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Parametric FDG-PET images offer the potential for automated identification of the different dementia syndromes.However, various
existing image features and classifiers have their limitations in characterizing and differentiating the patterns of this disease. We
reported a hybrid feature extraction, selection, and classification approach, namely, the GA-MKL algorithm, for separating patients
with suspectedAlzheimer’s disease and frontotemporal dementia fromnormal controls. In this approach, we extracted three groups
of features to describe the average level, spatial variation, and asymmetry of glucose metabolic rates in 116 cortical volumes. An
optimal combination of features, that is, capable of classifying dementia cases was identified by a genetic algorithm- (GA-) based
method. The condition of each FDG-PET study was predicted by applying the selected features to a multikernel learning (MKL)
machine, in which the weighting parameter of each kernel function can be automatically estimated. We compared our approach to
two state-of-the-art dementia identification algorithms on a set of 129 clinical cases and improved the performance in separating
the dementia types, achieving accuracy of 94.62%.There is a very good agreement between the proposed automated technique and
the diagnosis made by clinicians.

1. Introduction

Dementia is a chronic and progressive brain disorder, that is,
characterized by the progressive loss of memory and cogni-
tive impairment with an attendant disruption of normal daily
activities [1]. In 2010, it was estimated that 35.6million people
worldwide were suffering from dementia and it is predicted
that this number will double every 20 years [2]. Dementia
is now a global health and social problem [3]. The common
types of dementia include Alzheimer’s disease (AD), vascular
dementia (VD), Lewy body dementia (LBD), and frontotem-
poral dementia (FTD). AD accounts for about 65% of the
cases [4]. FTD is the second most common and accounts
for between 4% and 20% of all dementia cases in memory
disorders clinics [5]. Once dementia is clinically apparent, the
pathological changes are irreversible; hence, it is critical that,

for therapies to be affective, the underlying dementia must be
accurately diagnosed at an early stage. Cognitive tests, includ-
ing the mini-mental state examination (MMSE) [6], provide
an assessment of overall cognitive functioning but cannot dis-
criminate between the different dementias.

The molecular medical imaging technique of positron
emission tomography (PET) and anatomical imaging from
magnetic resonance (MR) imaging are able to detect focal
hypometabolism (PET) and atrophy (MR), which are charac-
teristics of neurodegenerative disorders [7–10]. These imag-
ing techniques are dependent upon the skill and experience
of the reader and interpretation can be time-consuming
and prone to operator bias. A computer-aided automated
dementia classification, thus, would provide a useful “second
opinion.” Automated dementia classification, however, is
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a challenging task, especially early in the course of the illness
[11]. A feasible automated approach would be based on learn-
ing the statistical models of each dementia from a set of train-
ing samples, where each training sample is associated with a
class label. Pattern detection techniques used in such a system
then shift from visual inspection by an expert to image-based
feature extraction and selection. Patterns that have been
considered include global features, computed from the entire
brain volume, and local features such as statistics, histograms,
and gradients calculated from volumes of interest (ROIs) [12–
14]. Advanced pattern classification techniques, including the
K-means clustering [15], artificial neural network [9, 10],
and support vector machine (SVM) [11, 12], have also been
applied. Davatzikos et al. [16] used the multiscaled principal
component analysis (PCA) to extract image features in T1-
weightedMR images and applied those features to a nonlinear
SVM to generate a real-valued score for each MR study
to differentiate AD and FTD from normal controls (NCs).
Hinrichs et al. [17] separated AD from patients with mild
cognitive impairment (MCI) and NCs by applying features
extracted fromMR and PET images to the multikernel learn-
ing (MKL) machine. Zhang et al. [18] extended this work to
a grid-search process to generate the optimal kernel weights
for the MKL machine and improved the dementia classifica-
tion.

Our aimwas to develop an automated approach to classify
AD, FTD, and NCs using a generic computer-aided system
to analyze 18-fluorodeoxyglucose (18F-FDG) PET images. In
our previous work, we used global and local features from
parametric FDG-PET images to identify the different demen-
tias [19]. The global features were obtained by applying
the entire gray matter volume to the linear transformation
derived from the PCA [20]. Local features were defined as
the statistics of voxel values in anatomical volumes of interests
(VOIs) and we adopted the AdaBoost technique to adaptively
combine those feature groups [21]. In this paper, we propose
the GA-MKL algorithm, which is a hybrid feature extraction,
selection, and classification approach, for the automated
identification of AD, FTD, and NCs using parametric FDG-
PET. Based on the observation that the volume loss and
reduced glucose metabolism in FTD are mainly seen in the
frontal and temporal lobes and the AD changes are usually
located more posteriorly in the parietotemporal cortices,
our approach extracted three groups of local features in 116
anatomical VOIs characterizing the average glucose metab-
olism rate in each VOI, the variation of metabolic rates in
each VOI, and the asymmetry of metabolic rates in left-right
VOI pairs. We selected a subset of the most effective features
from each group to reduce the redundancy in these groups
and formulated the feature selection task as an optimization
problem and solved it using the genetic algorithm (GA),
which has the ability to search the global optimum. To
identify each clinical condition, we applied three groups of
selected features to theMKLmachine, in which theweighting
parameter of each kernel was automatically estimated. We
compared our GA-MKL algorithm to two state-of-the-art
dementia classification methods on 129 clinical studies.

2. Materials and Methods

2.1. Data Acquisition. We used 129 clinical brain FDG PET
studies with a clinical diagnosis of AD in 46 and FTD in 43
and there were 40NCs. All studies were acquired on an ECAT
951/Rwhole bodyPET scanner (Siemens/CTI, Knoxville, TN,
USA) in the Department of Molecular Imaging at the Royal
Prince Alfred Hospital (Sydney, Australia) between 1998 and
2007. Approximately 400MBq of 18F-FDG was infused at a
constant rate over a 3-minute period. Two arterialised-venous
blood samples were taken at 10 minutes and 45 minutes after
injection to calibrate the population-based input function
using a method published previously [22]. PET scanning
commenced at least 30 minutes after tracer injection with
scan duration of 20 minutes. Each FDG-PET data volume
had a dimension of 128 × 128 × 31 and a voxel size of 1.84 ×
1.84 × 3.38mm3.The autoradiographic method [23] was used
to calculate parametric images of cerebral metabolic rate of
glucose consumption (CMRGlc).

2.2. Spatial Normalization. To differentiate cortical graymat-
ter from white matter, we used the automated anatomical
labeling (AAL) cortical parcellation map [24], which was
built by applying a set of anatomical parcellation rules to the
spatially normalized single subject high resolution T1 volume
provided by the Montreal Neurological Institute (MNI) [25].
It consisted of 116 anatomical VOIs, including 54 left-right
pairs. The transverse, coronal, and sagittal views of the AAL
cortical parcellation map are displayed in Figure 1. In these
images, different gray levels indicate different anatomical
volumes. A full list of all anatomical VOIs can be found in the
AAL package [24].

TheAAL cortical parcellationmap is well alignedwith the
template brain PET image supplied with the statistical para-
metric mapping (SPM, Version 8) package (Wellcome Trust
Centre for Neuroimaging, London, UK) [26], which con-
forms to the space defined by the international consortium
for brain mapping (ICBM) and approximates to the space
described in the atlas of Talairach and Tournoux [27]. Tomap
the anatomical labels from the atlas onto each study, we spa-
tially normalized each reconstructed CMRGlc image to the
SPM brain PET template using the spatial normalization
procedure suppliedwith the SPMpackage. Each spatially nor-
malized CMRGlc image had a dimension of 91 × 109 × 91 and
a voxel size of 2 × 2 × 2mm3.

2.3. Feature Extraction. After the spatial normalization, each
CMRGlc image and the AAL cortical parcellation map lie
in the same coordinate system. Consequently, 116 anatomical
VOIs can be identified on each study by using the correspond-
ing voxel labels in the AAL cortical parcellation map. For
each study 𝑖, we used the mean and standard deviation of
voxel values in each anatomical VOI in the spatially normal-
ized CMRGlc image as two groups of image features, denoted
by 𝑋(𝑀)
𝑖

= [𝑥
(𝑀)

𝑖,1
, 𝑥
(𝑀)

𝑖,2
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𝑖,116
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]. Metabolic asymmetry is also prominent in the demen-

tia syndromes; hence, we used the difference between the
mean voxel values of each of 54 left-right VOI pairs as
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Figure 1: Transverse (a), coronal (b), and sagittal (c) views of the AAL cortical parcellation map.

the third group of features, denoted by𝑋(𝐴)
𝑖
= [𝑥
(𝐴)

𝑖,1
, 𝑥
(𝐴)
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𝑥
(𝐴)

𝑖,54
]. As a result, for the 𝑖th brain PET study, we extracted

three groups of image features, 286 features in total, denoted
by 𝑋
𝑖
= {𝑋

(𝑀)

𝑖
, 𝑋
(𝑆)

𝑖
, 𝑋
(𝐴)

𝑖
}. These three groups of features

characterized the average cerebralmetabolic rate and the spa-
tial variation of cerebral metabolic rates in each VOI and the
asymmetry in glucose metabolism between the left and right
brain hemispheres. Since the image features could have a vari-
able dynamic range over all studies, each of the 286 features
was normalized by subtracting the samplemean and dividing
by the sample standard deviation before applying subsequent
processing.

2.4. Feature Selection. Although 116 anatomical VOIs were
used in feature extraction, not every VOI was equally impor-
tant for dementia classification. So we removed those features
that contributed little to the classification. Feature selection
was performed on a group-by-group basis. Let the 𝐶th group
of features extracted from 𝑁 brain PET studies be denoted
by 𝑋(𝐶) = [𝑋(𝐶)

1
, 𝑋
(𝐶)

2
, . . . , 𝑋
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]
𝑇 and 𝑁

𝐶
is the number of features in this group.

LetΦ be a𝑁
𝐶
-dimensional binary vector, where 1 means that

the corresponding feature is selected and 0 means that the
feature is discarded. Each binary vector Φ acts as a mask to
“filter” all features to preserve the selected ones.The subset of
selected features can be denoted byΦ⊚𝑋(𝐶). Our aim was to
identify a subset of features that produce the most accurate
classification of all studies. Let the accuracy of classifying the
data set 𝑋(𝐶) with the classifier 𝑐 be formally represented as
𝑓
𝑐
(𝑋
(𝐶)
); the feature selection can be formulated into the fol-

lowing optimization problem:

Φ
∗
= argmax

Φ

𝑓
𝑐
(Φ ⊚ 𝑋

(𝐶)
) . (1)

Due to the relatively large number of features, it is not
feasible to solve this combinatorial optimization by attempt-
ing every possible combination of features.Thus, we used the
binary-coded GA (bGA) to find a satisfactory feature subset
[28]. The GA is a heuristic-guided parallel and stochastic
search strategy, searching through an evolving population
of individuals. The bGA-based optimization started with
a population of 500 randomly initialized binary individu-
als, each representing a candidate solution Φ

𝑖
and having
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the fitness value𝑓
𝑐
(Φ
𝑖
⊚𝑋
(𝐶)
). Since the number of studieswas

relatively small and the number of features is large, SVMwith
a linear kernel function was adopted as the classifier [29]. To
efficiently use all available studies, the 10-fold cross validation
scheme was performed. All PET studies were randomly par-
titioned into 10 equal size subsamples. Of the 10 subsamples,
a single subsample was retained as the validation data for
testing the classifier, and the remaining 9 subsamples were
used as training data. The cross-validation process was then
repeated 10 times, with each of the 10 subsamples used once
as the validation data.The fitness of the individual that repre-
sented the solutionΦ

𝑖
was then defined as the average classifi-

cation error achieved in the 10-fold cross validation when the
selected featuresΦ ⊚ 𝑋(𝐶) were used.

During the evolutionary optimization process, each new
generation was created by using several genetic operators,
including the best solution inheritance, roulette wheel selec-
tion, one-point crossover, random mutation, and gene mod-
ification. Since the classifier prefers lower dimensionality of
the feature space, gene modification is designed to produce
new solutions by modifying the current optimal solution by
discarding 1 to 3 selected featureswhichmake the least contri-
bution to the fitness. To avoid the optimization process being
trapped in a local maximum, we used a variable mutation
probability, given as follows:

𝑝
𝑚

(𝑛+1)
= {

𝑝
𝑚

(𝑛)
, 𝑓

𝑚

(𝑛)
> 𝑓
𝑚

(𝑛−1)
,

𝛼
𝑝𝑚
⋅ 𝑝
𝑚

(𝑛)
, otherwise,

(2)

where𝛼
𝑝𝑚

was the increasing rate ofmutation probability and
𝑝
𝑚

(𝑛) and 𝑓
𝑚

(𝑛) are the mutation probability and the highest
fitness of the 𝑛th generation. When the mutation probability
reaches its threshold 𝑇

𝑝𝑚
, it will be reset to its initial value

𝑝
𝑚

(0) to prevent the bGA from degenerating to random
searching. Another operator is triggered when the evolution
has been halted for more than 4 generations. In this case, all
individuals whose fitness equals the highest fitness will be
replaced by their offspring produced by mutating. This oper-
ator aims to diversify genes in the population and thus speed
up the evolution. Finally, the evolution terminates when the
predetermined number of generations is reached. In the final
population, let the individual with the highest fitness be
denoted by Φ∗. The optimal subset of features we selected
is 𝑋∗(𝐶) = Φ∗ ⊚ 𝑋(𝐶) and the overall selected feature set is
denoted by𝑋∗ = {𝑋∗(𝑀), 𝑋∗(𝑆), 𝑋∗(𝐴)}.

2.5. MKL-Based Classification. Based on the selected fea-
tures, the classification of FDG-PET studies was obtained by
using a MKL machine, which is a linear combination of soft-
margin SVMs with multiple linear and nonlinear kernels [30,
31]. The prototype soft margin SVM is defined as the follow-
ing minimization problem:

min
w,𝜉,𝑏

(𝐶
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𝑖
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(3)

where 𝜉
𝑖
is the slack variable for each data sample 𝑖, w is the

vector orthogonal to the decision hyperplane, 𝑡
𝑖
is the target

value for feature vector𝑋∗
𝑖
, and𝑁

𝑇
is the number of training

cases.The dual optimization problem of (3) derived using the
Lagranian technique is
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(4)

where 𝛼 = [𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑁𝑇
] is the Lagranian multiplier. Gen-

erally, the inner product 𝑋∗𝑇
𝑖
𝑋
∗

𝑗
can be denoted by a linear

kernel function 𝐾(𝑋∗
𝑖
, 𝑋
∗

𝑗
). In this study, we employed the

linear, second-order polynomial and Gaussian kernel func-
tions to handle three groups of selected features. Thus, the
objective function in (4) can be rewritten as
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where 𝛽
𝐶
> 0 is the weighting parameter for the 𝐶th feature

group and three kernel functions are as follows:
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Different from traditional MKL approaches [17, 18], the
optimal weight vector [𝛽

𝑀
, 𝛽
𝑆
, 𝛽
𝐴
] in our approach was

automatically estimated by the real-codedGAwith the proce-
dures similar to those used in feature selection.TheLagranian
multiplier 𝛼was obtained by using the traditional SVM tech-
nique. For each test case 𝑋∗

𝑗
, we first calculated the vote for

each possible class label 𝑡
𝑖
(𝑖 = 1, 2, . . . , 𝑁

𝑇
) using the trained

MKL:

𝑦
𝑗𝑖
= 𝛼
𝑖
∑

𝐶∈{𝑀,𝑆,𝐴}

𝛽
𝐶
𝐾
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𝑖
, 𝑋
∗(𝐶)

𝑗
) . (7)

The test case was grouped into the class that had the max-
imum accumulated votes.

2.6. Summary. The scheme of the proposed GA-MKL
dementia classification algorithm is illustrated in Figure 2.

2.7. Evaluation. We compared our GA-MKL algorithm to
the methods reported by Zhang et al. [18] and Xia et al.
[21], which employ the GA-based feature selection andMKL-
based classification, respectively. We adopted a 10-fold cross
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Figure 2: Scheme of the proposed GA-MKL dementia classification algorithm.

validation scheme to ensure a comprehensive comparison. In
each experiment, 90%of studies were used to train the feature
selection and classification system and the other 10% of stud-
ies were left for testing. In this way, it was guaranteed that test
data were used to train the algorithm. After the experiment
was repeated 10 times, each study was then tested once. The
performance of each approach was evaluated for overall clas-
sification accuracy, which was calculated as the percentage
of correctly classified studies. Similar experiments were per-
formed to differentiate studies from each pair, including AD
versus NCs, FTD versus NCs, and AD versus FTD. For each
pair, the performance of each algorithm was measured by
accuracy, sensitivity (true positive rate), and specificity (true
negative rate), which were defined as follows:

accuracy =
number of correctly classified cases

total number of cases
,

sensitivity = number of true positive cases
number of positive cases

,

specificity =
number of true negative cases
number of negative cases

.

(8)

3. Results and Discussion

Table 1 lists the accuracy of the three algorithms. It shows that
the proposed GA-MKL algorithm achieves an identification
accuracy of 94.62%, substantially higher than the accuracy
achieved by other two algorithms.

In Table 2, the sensitivity, specificity, and accuracy for the
pairs of conditions are recorded. Our GA-MKL algorithm
showed the best results, in particular, when separating FTD
from NCs. However, in the differentiation of AD from FTD,
our algorithm had slightly lower specificity when compared
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Table 1: Accuracy of three dementia identification algorithms on
129 FDG-PET studies.

Algorithm
in [18]

Algorithm
in [21]

Proposed GA-MKL
algorithm

Accuracy 89.23% 91.47% 94.62%
The bold font refers to the best performance obtained in each test.

Table 2: Performance of the algorithm in binary comparisons.

Algorithm
in [18]

Algorithm
in [21]

Purposed GA-MKL
algorithm

AD versus normal
(86 studies)

Sensitivity 93.48% 91.30% 97.82%
Specificity 97.50% 97.50% 100%
Accuracy 91.81% 93.19% 98.89%

FTD versus normal
(83 studies)

Sensitivity 93.02% 95.35% 100%
Specificity 97.50% 95.00% 100%
Accuracy 97.64% 95.42% 100%

AD versus FTD
(89 studies)

Sensitivity 91.30% 91.11% 95.65%
Specificity 97.67% 85.71% 95.35%
Accuracy 90.83% 87.36% 94.55%

The bold font refers to the best performance obtained in each test.

to Zhang et al. [18], but it still produced the highest sensitivity
and accuracy across the three algorithms.

All algorithms have difficulty in separating AD from FTD
and this problem is also recognized in clinical practice [32].
We applied the paired 𝑡-test to these image features to explic-
itly display this problem.Thepercentage of data in each group
rejecting the hypothesis that those data are drawn from the
normal distribution with an identical mean and variance is
shown in Table 3. We found that the majority of data rejected
the identical distribution hypothesis when mixing dementia
cases with normal controls, whereas only 43.7% data rejected
this hypothesis when AD and FTD cases were grouped
together. These results show that the features extracted and
selected by our algorithm are more capable of separating AD
or FTD cases from normal controls but less capable of differ-
entiating AD from FTD. Image features that can more effec-
tively characterize the asymmetric hypometabolism in FTD
will be further investigated in our future work.

In our GA-MKL algorithm, image features were extracted
in all anatomical VOIs defined by the AAL cortical parcella-
tionmap [24], without evaluating the relevance between each
VOI and the dementia type. Hence, feature selection plays a
pivotal role in improving the performance of dementia classi-
fication. We formulated this task as a maximization problem
in (1) and solved it using the GA. The optimal subset of
features can be determined in alternative ways. For example,
as a classical statistical hypothesis test method, 𝑡-test has been
adopted to select features in the formof bagged 𝑡-test [33] and

Table 3: Percentage of data in each group rejecting the hypothesis
in paired 𝑡-test.

AD versus
normal

(86 studies)

FTD versus
normal

(83 studies)

AD versus FTD
(89 studies)

% of rejecting
the hypothesis 81.80% 71.70% 43.70%

Table 4: Accuracy of our algorithm with different feature selection
methods.

Without feature
selection

𝑡-test-based
feature selection

Proposed
feature selection

Accuracy 80.03% 83.96 % 94.62%
The bold font refers to the best performance obtained in each test.

modified 𝜏-statistics [34] in research areas such as genotype
data classification [35] and hippocampal shape features dis-
crimination [36]. In our work, we also attempted to select
features based on the 𝑡-test in an iterative manner such as the
forward/backward search [37]. Table 4 gives the classification
accuracy when features are not selected or selected by using
the 𝑡-test method or the proposed GA. Our results show that,
if all features are used or the features selected by 𝑡-test, our
algorithm has much lower accuracy. This is mainly because
the features with less discriminatory power do not contribute
to the classification and decrease the performance of a
classifier, since they increase the dimensionality of the feature
space. It also explains why dimensionality reduction always
plays a pivotal role in high-dimensional pattern classification.
In the meantime, the 𝑡-test-based feature selection method
ignores the interrelationship among multiple features. Nev-
ertheless, it is widely recognized that a feature considered to
be useless in itself may help improve the overall separability
of the sample data if it is combined with other features [38].

We chose the MKL machine to classify the FDG-PET
studies. Lanckriet et al. [31] reported that MKL is a semidefi-
nite programmingmechanism, which is bonded to SVMnat-
urally and is suitable for handling data from heterogeneous
data sources. The selection of the kernel function for each
feature group is also critical to our algorithm. In our experi-
ments, 62 out of 116 features were selected in the first group,
58 out of 116 in the second group, and 23 out of 54 in the third
group. The advantage of SVM is that low-dimensional fea-
tures can be converted into high-dimensional space, in which
data samples may have improved separability, by using non-
linear kernel functions. Thus, we applied the linear and
second-order polynomial kernel functions to the first and
second groups of features, which have higher dimensionality,
and applied the nonlinear Gaussian kernel to the third group
of features. We swapped the three kernel functions and the
accuracy is listed in Table 5. It shows that the settings that we
used achieved the best results.

It should be noted that we used the clinical diagnosis as
gold standard classification for each PET study. It is accepted
that the clinical diagnosis can be problematic and a definitive
diagnosis can only be made with pathological confirmation
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Table 5: Accuracy of our algorithmswhen different kernel functions
were used.

Trials 1st feature
group𝑋(𝑀)

𝑖

2nd feature
group𝑋(𝑆)

𝑖

3rd feature
group𝑋(𝐴)

𝑖

Accuracy

1 Linear
kernel

Polynomial
kernel

Gaussian
kernel 94.62%

2 Linear
kernel

Gaussian
kernel

Polynomial
kernel 93.60%

3 Polynomial
kernel

Linear
kernel

Gaussian
kernel 93.05%

4 Polynomial
kernel

Gaussian
kernel

Linear
kernel 90.15%

5 Gaussian
kernel

Linear
kernel

Polynomial
kernel 90.20%

6 Gaussian
kernel

Polynomial
kernel

Linear
kernel 93.16%

The bold font refers to the best performance obtained in each test.

Table 6: Accuracy of the three algorithms on the larger dataset (𝑛 =
163).

Algorithm
in [18]

Algorithm
in [21]

Purposed GA-MKL
algorithm

Accuracy 71.07% 82.83% 89.99%
The bold font refers to the best performance obtained in each test.

after death. The patients in our cohort were all assessed by
experienced neurologists/geriatricians in a dementia clinic
setting and cases without a diagnosis of probable AD or
FTDwere excluded. Hence, a relatively accurate classification
rate was achieved by all algorithms. However, it would be
expected that all the algorithmswould performpoorly if atyp-
ical studies were included in training and testing. So we also
selected 12 AD, 11 FTD, and 11 normal cases, which were
described by doctors as “atypical,” and added them to the
dataset. The performance of three algorithms on these 163
studies is shown in Table 6. All algorithms have poorer accu-
racy but our GA-MKL algorithm was still the most accurate.

4. Conclusion

We have proposed a novel dementia classification algorithm,
namely, the GA-MKL algorithm, which extracts three groups
of features, selects a subset of features from each group using
the GA, and classifies the selected features using the MKL
machine with automatically estimated weighting parameters.
Our results show that the GA-MKL algorithm produces
improved sensitivity, specificity, and accuracy when com-
pared to two other state-of-the-art approaches. We chose
FDG-PET images to test our algorithm, but we suggest that
our algorithm is generic and can be applied to other scanning
techniques such as amyloid imaging scans using the Pitts-
burgh compound B (PiB) [39]. In future work, we will apply
our methodology to these newer PET ligands.
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