTLA genes
(Figure S6A,B). These results indicate that, beyond STAT1, several immune-related mRNAs
(such as TIM-3, LAG-3, IDO1, CD27, CD137) are inhibited by silvestrol at the translation
level. In addition, there are cases where silvestrol differentially inhibits translation of APA
isoforms of the same gene (such as TIM-3 and LAG-3).

3.4. eIF4A Inhibition Differentially Regulates the Translation of APA Isoforms in Several
Immune-Related Genes

Our finding that silvestrol differentially inhibited the translation of the alternatively
polyadenylated isoforms of the TIM-3 and LAG-3 genes prompted us to extend this obser-
vation in a high-throughput manner. We used a 3′-seq approach that consists of targeted
sequencing of the 3′-end of polyadenylated transcripts upstream of the pA tail. We carried
out 3′-seq on polysomal RNA of activated T cells treated with either silvestrol or vehicle
for 2 h. We found that silvestrol had a significant effect on the ratio of (Intronic Polyadeny-
lation) IPA to (Last Exon) LE isoforms in polysomes for 1054 genes (p < 0.05; Figure 4A).
For 919 genes, the polysomal IPA:LE isoform ratio was increased by silvestrol (IPA:LE up),
suggesting that silvestrol had more inhibitory effect on the translation of the LE isoform
compared to the IPA isoform. For 135 genes, silvestrol had more translation inhibitory effect
on the IPA than the LE mRNA isoform (IPA:LE down; Figure 4A). We then concentrated our
analysis on the more abundant IPA isoforms, i.e., at least 5% of the abundance of last exon
“LE” isoform from the same gene (Figure 4B and Table S2). When analyzing polysomal
RNAs, we identified 97 genes for which the IPA:LE ratio was increased and 59 genes for
which the ratio was decreased by silvestrol. Importantly, these changes in IPA:LE ratio were
only observed in polysomal RNA, but not in cytosolic RNA, for 94 (97%) of the 97 genes
in the “IPA:LE up” group and for 54 (92%) of the 59 genes in the “IPA:LE down” group
(Figure 4B). This indicated that, in these genes, silvestrol changes the relative translatability
of the IPA and LE mRNA isoforms, without changing their relative abundance.
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Figure 4 Figure 4. eIF4A inhibition regulates the translation of several immune-related alternatively
polyadenylated mRNAs. (A) Regulation of intronic polyA (IPA) versus last exon (LE) isoforms
in heavy polysome fractions following treatment with silvestrol (10 nM) for 2 h in CD8+ T cells from
healthy donors. IPA sites that are significantly upregulated (IPA:LE up) or downregulated (IPA:LE
down) by silvestrol relative to LE (p-adj < 0.1) are shown in red and blue, respectively; (B)‘number
of genes with either up- or downregulation of IPA:LE isoform ratio by silvestrol in heavy polysome
fractions or whole cytosol, as indicated; (C) primer design for candidate immune-related gene mRNA
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isoforms; (D) percentage of transcripts for each APA isoform in each polysomal fraction obtained
by sucrose-gradient ultracentrifugation was quantified by RT-qPCR in Jurkat cells (n = 3). p-values
were calculated using two-tailed unpaired t-test (* p ≤ 0.05); (E) Western blot analysis to look into the
expression of SEMA4D APA isoforms in Jurkat cells without or with stimulation for 72 h including
silvestrol (10 nM) treatment for 24 h. Quantification of SEMA4D expression was performed by
calculating the relative densities normalized to GAPDH levels. One representative blot from three
independent experiments is shown (uncropped western blot original images see Figure S8).

To validate these regulation events, we focused on two genes, AHNAK (one of the
94 “IPA:LE up” candidates) and SEMA4D (one of the 54 “IPA:LE down” candidates) that
have important immune functions. We selected these genes because they are relevant to
T cell function. Indeed, AHNAK mediates calcium entry essential for cytolytic activity
following T cell receptor (TCR) engagement of cytotoxic CD8+ T lymphocytes [38,39].
This AHNAK-dependent calcium signaling is also upregulated during CD4+ T cell acti-
vation [40,41] and a knockout of AHNAK inhibits T cell responses and the secretion of
IFN-γ and IL-4 cytokines [42]. SEMA4D regulates cell proliferation by interacting with
CD72 [43,44]. It downregulates the differentiation of regulatory T (Treg) cells by inhibiting
Foxp3 expression [45]. In addition, antibody blockade of SEMA4D increases the efficiency
of anti-PD1 and anti-CTLA4 immunotherapies [46,47].

Primers were designed to quantitate alternatively polyadenylated mRNA isoforms
of AHNAK and SEMA4D by RT-qPCR on polysome fractions of the Jurkat T-lymphocyte
cell line treated either with silvestrol or vehicle (Figure 4C). We confirmed that silvestrol
inhibited the translation of the AHNAK LE (#2) more efficiently than IPA (#1) isoform,
and of the SEMA4D IPA (#1) than LE (#2) isoform (Figure 4D). Consistent with these
findings, the levels of SEMA4D protein isoforms, for which antibodies were available, were
differentially regulated by silvestrol in activated Jurkat T cells (Figure 4E). Whereas both
SEMA4D membrane-bound and soluble protein isoforms translated from the IPA isoform
were decreased in silvestrol-treated cells, the smaller protein isoform translated from the
LE isoform was not decreased (Figures 4E and S8).

Additional candidate genes from either category, namely POU6F1, HPS3 and DENND1A
(IPA:LE up) and FBXO11 and DIP2A (IPA:LE down) were also examined (Figure S7A,B). The
translation of LE isoforms of “IPA:LE up” candidates and of IPA isoforms of “IPA:LE down”
candidates were more strongly inhibited by silvestrol compared to the other alternatively
polyadenylated mRNA isoform for each gene (Figure S7B). Altogether, these data identify
genes, for which silvestrol selectively inhibits the translation of specific APA isoforms.

4. Discussion

Our findings provide several new insights into the effects of eIF4A inhibition on
mRNA translation in the context of cancer.

We previously demonstrated that the expression of PD-L1 in cancer cells was decreased
by silvestrol, but the effect was indirect and mediated by translation regulation of STAT1, a
transcriptional regulator of PD-L1 [16]. In fact, two protein isoforms of STAT1 are encoded
from two alternatively polyadenylated mRNA isoforms. We extended the conclusions
from these findings by showing that the silvestrol-mediated inhibition of PD-L1 expression
is dependent on STAT1α, but not STAT1β. This illustrates the relevance of alternative
polyadenylation in generating protein isoforms with different functions. Beyond STAT1,
there are a few examples illustrating the functional relevance of alternative polyadenylation
in T cells. The T-cell surface glycoprotein CD5 is regulated by alternative polyadenylation
during human T lymphocyte activation. Preferential 3′UTR shortening of CD5 mRNA
upon T cell activation, due to proximal pA site usage, leads to higher CD5 expression
and determines cellular outcomes of survival or apoptosis [48]. Another example of
regulation of alternatively polyadenylated transcripts following T cell activation relates to
CELF1/CUGBP1 target transcripts. A number of CELF1 regulated transcripts involved in
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cell division are generated with shorter 3′ ends to promote the exclusion of CELF1 binding
sites, thereby upregulating their expression following stimulation of T cells [49].

Genome-wide studies showed that T-cell activation is associated with a selective usage
of proximal pA sites, leading to a preferential increase in the expression of mRNAs with
shorter 3′UTRs [50,51]. However, in most genes, this preferential shortening of the 3′UTR is
not associated with increased protein production [50,52]. Here, by combining RNA analysis
(through 3′-seq or RT-qPCR) and polysome profiling, we provide evidence that silvestrol
differentially inhibits the translation of mRNAs with different 3′-ends produced through
alternative polyadenylation. The main determinant of an mRNA for its dependence on
the eIF4A RNA helicase is the level of stable secondary structures [53] or more complex
G-quadruplex structures [54] within the 5′ UTR of mRNAs. It is possible that the 3′UTR
of an mRNA influences 5′UTR-based mechanisms when the UTRs are in close proximity
and that this makes an mRNA sensitive to silvestrol inhibition for certain 5′UTR-3′UTR
combinations. Such proximity between the 5′UTR and 3′UTR has, for instance, been
observed by electron microscopy on the membrane of the endoplasmic reticulum, where
the great majority of polysomes have a circular shape [55,56]. It is also possible that the
3′UTR is involved in mRNA localization in specific subcellular regions that are more prone
to silvestrol inhibition. It is very well admitted that 3′UTRs influence mRNA localization to
very specialized cellular sites such as dendrites or synapses in neuronal cells [57,58]. mRNA
localization is dependent on the repertoire of 3′UTR-bound RNA binding proteins. For
instance, the TIS11B RNA binding protein interacts with specific 3′UTR-containing mRNAs
to form membrane-less organelles called TIS granules intertwined with the endoplasmic
reticulum [58]. Interestingly, several membrane protein-encoding mRNAs, including PD-
L1, predominantly localize to TIS granules [58]. In addition, 3′UTRs are determinants of
mRNA localization in stress granules [59,60]. It has been shown that inhibitory immune
checkpoint mRNAs (including TIM-3 and LAG-3) require microtubule-dependent stress
granule dynamics [61]. All these 3′UTR-dependent mechanisms should be carefully tested
in the context of the 3′UTR-dependent inhibition of translation by silvestrol.

Finally, silvestrol is shown here for the first time to inhibit the translation of mRNAs
encoding key immune checkpoint inhibitors (e.g., TIM-3 and LAG-3) in T cells. Considering
the promising results achieved with inhibitors of LAG-3 [62] and TIM-3 [63], and the
fact that eIF4A inhibitors are currently tested in clinical trials, it will be interesting to
test combinations of eIF4A inhibitors with either TIM-3 or LAG-3 inhibitors. In this
context, it will be essential to consider the 3′UTR-dependent inhibition of translation by
eIF4A inhibitors to better understand the potential beneficial effect of these treatment
combinations.

5. Conclusions

Our findings reveal that inhibiting the eIF4A RNA helicase component of the eIF4F
translation initiation complex with silvestrol differentially inhibits alternatively polyadeny-
lated mRNA isoforms of certain immune-related genes like TIM-3, LAG-3, AHNAK and
SEMA4D, among others. They have important implications for treatment of human cancers
with eIF4A inhibitors while some of them are entering into clinical trials. Investigating
the impact of eIF4A targeting on the translation of alternatively polyadenylated mRNA
isoforms of the same gene may contribute to the understanding of anti-cancer activities of
eIF4A inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14051177/s1, Figure S1: (A)PD-L1 was visualized by flow
cytometry in SK-MEL-2 cells treated with IFN-γ (100 ng/mL) and silvestrol (10 nM or 30 nM). (B) PD-
L1 was visualized by flow cytometry in WM793 cells treated with or without IFN-γ (100 ng/mL) and
silvestrol (10 nM or 30 nM). (C) Western blot analysis to look into the effect of silencing either STAT1
isoform in A375 cells treated with or without IFN-γ for 24 h and silvestrol (10 nM or 30 nM) for 24 h.
Quantification of STAT1 expression was performed by calculating the relative densities normalized to
GAPDH levels. One representative blot from three independent experiments is shown; Figure S2: PD-
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L1 was visualized by flow cytometry in A375, WM793, MCF-7 and MDA-MB-231 cells treated without
or with IFN-γ (100 ng/mL). Bottom: PD-L1 mean fluorescence intensity (MFI) quantification. The
data are presented as the mean ± s.e.m. (n = 3 independent experiments). p-values were calculated
using a two-tailed unpaired t-test; Figure S3: Left: PD-L1 was visualized by flow cytometry in (A)
MCF-7 and (B) MDA-MB-231 cell lines treated with or without IFN-γ (100 ng/mL) and silvestrol
(10 nM or 30 nM). Right: PD-L1 mean fluorescence intensity (MFI) quantification. The data are
presented as the mean ± s.e.m. (n = 3 independent experiments). p-values were calculated using a
two-tailed unpaired t-test. Bottom, Western blot analysis of the indicated proteins; Figure S4: Western
blot analysis to look into the expression of STAT1 APA isoforms in SK-MEL-2 and WM793 cells treated
with IFN-γ for 24 h and silvestrol (10 nM or 30 nM) for 24 h. Quantification of STAT1 expression was
performed by calculating the relative densities normalized to GAPDH levels. One representative
blot from three independent experiments is shown; Figure S5: Relative mRNA expression of total
and APA isoforms of STAT1 and of TBP (control) in total (non-fractionated) lysates of A375 (n = 3).
A375 cells were treated without or with IFN-γ for 24 h and silvestrol (10 nM or 30 nM) for 24 h;
Figure S6: (A) Primer design for immune-related gene mRNA isoforms. (B) Percentage of transcripts
for each APA isoform in each polysomal fraction obtained by sucrose-gradient ultracentrifugation was
quantified by RT-qPCR (n = 3). p-values were calculated using two-tailed unpaired t-test (* p ≤ 0.05);
Figure S7: (A) Primer design for immune-related gene mRNA isoforms of IPA:LE UP (red) and IPA:LE
DOWN (blue) candidates. (B) Percentage of transcripts for each APA isoform in each polysomal
fraction obtained by sucrose-gradient ultracentrifugation was quantified by RT-qPCR in Jurkat cells
(n = 3). p-values were calculated using two-tailed unpaired t-test (* p ≤ 0.05); Figure S8: Uncropped
Western blot images; Figure S8: Uncropped Western Blot original images; Table S1: Primer sequences
used for RT-qPCR analysis of all mRNAs investigated in this paper; Table S2: List of genes with
upregulated and downregulated IPA:LE isoform ratio, as identified from 3′ Sequencing analysis in
heavy polysomes and whole cytosol. Columns A–C, coordinates of IPA peaks (hg19). Column D,
IPA peak number in our analysis. Columns E–F and I, gene coordinates. Column G, gene symbol
(please note that some genes contain several regulated IPA peaks). Column H, RefSeq information on
coding (NM) or noncoding (NR) status of gene transcripts. Columns N–Y: Number of reads in each
sample either in IPA peak (IPA) or in the gene’s last exon (LE). Biological replicates are indicated (n1
to n3). Silv, Silvestrol. HP, heavy polysomes. CYTO, whole cytosol. Column Z, abundance of IPA
peak relative to last exon (in %). Columns AC and AD, hg19 coordinates of annotated polyA site(s) in
published databases [35,36] overlapping with the regulated IPA peak.

Author Contributions: Conceptualization, B.B., R.G., C.R. and S.V.; Methodology, B.B., M.C., M.D.,
C.M.L., A.C. and R.G.; Validation, B.B. and R.G.; Formal Analysis, all; Investigation, all; Writing—Original
Draft Preparation, B.B., C.R. and S.V.; Writing—Review and Editing, all; Visualization, B.B., C.R. and
S.V.; Supervision, C.R. and S.V.; Funding Acquisition, R.G., C.R. and S.V. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by CNRS, Institut Curie, Ligue contre le Cancer Équipe labellisée
to S.V., Collectif Ensemble contre le mélanome, Association Vaincre le mélanome to C.R. and INSERM
and INCA-PRTK to S.V. and C.R. The APC was funded by Ligue contre le Cancer.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The 3′-seq data presented in this study are openly available in the Gene
Expression Omnibus repository (GEO) under accession number GSE193966 (token: cdkviuggdjoldin).
Computer Code and Software: The complete bioinformatics pipeline 3′-SMART can be freely down-
loaded at GitHub (https://github.com/InstitutCurie/3-SMART, accessed on 19 January 2022).

Acknowledgments: We thank the Institut Curie Next Generation Sequencing (Sylvain Baulande)
platform for high-throughput sequencing.

Conflicts of Interest: C.R. is an occasional consultant for Bristol Myers Squibb, MSD, Novartis, Sanofi,
AstraZeneca, Pfizer, Roche and Pierre Fabre. C.R. and S.V. are scientific founders of Ribonexus. B.B.,
R.G., C.L. and M.D. declare no conflict of interest.

https://github.com/InstitutCurie/3-SMART


Cancers 2022, 14, 1177 15 of 17

References
1. Restifo, N.P.; Smyth, M.J.; Snyder, A. Acquired Resistance to Immunotherapy and Future Challenges. Nat. Rev. Cancer 2016, 16,

121–126. [CrossRef] [PubMed]
2. Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell

2017, 168, 707–723. [CrossRef] [PubMed]
3. Budhwani, M.; Turrell, G.; Yu, M.; Frazer, I.H.; Mehdi, A.M.; Chandra, J. Immune-Inhibitory Gene Expression Is Positively

Correlated with Overall Immune Activity and Predicts Increased Survival Probability of Cervical and Head and Neck Cancer
Patients. Front. Mol. Biosci. 2021, 8, 622643. [CrossRef] [PubMed]

4. Venkatraman, S.; Meller, J.; Hongeng, S.; Tohtong, R.; Chutipongtanate, S. Transcriptional Regulation of Cancer Immune
Checkpoints: Emerging Strategies for Immunotherapy. Vaccines 2020, 8, 735. [CrossRef]

5. Xu, H.-H.; Gan, J.; Xu, D.-P.; Li, L.; Yan, W.-H. Comprehensive Transcriptomic Analysis Reveals the Role of the Immune
Checkpoint HLA-G Molecule in Cancers. Front. Immunol. 2021, 12, 614773. [CrossRef]

6. Zerdes, I.; Matikas, A.; Bergh, J.; Rassidakis, G.Z.; Foukakis, T. Genetic, Transcriptional and Post-Translational Regulation of the
Programmed Death Protein Ligand 1 in Cancer: Biology and Clinical Correlations. Oncogene 2018, 37, 4639–4661. [CrossRef]

7. Neve, J.; Patel, R.; Wang, Z.; Louey, A.; Furger, A.M. Cleavage and Polyadenylation: Ending the Message Expands Gene
Regulation. RNA Biol. 2017, 14, 865–890. [CrossRef]

8. Passmore, L.A.; Tang, T.T. The Long and Short of It. eLife 2021, 10, e70757. [CrossRef]
9. Tian, B.; Graber, J.H. Signals for Pre-MRNA Cleavage and Polyadenylation: Polyadenylation Signals. Wiley Interdiscip. Rev. RNA

2012, 3, 385–396. [CrossRef]
10. Xiang, K.; Bartel, D.P. The Molecular Basis of Coupling between Poly(A)-Tail Length and Translational Efficiency. eLife 2021, 10,

e66493. [CrossRef]
11. Derti, A.; Garrett-Engele, P.; MacIsaac, K.D.; Stevens, R.C.; Sriram, S.; Chen, R.; Rohl, C.A.; Johnson, J.M.; Babak, T. A Quantitative

Atlas of Polyadenylation in Five Mammals. Genome Res. 2012, 22, 1173–1183. [CrossRef]
12. Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of Post-Transcriptional Regulation by MicroRNAs: Are the

Answers in Sight? Nat. Rev. Genet. 2008, 9, 102–114. [CrossRef]
13. Rehfeld, A.; Plass, M.; Krogh, A.; Friis-Hansen, L. Alterations in Polyadenylation and Its Implications for Endocrine Disease.

Front. Endocrinol. 2013, 4, 53. [CrossRef]
14. Zanzoni, A.; Spinelli, L.; Ribeiro, D.M.; Tartaglia, G.G.; Brun, C. Post-Transcriptional Regulatory Patterns Revealed by Protein-

RNA Interactions. Sci. Rep. 2019, 9, 4302. [CrossRef]
15. Boussemart, L.; Malka-Mahieu, H.; Girault, I.; Allard, D.; Hemmingsson, O.; Tomasic, G.; Thomas, M.; Basmadjian, C.; Ribeiro, N.;

Thuaud, F.; et al. EIF4F Is a Nexus of Resistance to Anti-BRAF and Anti-MEK Cancer Therapies. Nature 2014, 513, 105–109.
[CrossRef]

16. Cerezo, M.; Guemiri, R.; Druillennec, S.; Girault, I.; Malka-Mahieu, H.; Shen, S.; Allard, D.; Martineau, S.; Welsch, C.;
Agoussi, S.; et al. Translational Control of Tumor Immune Escape via the EIF4F–STAT1–PD-L1 Axis in Melanoma. Nat. Med.
2018, 24, 1877–1886. [CrossRef]

17. Malka-Mahieu, H.; Girault, I.; Rubington, M.; Leriche, M.; Welsch, C.; Kamsu-Kom, N.; Zhao, Q.; Desaubry, L.; Vagner, S.; Robert,
C. Synergistic Effects of EIF4A and MEK Inhibitors on Proliferation of NRAS-Mutant Melanoma Cell Lines. Cell Cycle 2016, 15,
2405–2409. [CrossRef]

18. Shen, S.; Faouzi, S.; Bastide, A.; Martineau, S.; Malka-Mahieu, H.; Fu, Y.; Sun, X.; Mateus, C.; Routier, E.; Roy, S.; et al. An
Epitranscriptomic Mechanism Underlies Selective MRNA Translation Remodelling in Melanoma Persister Cells. Nat. Commun.
2019, 10, 5713. [CrossRef]

19. Fabbri, L.; Chakraborty, A.; Robert, C.; Vagner, S. The Plasticity of MRNA Translation during Cancer Progression and Therapy
Resistance. Nat. Rev. Cancer 2021, 21, 558–577. [CrossRef]

20. Bordeleau, M.-E.; Robert, F.; Gerard, B.; Lindqvist, L.; Chen, S.M.H.; Wendel, H.-G.; Brem, B.; Greger, H.; Lowe, S.W.;
Porco, J.A.; et al. Therapeutic Suppression of Translation Initiation Modulates Chemosensitivity in a Mouse Lymphoma Model. J.
Clin. Investig. 2008, 118, 2651–2660. [CrossRef]

21. Chu, J.; Galicia-Vázquez, G.; Cencic, R.; Mills, J.R.; Katigbak, A.; Porco, J.A.; Pelletier, J. CRISPR-Mediated Drug-Target Validation
Reveals Selective Pharmacological Inhibition of the RNA Helicase, EIF4A. Cell Rep. 2016, 15, 2340–2347. [CrossRef]

22. Sadlish, H.; Galicia-Vazquez, G.; Paris, C.G.; Aust, T.; Bhullar, B.; Chang, L.; Helliwell, S.B.; Hoepfner, D.; Knapp, B.; Riedl, R.; et al.
Evidence for a Functionally Relevant Rocaglamide Binding Site on the EIF4A–RNA Complex. ACS Chem. Biol. 2013, 8, 1519–1527.
[CrossRef]

23. Cencic, R.; Carrier, M.; Galicia-Vázquez, G.; Bordeleau, M.-E.; Sukarieh, R.; Bourdeau, A.; Brem, B.; Teodoro, J.G.; Greger, H.;
Tremblay, M.L.; et al. Antitumor Activity and Mechanism of Action of the Cyclopenta[b]Benzofuran, Silvestrol. PLoS ONE 2009,
4, e5223. [CrossRef]

24. Kogure, T.; Kinghorn, A.D.; Yan, I.; Bolon, B.; Lucas, D.M.; Grever, M.R.; Patel, T. Therapeutic Potential of the Translation Inhibitor
Silvestrol in Hepatocellular Cancer. PLoS ONE 2013, 8, e76136. [CrossRef]

25. Rubio, C.A.; Weisburd, B.; Holderfield, M.; Arias, C.; Fang, E.; DeRisi, J.L.; Fanidi, A. Transcriptome-Wide Characterization of the
EIF4A Signature Highlights Plasticity in Translation Regulation. Genome Biol. 2014, 15, 476. [CrossRef]

http://doi.org/10.1038/nrc.2016.2
http://www.ncbi.nlm.nih.gov/pubmed/26822578
http://doi.org/10.1016/j.cell.2017.01.017
http://www.ncbi.nlm.nih.gov/pubmed/28187290
http://doi.org/10.3389/fmolb.2021.622643
http://www.ncbi.nlm.nih.gov/pubmed/33834038
http://doi.org/10.3390/vaccines8040735
http://doi.org/10.3389/fimmu.2021.614773
http://doi.org/10.1038/s41388-018-0303-3
http://doi.org/10.1080/15476286.2017.1306171
http://doi.org/10.7554/eLife.70757
http://doi.org/10.1002/wrna.116
http://doi.org/10.7554/eLife.66493
http://doi.org/10.1101/gr.132563.111
http://doi.org/10.1038/nrg2290
http://doi.org/10.3389/fendo.2013.00053
http://doi.org/10.1038/s41598-019-40939-2
http://doi.org/10.1038/nature13572
http://doi.org/10.1038/s41591-018-0217-1
http://doi.org/10.1080/15384101.2016.1208862
http://doi.org/10.1038/s41467-019-13360-6
http://doi.org/10.1038/s41568-021-00380-y
http://doi.org/10.1172/JCI34753
http://doi.org/10.1016/j.celrep.2016.05.005
http://doi.org/10.1021/cb400158t
http://doi.org/10.1371/journal.pone.0005223
http://doi.org/10.1371/journal.pone.0076136
http://doi.org/10.1186/s13059-014-0476-1


Cancers 2022, 14, 1177 16 of 17

26. Schulz, G.; Victoria, C.; Kirschning, A.; Steinmann, E. Rocaglamide and Silvestrol: A Long Story from Anti-Tumor to Anti-
Coronavirus Compounds. Nat. Prod. Rep. 2021, 38, 18–23. [CrossRef]

27. Singh, I.; Lee, S.-H.; Sperling, A.S.; Samur, M.K.; Tai, Y.-T.; Fulciniti, M.; Munshi, N.C.; Mayr, C.; Leslie, C.S. Widespread Intronic
Polyadenylation Diversifies Immune Cell Transcriptomes. Nat. Commun. 2018, 9, 1716. [CrossRef]

28. Liu, S.; Kang, W.-J.; Abrimian, A.; Xu, J.; Cartegni, L.; Majumdar, S.; Hesketh, P.; Bekker, A.; Pan, Y.-X. Alternative Pre-MRNA
Splicing of the Mu Opioid Receptor Gene, OPRM1: Insight into Complex Mu Opioid Actions. Biomolecules 2021, 11, 1525.
[CrossRef]

29. Vorlová, S.; Rocco, G.; LeFave, C.V.; Jodelka, F.M.; Hess, K.; Hastings, M.L.; Henke, E.; Cartegni, L. Induction of Antagonistic
Soluble Decoy Receptor Tyrosine Kinases by Intronic PolyA Activation. Mol. Cell 2011, 43, 927–939. [CrossRef]

30. Zammarchi, F.; Boutsalis, G.; Cartegni, L. 5′ UTR Control of Native ERG and of Tmprss2:ERG Variants Activity in Prostate Cancer.
PLoS ONE 2013, 8, e49721. [CrossRef]

31. Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [CrossRef] [PubMed]
32. Quinlan, A.R.; Hall, I.M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. Bioinformatics 2010, 26, 841–842.

[CrossRef] [PubMed]
33. Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome

Biol. 2014, 15, 550. [CrossRef]
34. GitHub. Available online: https://github.com/InstitutCurie/3-SMART (accessed on 19 January 2022).
35. Herrmann, C.J.; Schmidt, R.; Kanitz, A.; Artimo, P.; Gruber, A.J.; Zavolan, M. PolyASite 2.0: A Consolidated Atlas of Polyadenyla-

tion Sites from 3′ End Sequencing. Nucleic Acids Res. 2020, 48, D174–D179. [CrossRef] [PubMed]
36. Wang, R.; Zheng, D.; Yehia, G.; Tian, B. A Compendium of Conserved Cleavage and Polyadenylation Events in Mammalian

Genes. Genome Res. 2018, 28, 1427–1441. [CrossRef] [PubMed]
37. Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.;

Akcakanat, A.; et al. PD-L1 Expression in Triple-Negative Breast Cancer. Cancer Immunol. Res. 2014, 2, 361–370. [CrossRef]
38. Matza, D.; Badou, A.; Jha, M.K.; Willinger, T.; Antov, A.; Sanjabi, S.; Kobayashi, K.S.; Marchesi, V.T.; Flavell, R.A. Requirement

for AHNAK1-Mediated Calcium Signaling during T Lymphocyte Cytolysis. Proc. Natl. Acad. Sci. USA 2009, 106, 9785–9790.
[CrossRef] [PubMed]

39. Matza, D.; Badou, A.; Kobayashi, K.S.; Goldsmith-Pestana, K.; Masuda, Y.; Komuro, A.; McMahon-Pratt, D.; Marchesi, V.T.;
Flavell, R.A. A Scaffold Protein, AHNAK1, Is Required for Calcium Signaling during T Cell Activation. Immunity 2008, 28, 64–74.
[CrossRef]

40. He, Y.; Fang, Y.; Zhai, B.; Liu, X.; Zhu, G.; Zhou, S.; Xu, Y.; Wang, X.; Su, W.; Wang, R. Gm40600 Promotes CD4 + T-cell Responses
by Interacting with Ahnak. Immunology 2021, 164, 190–206. [CrossRef]

41. Kim, I.Y.; Yi, S.S.; Shin, J.H.; Kim, Y.N.; Ko, C.-Y.; Kim, H.S.; Lee, S.Y.; Bae, Y.S.; Seong, J.K. Intensive Morphometric Analysis of
Enormous Alterations in Skeletal Bone System with Micro-CT for AHNAK−/−Mice. Anat. Sci. Int. 2020, 95, 323–333. [CrossRef]

42. Choi, E.W.; Lee, H.W.; Lee, J.S.; Kim, I.Y.; Shin, J.H.; Seong, J.K. Ahnak-Knockout Mice Show Susceptibility to Bartonella Henselae
Infection Because of CD4+ T Cell Inactivation and Decreased Cytokine Secretion. BMB Rep. 2019, 52, 289–294. [CrossRef]

43. Jiang, X.; Björkström, N.K.; Melum, E. Intact CD100–CD72 Interaction Necessary for TCR-Induced T Cell Proliferation. Front.
Immunol. 2017, 8, 765. [CrossRef]

44. Kuklina, E.; Nekrasova, I.; Glebezdina, N. Signaling from Membrane Semaphorin 4D in T Lymphocytes. Mol. Immunol. 2021, 129,
56–62. [CrossRef]

45. Xie, J.; Wang, Z.; Wang, W. Semaphorin 4D Induces an Imbalance of Th17/Treg Cells by Activating the Aryl Hydrocarbon
Receptor in Ankylosing Spondylitis. Front. Immunol. 2020, 11, 2151. [CrossRef]

46. Evans, E.E.; Jonason, A.S.; Bussler, H.; Torno, S.; Veeraraghavan, J.; Reilly, C.; Doherty, M.A.; Seils, J.; Winter, L.A.; Mallow, C.; et al.
Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodu-
latory Therapies. Cancer Immunol. Res. 2015, 3, 689–701. [CrossRef]

47. Rossi, A.J.; Khan, T.M.; Hong, H.; Lesinski, G.B.; Wu, C.; Hernandez, J.M. Pepinemab (Anti-SEMA4D) in Combination with
Ipilimumab or Nivolumab for Patients with Resectable Pancreatic and Colorectal Cancer. Ann. Surg. Oncol. 2021, 28, 4098–4099.
[CrossRef]

48. Domingues, R.G.; Lago-Baldaia, I.; Pereira-Castro, I.; Fachini, J.M.; Oliveira, L.; Drpic, D.; Lopes, N.; Henriques, T.; Neilson, J.R.;
Carmo, A.M.; et al. CD5 Expression Is Regulated during Human T-Cell Activation by Alternative Polyadenylation, PTBP1, and
MiR-204. Eur. J. Immunol. 2016, 46, 1490–1503. [CrossRef]

49. Beisang, D.; Reilly, C.; Bohjanen, P.R. Alternative Polyadenylation Regulates CELF1/CUGBP1 Target Transcripts Following T Cell
Activation. Gene 2014, 550, 93–100. [CrossRef]

50. Gruber, A.R.; Martin, G.; Müller, P.; Schmidt, A.; Gruber, A.J.; Gumienny, R.; Mittal, N.; Jayachandran, R.; Pieters, J.;
Keller, W.; et al. Global 3′ UTR Shortening Has a Limited Effect on Protein Abundance in Proliferating T Cells. Nat. Com-
mun. 2014, 5, 5465. [CrossRef]

51. Sandberg, R.; Neilson, J.R.; Sarma, A.; Sharp, P.A.; Burge, C.B. Proliferating Cells Express MRNAs with Shortened 3′ Untranslated
Regions and Fewer MicroRNA Target Sites. Science 2008, 320, 1643–1647. [CrossRef]

52. Spies, N.; Burge, C.B.; Bartel, D.P. 3′ UTR-Isoform Choice Has Limited Influence on the Stability and Translational Efficiency of
Most MRNAs in Mouse Fibroblasts. Genome Res. 2013, 23, 2078–2090. [CrossRef]

http://doi.org/10.1039/D0NP00024H
http://doi.org/10.1038/s41467-018-04112-z
http://doi.org/10.3390/biom11101525
http://doi.org/10.1016/j.molcel.2011.08.009
http://doi.org/10.1371/journal.pone.0049721
http://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://doi.org/10.1186/s13059-014-0550-8
https://github.com/InstitutCurie/3-SMART
http://doi.org/10.1093/nar/gkz918
http://www.ncbi.nlm.nih.gov/pubmed/31617559
http://doi.org/10.1101/gr.237826.118
http://www.ncbi.nlm.nih.gov/pubmed/30143597
http://doi.org/10.1158/2326-6066.CIR-13-0127
http://doi.org/10.1073/pnas.0902844106
http://www.ncbi.nlm.nih.gov/pubmed/19497879
http://doi.org/10.1016/j.immuni.2007.11.020
http://doi.org/10.1111/imm.13365
http://doi.org/10.1007/s12565-020-00525-3
http://doi.org/10.5483/BMBRep.2019.52.4.310
http://doi.org/10.3389/fimmu.2017.00765
http://doi.org/10.1016/j.molimm.2020.08.009
http://doi.org/10.3389/fimmu.2020.02151
http://doi.org/10.1158/2326-6066.CIR-14-0171
http://doi.org/10.1245/s10434-021-10111-0
http://doi.org/10.1002/eji.201545663
http://doi.org/10.1016/j.gene.2014.08.021
http://doi.org/10.1038/ncomms6465
http://doi.org/10.1126/science.1155390
http://doi.org/10.1101/gr.156919.113


Cancers 2022, 14, 1177 17 of 17

53. Waldron, J.A.; Tack, D.C.; Ritchey, L.E.; Gillen, S.L.; Wilczynska, A.; Turro, E.; Bevilacqua, P.C.; Assmann, S.M.; Bushell, M.; Le
Quesne, J. MRNA Structural Elements Immediately Upstream of the Start Codon Dictate Dependence upon EIF4A Helicase
Activity. Genome Biol. 2019, 20, 300. [CrossRef]

54. Wolfe, A.L.; Singh, K.; Zhong, Y.; Drewe, P.; Rajasekhar, V.K.; Sanghvi, V.R.; Mavrakis, K.J.; Jiang, M.; Roderick, J.E.; Van der
Meulen, J.; et al. RNA G-Quadruplexes Cause EIF4A-Dependent Oncogene Translation in Cancer. Nature 2014, 513, 65–70.
[CrossRef]

55. Christensen, A.K.; Kahn, L.E.; Bourne, C.M. Circular Polysomes Predominate on the Rough Endoplasmic Reticulum of Soma-
totropes and Mammotropes in the Rat Anterior Pituitary. Am. J. Anat. 1987, 178, 1–10. [CrossRef]

56. Christensen, A.K.; Bourne, C.M. Shape of Large Bound Polysomes in Cultured Fibroblasts and Thyroid Epithelial Cells. Anat. Rec.
1999, 255, 116–129. [CrossRef]

57. Mori, K.; Ogawa, N.; Kawahara, T.; Yanagi, H.; Yura, T. MRNA Splicing-Mediated C-Terminal Replacement of Transcription
Factor Hac1p Is Required for Efficient Activation of the Unfolded Protein Response. Proc. Natl. Acad. Sci. USA 2000, 97, 4660–4665.
[CrossRef]

58. Ma, W.; Mayr, C. A Membraneless Organelle Associated with the Endoplasmic Reticulum Enables 3′UTR-Mediated Protein-
Protein Interactions. Cell 2018, 175, 1492–1506.e19. [CrossRef]

59. Khong, A.; Matheny, T.; Jain, S.; Mitchell, S.F.; Wheeler, J.R.; Parker, R. The Stress Granule Transcriptome Reveals Principles of
MRNA Accumulation in Stress Granules. Mol. Cell 2017, 68, 808–820.e5. [CrossRef] [PubMed]

60. Namkoong, S.; Ho, A.; Woo, Y.M.; Kwak, H.; Lee, J.H. Systematic Characterization of Stress-Induced RNA Granulation. Mol. Cell
2018, 70, 175–187.e8. [CrossRef] [PubMed]

61. Franchini, D.-M.; Lanvin, O.; Tosolini, M.; Patras de Campaigno, E.; Cammas, A.; Péricart, S.; Scarlata, C.-M.; Lebras, M.; Rossi, C.;
Ligat, L.; et al. Microtubule-Driven Stress Granule Dynamics Regulate Inhibitory Immune Checkpoint Expression in T Cells. Cell
Rep. 2019, 26, 94–107.e7. [CrossRef] [PubMed]

62. Robert, C. LAG-3 and PD-1 Blockade Raises the Bar for Melanoma. Nat. Cancer 2021, 2, 1251–1253. [CrossRef]
63. Acharya, N.; Sabatos-Peyton, C.; Anderson, A.C. Tim-3 Finds Its Place in the Cancer Immunotherapy Landscape. J. Immunother.

Cancer 2020, 8, e000911. [CrossRef]

http://doi.org/10.1186/s13059-019-1901-2
http://doi.org/10.1038/nature13485
http://doi.org/10.1002/aja.1001780102
http://doi.org/10.1002/(SICI)1097-0185(19990601)255:2&lt;116::AID-AR2&gt;3.0.CO;2-O
http://doi.org/10.1073/pnas.050010197
http://doi.org/10.1016/j.cell.2018.10.007
http://doi.org/10.1016/j.molcel.2017.10.015
http://www.ncbi.nlm.nih.gov/pubmed/29129640
http://doi.org/10.1016/j.molcel.2018.02.025
http://www.ncbi.nlm.nih.gov/pubmed/29576526
http://doi.org/10.1016/j.celrep.2018.12.014
http://www.ncbi.nlm.nih.gov/pubmed/30605689
http://doi.org/10.1038/s43018-021-00276-8
http://doi.org/10.1136/jitc-2020-000911

	Introduction 
	Materials and Methods 
	Cell Culture and siRNA Transfections 
	Flow Cytometry Analysis 
	Western Blot 
	Polysomal Fractionation and Profiling 
	mRNA Preparation and Real-Time/Quantitative PCR 
	3'-Seq Experiments 
	3'-Seq Bioinformatic Analysis 
	Statistics 

	Results 
	Functional Importance of APA-Generated STAT1 Protein Isoforms for PD-L1 Gene Expression 
	Both STAT1 mRNA Isoforms Are Regulated by eIF4A Inhibition at the Translational Level 
	eIF4A Inhibition Regulates the Translation of mRNAs Encoding Key Immune Checkpoint Proteins in Activated T Cells 
	eIF4A Inhibition Differentially Regulates the Translation of APA Isoforms in Several Immune-Related Genes 

	Discussion 
	Conclusions 
	References

