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Abstract

This paper introduces a supervised learning method for finding diagnostic regions of interest in histopathological
images. The method is based on the cognitive process of visual selection of relevant regions that arises during a
pathologist’s image examination. The proposed strategy emulates the interaction of the visual cortex areas V1, V2
and V4, being the V1 cortex responsible for assigning local levels of relevance to visual inputs while the V2 cortex
gathers together these small regions according to some weights modulated by the V4 cortex, which stores some
learned rules. This novel strategy can be considered as a complex mix of “bottom-up” and “top-down”
mechanisms, integrated by calculating a unique index inside each region. The method was evaluated on a set of
338 images in which an expert pathologist had drawn the Regions of Interest. The proposed method outperforms
two state-of-the-art methods devised to determine Regions of Interest (RoIs) in natural images. The quality gain
with respect to an adaptated Itti’s model which found RoIs was 3.6 dB in average, while with respect to the
Achanta’s proposal was 4.9 dB.

Background
A typical pathology laboratory examines more than 100
microscopical slides per day [1], a scenario in which its
workflow is based on the interaction of the pathologists
with a conventional microscope. Digitization brings sev-
eral advantages over the physical slides at facilitating
communication between specialists, annotation of rele-
vant structures and interaction between pathologists and
virtual slides [2]. However, the lack of standardized cri-
teria to preserve data reliability -from the early captur-
ing process to the final interpretation-, limits the
routine used of virtual microscopy techniques, in despite
of its obvious technical advantages, namely, second opi-
nions, team work, image annotation, deterioration-free
digital storing. Such a standard should provide a robust
frame, allowing the pathologists to achieve proper diag-
noses, since it should also garantee that the image data
will be free of any artifact introduced during the slide
preparation, digitization, transmission or visualization.
This standard should deal with three main questions:
1) What quality level meets the minimal diagnosis condi-
tions, avoiding wrong diagnosis decisions? (legal aspect),
2) What quality level is needed for accurate diagnoses?

(medical aspect) and, 3) How to measure the image qual-
ity for diagnosis? Which is the maximum quality level
given by an automated process? (technical aspect) [3].
Moreover, in terms of the diagnosis quality, it is well
known that different types of slides require different level
of quality, i.e., simple and routine slides require lower
quality levels than complex and rarely ones [4]. Further-
more, image regions, considered as relevant, require in
general higher quality levels.
A reliable determination of clinically meaningful

Regions of Interest (RoIs) in medical images is at the
very base of strategies for selective image analysis, adap-
tive delivering of image data and clever compression
algorithms. A proper determination of these RoIs would
allow to concentrate any processing effort on specific
image areas, relevant within a particular context. This
fundamental statement would improve the processing
performance in applications such as medical education,
medical training, decision support systems, virtual
microscopy and telepathology, among others [5-7]. The
RoI analysis would allow to efficiently cope with large
quantities of data, a crucial issue in many medical speci-
alities [5,8,9]. For instance, a 1 cm2 digitization of a phy-
sical slide at a level of × 20 magnification, results in a
microscopical virtual slide of about 4 GB [10], a real
time challenge even for modern communication
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networks. In the pathology literature, there exist several
studies that have shown that not all information in a
slide is relevant [11,12]. Expert pathologists draw their
attention to some particular structures when exploring a
microscopical slide [12]. Different approaches have
attempted to find these RoIs with any level of repeat-
ability, but so far the typical one has been to manually
draw these regions [11]. This method is, obviously, time
consuming and presents high inter-observer variability,
in some studies up to a 20% [13]. Automatic RoI extrac-
tion in histopathological images is a very challenging
task because of their very complex color, shape and
architectural variabilities [14]. This picture is even worst
if one thinks that histological samples are randomly
taken from a lesion and that the anatomical biopsy is
cut at different orientations and locations [15]. The
naive use of current low level-RoI-extraction methods
for medical images would probably fail since they disre-
gard main histopathological issues such as particular the
tissue architecture and the relations between different
structures [16,17]. An expert nevertheless is capable to
weight each of them and figure out a very precise diag-
nosis. Attention is herein thought of as the system capa-
city to select relevant information in function of a
particular task. Some computational attention models
rely on low-level image features to locate the relevant or
conspicuous information within an image. One of these
“bottom-up” models of attention, is the one proposed by
Itti et al. [18]. Other theoretical and computational
models of attention rely on “top-down” information, i.e.,
memory (semantic, episodic, declarative) and specific
behavioral tasks [19].
The main contribution of this work is to model the

visual process of recognition by bringing together the
effect of the simpler cells of the visual cortex V1
(bottom-up information) and its interaction with more
complex structures: V2 and V4 cortexes (top-down
information). Through these interactions, this model
emulates the pathologist’s first examination step where
she/he defines and separates high informative diagnostic
regions [20]. Thus, the idea is to capture groupings, not
necessarily neighbors, endowed with similar histopatho-
logical meaning. The method combines the advantages
of a low level image characterization with a high discri-
minant power in terms of tissular properties and spatial
grouping, information learned from the pathologists.
This novel strategy was assessed in basal cell carcinoma
images stained with Hematoxylin-Eosin, but is extensible
to other histopathological images since the methodologi-
cal analysis is alike in many other medical entities. This
carcinoma is a representative tumorous pathology con-
stituted of abnormal epithelial and connective tissue
arrangements, which are also found in many other
pathologies [15]. Our results demonstrated more similar

RoIs to the pathologist’s selections than those obtained
with two classic strategies of visual attention.
This article is organized as follows: the problem and

some previous works are introduced in this section, Sec-
tion Materials and Methods is devoted to describe the
proposed method for finding relevant information
regions, evaluation and experimental results are pre-
sented in Section Results and some conclusions and per-
spectives are discussed in the last Section.

Related Work
The problem of selecting RoIs has been approached in
several medical image modalities. For instance Karras
et al. [16], using gray scale pictures from abdominal
cancer, assumed that regions with high density of repeti-
tive patterns were more relevant than others. A robust
description was obtained by using a vector of texture
characteristics like energy, correlation, inverse difference
moments and entropy. These features were the input to
a fuzzy c-means clustering algorithm that classified
regions as important or non-important. Gokturk et al.
[8] claimed that relevant information in CT colon
images was mainly due to the boundaries, when they are
separated by air from other tissues and are recognized
as variations on the gray scale levels. This kind of strate-
gies could not be straightforwardly applied to histo-
pathology images because these techniques ignore
information such as color, intensity or spatial correlation
[17,21], crucial in these images since they are basically
characterized by a repetitive complex mix of these pat-
terns. A classical approach, in natural images, has con-
sisted in finding RoIs with high spatial edge density [22].
Again, this concept could hardly be applied to histo-
pathological images because they contain regions with
high edge concentration without clinical meaning [23]
so that this approach would surely fail.
In the histopathological domain, a similar problem has

been previously approached in automatic cancer diagno-
sis, case for which the aim was to automatically decide
on the existence of cancer by examining the tissue prop-
erties [24]. These properties were characterized at two
levels: cellular, focusing on cell abnormalities, [25,26]
and tissular, by description of changes in cell distribu-
tions [27]. The analysis in both cases was performed by
low level image characterization and a statistical analysis
to discriminate normal from cancerous tissues. A large
variety of low level image features has been used in his-
topathology: morphological, textural, fractal, topological
and intensity based features [24]. These features are
always computed at the pixel level, regardless the funda-
mental fact that histopathological images are constituted
by objects [20]. A recent work in this direction was pro-
posed by Tosun et al. [14]. In colon biopsy images, they
approached the histopathological objects by circular
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primitives, upon which they computed an homogeneity
measure. A growing and merging algorithm was used to
segment cancerous tissues by minimizing these mea-
sures. Unfortunately, these algorithms highly depend on
many non-intuitive parameters [14,27], which must be
manually tuned.
A pathologic diagnosis is the result of a complex ser-

ies of activities mastered by the pathologist. Classical
psychophysical theories suggest that complex visual
tasks, such as histopathology examination, involve high
degrees of visual attention [20]. There exists evidence
showing that focal attention, displayed serially to differ-
ent locations, integrates the constituting low level fea-
tures of an object [28]. These findings have inspired
several computational algorithms that somehow search
to structure the low level features [29]. One of the most
influential is the one proposed by Itti et al. [18], a pure
bottom-up attention model that locates relevant foci,
based on a conjoint map of three low level characteris-
tics: color, intensity and orientation. Although this
method has been successfully tested in natural images,
primary results on histopathological ones were not (as it
would be described later). The relevant semantic infor-
mation of these images is mainly constituted by repeti-
tive patterns, which cannot be linearly reconstructed
from the three basic features used in Itti’s model. As far
as we know, the unique visual model has been proposed
by Achanta et al. [30], aiming at identifying regions for
which the level of attention is as uniform as possible
under the restriction that the region must conserve
edges. A well defined object is defined at segmenting
the original image with a mean-shift clustering algo-
rithm, on which the saliency mean is computed within
the resulting areas. These computational models have
been used to characterize RoIs in natural images [31],
but their use in medical images has remained very
limited.

Materials and methods
Images and Ground Truth
A total of 338 histological microscopical fields of view of
different types of basal cell carcinoma, sampled from 25
randomly chosen patients, were selected for this evalua-
tion. The set of evaluation was composed of microscopi-
cal fields taken at different objective magnifications,
namely, 37 were captured using a × 4, 148 using a × 10,
83 using a × 20 and finally 70 using a × 40 magnifica-
tion. Each biopsy was formalin-fixed and stained with
Hematoxylin-Eosin dyes. Microscopical fields were digi-
tized with a Nikon eclipse E600 system, through a
coupled Nikon DXM1200 camera, and stored in JPEG
format at a 1280 × 1024 resolution. An expert patholo-
gist, with at least five years of experience, selected the
digitized fields of view and manually segmented relevant

regions. One of these manual segmentations is shown in
Figure 1.
Notice how difficult is to define a border, the tissue

inside an islet is more cluttered than the outside, and
the carcinoma is highlighted by Haematoxylin-eosin. It
should be strengthen out that in this kind of images, the
color is very alike so that this characteristic has a low
discriminative value.

Method Overview
A routine pathologist’s visual examination is carried out
in two sequential phases, when exploring a microscopic
slide. An initial search for coarse tissue structures at a
“low zoom” [20,32] to separate the image into large
regions, and a subsequent finer feature characterization
at a “higher zoom” within these regions to identify cellu-
lar structures [33]. On the other hand, other authors
have found that pathologists analyze two main informa-
tion sources within a slide: 1) Information associated to
biological structures, looking for abnormalities such as
atypical nuclei sizes, external material or structural dis-
orders, and 2) Non-objectual information, mainly related
to information about the type of tissue or disorder.
Somehow, a combination of these sources, leads to a
precise diagnosis [4,34].
The approach proposed herein attempts to emulate the

pathologist’s initial examination step where she/he defines
the different regions of the image according to the inher-
ent properties of each tissue type, such as level of visual
attention and texture. Our approach tries to identify
which of these regions are of diagnostic interest in a simi-
lar way as a pathologist decides where to look for finer
details. The idea is to capture groupings, not necessarily
neighbors, endowed with histopathological diagnostic

Figure 1 Ground Truth. Illustration of a ground truth, drawn by an
expert pathologist.
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meaning. These groups are determined by the similarity
relationships between the objects inside them. The activa-
tion degree within each group is regulated by specific
characteristics learned from the task. Finally the groups
compete among them to win the pathologist attention.
The proposed strategy (Figure 2) emulates the interac-

tion of the visual cortex areas V1, V2 and V4 [35,36].
Our model, based on this type of associations, integrates
these three stages as follows: 1) Using the conventional
Itti’s model, local conspicuity regions are set, using
exclusively low level features. 2) The conspicuity maps,
coming from the precedent phase and an oversegmenta-
tion, are the input to this stage. The oversegmentation
algorithm minimizes the within-class variance whose
parameters are learned from the problem. The V2 func-
tion integrates the low level features with the overseg-
mentation by averaging the local conspicuity into each
region. 3) The saliency map is computed using two
types of information: a measure of the texture pattern

(simulates the V4 ® V2 interaction) and the previously
described conspicuity maps (V1 ® V2 interaction).
As a first approximation to this problem, there is no

reason to prefer texture or low level features. Therefore,
we linearly combine them and an independent threshold
on each of the segmented regions was defined as the
calculated saliency value which was larger than the sal-
iencies regions mean.

Grouping structures in histopathological images
Visual attention is the ability of a biological or artificial
system to find relevant region in a scene [29]. In the
particular case of humans, they can not only find rele-
vant regions, but also recognize complex structures in a
scene. The Gestalt laws for proximity and resembling,
illustrated in Figure 3 have motivated the fundamental
hypothesis of our model, i.e., a histological tissue is a
grouping of objects which resemble in their very basic
structural properties.

Figure 2 The proposed method diagram. The proposed method finds structures with diagnostic meaning and assigns a level of relevance to
each one. At the first step, our method split the image into several structures. After that, the low level features compete locally to attract the
user attention. Then the high level features regulate the activation map. Finally it identifies the relevant regions in the image.
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Visual systems reach grouping by clustering, proximity
and resembling. Any strategy should at least look for
any of these basic properties, just like carcinoma stained
images have cluttered regions composed of simple
structures with similar average intensity. The grouping
characteristics defined before are herein used to seg-
ment, based on a comparison of the intraclass and
interclass variances regarding the intensity value of each
pixel. This strategy was implemented using the Fel-
zenszwalb algorithm [37] as follows: 1) pixels are sorted
out by similar intensity value, and 2) neighborhoods are
organized by grouping pixels whose intensity values
were defined under a variance threshold. This method
provides a still-segmentation strategy which is inspired
from psychological grouping theories [38]. The main
idea is that two regions are perceived as different if dif-
ferences between them are larger than differences
within them, according to a learned rule. The problem
is defined in terms of a graph, where a non-linear deci-
sion function specifies if two elements c1, c2 in a graph
partition should merge or not. The decision function
reads as:

M(c1, c2) =
{

1, if Dif fbR(c1, c2) < min
{
Dif fwR(c1) + τ (c1), Dif fwR(c2) + τ (c2)

}
0, otherwise (1)

The two regions c1 and c2 are merged together when

M (c1, c2) is one, τ (c) =
k
|c| depends on the size of c (|c|)

and establishes an evidence for a boundary between two
components, k is a scaling factor that sets preferences
for specific component sizes, DiffwR(c) corresponds to a
within-region difference which stands for the largest dif-
ference inside the component, while DiffbR(c1, c2) is a
between-region difference that looks for evidence of a
boundary between both components [37].

Automatic Still-Segmentation of Histopathology Images
The previous algorithm can be used to split the histo-
pathology image into its constitutive tissue parts.
As observed in Figure 4 the quality partition is highly
dependent on the segmentation parameters.
A manual selection of these parameters is always possi-

ble, but this is by no means an intuitive task for the expert.
Therefore, we proposed an energy-based learning method
for selecting an optimal set of segmentation parameters,
based on manually segmented images. Let I a histopatholo-
gical image, W a parameter vector and C the still-segmen-
tation, resulting of running a segmentation algorithm over
the image I with parameters W. Provided that it is possible
to define an energy function E(W, G, I) that quantifies the
similarity between the still-segmentation C and a ground
truth partition G, then a set of training samples S = {(Ii,
Gi), i = 1, 2, ... p} corresponding to manually segmented
images, will be used for finding the W* optimal vector
which solves the following optimization problem:

W∗ = min
W∈�

1
p

p∑
i=1

E(W, Gi, Ii) (2)

with Ω the set containing any possible parameter vec-
tor. For this problem to be solved it is necessary to
define the structure of the energy function E(W, G, I).
Energy Function
The proposed energy function must quantify the simi-
larity between two image partitions: the generated by
the pathologist’s selection and the produced by the seg-
mentation method. This measure should cope with two
different conditions: the perceptual relevance of the
region center should be large and the measure should
penalize miss-segmentations, i.e., classification is mainly
addressed to regions rather than to pixels. We used the
Mezaris metrics [39], an extension of another perceptual
measure [40] which weights the visual relevance of any
foreground-background segmentation:

q(g, c) = qMF(g, c) + qAB(g, c) (3)

where qMF (g, c) amounts to the missing foreground
pixels (MF) and qAB (g, c) to the false background pixels
(AB), weighted by their distances to the closest region
borders, as follows:

qMF(g, c) =
DMF max∑

i=1

wMF(i) · ∣∣ci ∩ gc
∣∣ (4)

qAB(g, c) =
DAB max∑

i=1

wAB(i) · ∣∣cc
i ∩ g

∣∣ (5)

here c is the segmented RoI, g the ground truth, {·}c

denotes complement, ci = {x |x Î c, d(x, cc) = i}

Figure 3 Gestalt law. Gestalt laws for proximity and resembling.
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corresponds to the set of pixels inside the RoI at the
same distance from its border, d(x, c) is the distance
between the pixel x and the region c (in this case the
Euclidean distance), cc

i = { x |x Î cc, d(x, c) = i} stands
for the set of pixels outside the RoI at the same distance
from its closest border, wMF (i) and wAB (i) are the
weighting functions for the missing foreground pixels
and the false background pixels, both growing linearly,
while DMF max and DAB max are the maximum permitted
distance for the missing foreground pixels and the false
background pixels, respectively.
Measure 3 was originally proposed for evaluating the

segmentation quality in background-foreground segmen-
tations, an approach which will fail in segmentations
with multiple components. A multicomponent measure-
ment was proposed by Mezaris et al. [39], exploring
three error sources: inaccuracy of the region boundary
location, under-segmentation and over-segmentation
effects. For so doing, let

C = {c1, c2, ..., cK } a still-segmentation composed of
regions ck and G = {g1, g2, ..., gQ} the ground truth parti-
tion. The inaccuracy is quantified by comparing the
ground truth and the segmented images as correspond-
ing region pairs. This correspondence is obtained by
associating each ground truth region gq to the still-
segmentation region ck with which the overlapped area
is maximum. Once this association is established, the
relationship is unique and unalterable. The inaccuracy
ebl for any pair of regions is computed as follows:

ebl(A) =
∑

(ck,gq)∈A

q(ck, gq)

where A is a set that contains the pairs of correspond-
ing regions. Given that ck and gq constitute a unique
couple and none of them can have a new link to
another region, it is possible to obtain non coupled
regions in C and G. A particular segmentation may
result in a partition in which some regions have not a

Figure 4 Segmentation parameter selection. Results of a wrong selection of the segmentation parameters. Panel at top-left shows the
original image. At the top-right, the RoI manually segmented by the pathologists. At the bottom-left, a result of oversegmentation and finally, at
the bottom-right, a result of under-segmentation.
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corresponding pair in two different situations: over and
under segmentations, see Figure 4. When the actual
region in the ground truth image corresponds to
many regions in the segmented image, we are over-
segmenting, case in which the measure penalize it by
adding a term that takes into account the area defined
by all these regions, as follows:

eoυ(Ac) =
∑
ci∈Ac

qMF(B, ci)

where eoν is the over-segmentation error, Ac is the set
of the ci non coupled regions and B is a black image.
Similarly, when there is a non coupled region in G and
multiple regions in the still-segmentation image C, the
under-segmentation error is calculated as follows:

eun(Ag) =
∑
gi∈Ag

qMF(B, gi)

where eun is the under-segmentation error and Ag is
the set of the gi non coupled regions. These error
sources can be combined in a single quality segmenta-
tion measure, that can be used as energy function for
the learning optimization problem 2:

E(W, G, I) = ebl(A) + eoυ(Ac) + eun(Ag) (6)

The optimal segmentation parameters were found by a
pattern search method [41], since that the energy func-
tion is not derivable.

Automatic parameter estimation
Our model calculates multiscale “conspicuity” maps for
three low level characteristics, i.e., intensity, color and
orientation. These conspicuity maps are normalized and
summed into the augmented conspicuities maps, whose
maxima define the most relevant location. This normaliza-
tion preserves information which is localized while other
types of noise are ruled out. However, these low level fea-
tures are not enough to conform the attention foci in the
histopathological domain. The proposed model should
adjust different parameters: the size of the found regions
and the map weights for each of the selected features, i.e.,
orientation, intensity, double color opposition (V1 func-
tion) and entropy (V4 function). The best parameters were
then obtained by a conventional generalized pattern search
algorithm (GPS) [41], which performs better when the
cost function is smooth. In the present work, that cost
function corresponds to the quality measure defined in the
equation 3, which is computed for any particular config-
uration of objects. The GPS method was thus consistently
used, first for finding the optimal region size and then for
setting the importance weight of each of the used features.
The GPS method constructs a sequence of iterates

that converges to a stationary accumulation point. Let

k Î N denote the iteration number, and let xk Î X
denote the current iterate. After a finite number of
iterations, this algorithm searches the smaller f (xk+1),
when evaluating on the points of the set Lk = {x Î X|x =
xk ± Δk siêi, i Î {1, ..., n}}, where Δk > 0 is a scalar called
the mesh size factor, si Î ℝn is a fixed parameter that can
be used to take into account different scales and êi is any
search direction previously selected. Besides, the algorithm
has a rule that selects a finite number of points in X, on a
mesh defined by M (x0,Δk) = {x0 + m Δksi êi|i Î {1, ..., n},
m Î ℤ}, where x0 Î X is the initial iterate. If a mesh point
x’ Î M (x0, Δk) with f (x’) < f (xk) has been found, then the
search continues with xk+1 = x’ and Δk+1 =Δk. Otherwise,
all points in Lk are tested for a decrease in f (·), i.e., f (x’) ≥
f (xk) ∀ x’ Î Lk, then the search continues with xk+1 = xk
and a reduced mesh size factor, say Δk+1 = Δk/2, hence the
search continues on a finer mesh. The search stops if the
mesh has been refined a user-specified number of times.
This algorithm evaluates then a variable neighborhood
around an analysis point p [41].

Assigning levels of relevance
Normal tissues appear as homogeneous architectures.
Tumors and other pathologies introduce heterogeneous
areas within this architecture, due to the presence of
infiltrating, inflammatory and tumor cells, and the loss
of marked boundaries [15]. Then, determining a mea-
sure of heterogeneity would be useful for locating the
abnormal structures in the images. Heterogeneity might
be understood as texture disorder that can be measured
by entropy. Our approach adds the calculation of an
additional conspicuity map for the intensity entropy.
Accordingly, the augmented saliency map is calculated

by including intensity, color, orientation and entropy.
The computed conspicuity maps, for the low level fea-
tures and entropy, are considered as a process of the V1
area of the visual cortex and the working memory. The
segmentation, provided by the aforementioned algorithm,
is considered as the V2 visual cortex area process. This
information is combined by firstly calculating an index
for each low level feature from each region. This index is
a pixel value average, inside the region conspicuity maps
for intensity, color, orientation and entropy. Finally, the
total region saliency is estimated by linearly combining
and normalizing its conspicuity maps (V1 function) and
the entropy (V4 function) using the learned weights (V1,
V2 and V4 integration). The algorithm finds the relevant
diagnosis structures as the most saliency ones.

Results
Evaluation Issues
As far as we know, this is the first investigation devoted
to extract useful structural information from histopatho-
logical images, using a bio-inspired model. The

Gutiérrez et al. Diagnostic Pathology 2011, 6:26
http://www.diagnosticpathology.org/content/6/1/26

Page 7 of 14



developed method was compared with two well known
techniques which had to deal with similar challenges,
but in natural images. We used them as the base line
because they also emulate the visual system, even
though they are not specifically devised to detect rele-
vancy in medical images, these two models were: 1) the
Itti’s model [18,29], one of the most popular algorithms
to find RoIs in an image. This algorithm emulates the
first 20 ms of the attentional process at simulating the
biological model described in [42]. Basic low level retinal
stimuli are non linearly weighted into a single activation
map which preserves high frequency changes in a multi-
resolution analysis, and 2) the Achanta’s model [30], a
general purpose algorithm aimed to extract meaningful
objects of interest. This model first computes a saliency
map as the difference between the image and a blurred
version, upon which the texture information is removed,
obtaining a first saliency map. Salient pixels are then
grouped up using a set of rules based on common loca-
tions, chrominances and luminances (Gestalt laws).
Finally, relevant regions are those for which their mean
is larger than the image saliency mean.
In this paper two main issues were assessed, namely

the accuracy of the proposed RoI extraction method and
its generalization ability (Section Automatic Still-
Segmentation of Histopathology Images), using a total of
338 manually segmented images (Section Images and
Ground Truth). Comparisons were performed between
manual segmentation and the three automatic methods:
Itti’s, Achanta’s and ours. Itti’s RoIs were set at thresh-
olding the resultant visual attention maps [43]. Likewise,
the robustness of the automatic segmentation algorithm
was evaluated by an 11-folding strategy, understanding
this robustness as the method performance when the
algorithm runs over a different set of data.
Three quality measurements were computed, the clas-

sical sensitivity and specificity and a quality segmenta-
tion measurement. The sensitivity and specificity were
calculated for the whole set of classified pixels, i.e.,
whether or not a pixel belonged to a RoI. Classically,

the performance of a method is well described using
sensitivity and specificity, they account for the indivi-
dual result of hits or misses. However, we are interested
in finding regions of interest, i.e., collections of pixels
with semantic meaning. Hence, the number of regions
found by each method was also compared and the sen-
sitivity of each method, regarding the number of RoIs,
was also calculated.

RoI extraction
Figure 5 shows a visual illustration of the differences
between the ground truth segmentation and the RoI
obtained using the proposed method. Coincidences
between RoIs are shown in white, method misses in
gray and background coincidences in black.
As observed, the proposed method is able to capture

different structures of interest, in spite of the compli-
cated patterns present in the sample. The RoI computed
by our method looks perceptually more similar to the
ground truth, when compared to the RoI calculated
using the Itti’s and Achanta’s model. While the Itti’s RoI
looks quite scattered, our method finds a more homoge-
neous region, clearly much more similar to the ground
truth. The Achanta’s RoI completely misconfused the
relevant and non relevant regions and in this case the
relevant region (white region) was completely missed. In
contrast, our method did find the relevant regions.
Interestingly, most of misses were located near to the
border, where we are supposing visual information is
less important.
Figure 6 shows the original image in the first column,

the ground truth in the second (recall white is relevant
and black is not), Itti’s RoIs in the third, Achanta’s RoIs
in the fourth and the RoIs found by our method in the
fifth. The three rows show different structures, as
observed in the first column. Overall, these original
images show several configurations, with the carcinoma
tissue in a darker violet color, which correspond to the
zones highlighted in white since the expert considered
them as the interest. Note that the level of structural

Figure 5 Coincidence level between the ground truth and the evaluated models. From left to right column: original image, the
coincidence level between the ground truth and Itti’s, Achanta’s and our result. In the second, third and fourth columns, white and black stand
for a perfect match while gray levels represent disagreement. Note that our method has much smaller scattering level and recognizes more
acurately the relevant structure than the others aproaches.
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organization is quite different so that it results impossi-
ble to determine RoIs by simply setting a set of para-
meters, i.e., structures present different sizes, shapes,
colors and levels of hierarchy. As illustrated in the third
column of Figure 6 Itti’s model misses important histo-
logical objects and instead highlights many small scat-
tered regions. This can be attributed to the fact that this
model performs a pixel-based analysis and therefore it
finds interesting points rather than complete defined
regions. From a semantic point of view, this is a great
limitation because regions with some interest are dis-
tributed all over the image, following a complex mix of
rules which are in general very variable. On the other
hand, the Achanta’s method did not find the RoIs at all,
except for the upper panel image for which it can be
observed at least a well defined border between the RoI
and the rest. Obviously the method was able to deter-
mine two different levels of organization at a local level,
but in the mid and lower panels, the structure of inter-
est (a node) was completely missed. A clear advantage
of the proposed strategy is that nearly every spatially
coherent structure was found with different levels of
noise. Interestingly, most relevant objects, within these
RoIs, highly coincide with what the pathologist deter-
mined as important.

Analysis of sensitivity and specificity
The ability of the different methods to properly assign
the correct label to pixels, was evaluated using

conventional sensitivity and specificity measurements.
These results are shown hereafter.
Table 1 shows sensitivities and specificities for each of

the different magnifications and each of the assessed
methods. Overall, the sensitivity measurements evidence
that our method outperforms the other two at any of
the different evaluated magnifications, showing a larger
sensitivity for the × 20 and × 40 objective magnifica-
tions. In contrast, the three methods show comparable
levels of specificity, but the larger values are shown by

Figure 6 Region found by the different methods in three random chosen images. From left to right column: original image, ground truth,
resulting RoI of the Itti’s, Achanta’s and our method. In the binarized images (second, third and fourth columns) the white color stands for the
relevant diagnostic RoIs.

Table 1 Sensitivity and specifity results

Method Magnifications Sensitivity (%) Specificity (%)

Itti’s × 4 63.8 ± 5.8 62.5 ± 0.3

× 10 56.3 ± 5.8 60.3 ± 1.4

× 20 69.7 ± 2.8 73.5 ± 0.4

× 40 67.7 ± 3.8 73.8 ± 0.7

Achanta’s × 4 60.7 ± 8.8 62.6 ± 0.6

× 10 53.1 ± 7.8 60.6 ± 3.1

× 20 54.8 ± 5.8 69.6 ± 4.1

× 40 54.8 ± 3.8 74.7 ± 5.4

Ours × 4 70.2 ± 13.8 56.5 ± 6.8

× 10 71.2 ± 9.8 52.1 ± 9.2

× 20 79.8 ± 6.8 77.6 ± 5.0

× 40 70.7 ± 8.8 75.8 ± 5.0

Sensitivity and specificity of the different evaluated methods at different
microscopical objective enlargements for the whole set of correctly (wrongly)
classified pixels.
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our method. The Itti’s model presents a larger specificity
at × 4, very likely because regions are not so well
defined at this magnification. Recall that this evaluation
was performed at the level of the pixel classification and
true (false) positives (negatives) corresponded to pixels
wrongly classified.
The picture is completely different when one assesses

the sensitivity of each method for determining correctly
classified regions (rather than pixels). Table 2 presents
the sensitivity of the different methods and magnifica-
tions for finding regions with meaning, in the third col-
umn, and the total number of regions whose area is
smaller than a 70% of the region to which they belong
and that was manually segmented by the pathologist, in
the third column.
Our method shows a sensitivity of about 70% along the

four different magnifications, while the sensitivity for the
other two methods ranges from 15% to 45% for the Achan-
ta’s and from about 40% to 47% for the Itti’s, with compar-
able levels of variance. Finally, the number of regions
found by our method was much more smaller, as long as
the magnification is higher, and therefore with a better cor-
relation with what the expert marked as interesting.
The next section presents the results of the Villegas-

Marichal measure that evaluates the number of misclas-
sificatons and the ability of each method to find the
regions marked by the pathologist.

Perceptual Quality Assesment
In this section we evaluated the robustness of the pro-
posed algorithm, that is to say, how well this strategy
performs when samples change. For doing so, the set of
available images was split into 11 subsets and a folding
cross validation was applied for each magnification,

i.e., training with 10 subsets and test with the remaining
one. Figure 7 shows the performance algorithm for the
whole set of available images since each image has
belonged at least once to a test subset. The four panels
plots the different magnifications, namely × 4 at the left
upper, × 4 at the right upper, × 20 at the left lower and
× 40 at the left lower panels, respectively. Each graph
plots the number of available images at the x axis while
the respective quality measurement for the three strate-
gies (Itti’s, Achanta’s and ours) is plotted a the y axis.
As expected, the RoI quality measurements vary with
each image and magnification while their values range
between -40dB and -64 dB. It is worthy to recall here
that the more negative is this measurement the larger
the number of both missing foreground and false back-
ground pixels. The graph shows a systematic gain of our
method: in most images the proposed method provides
better quality results. At the × 4 magnification, the Itti’s
model shows similar performance, likely because at this
level, relevancy is associated with local color and inten-
sity differences, while the very inner cellular structure is
not yet revealed, a statement supported by the fact tha
for larger magnifications (× 10, × 20 and × 40), our
method clearly outperforms the others.
Overall, when applied to the test set, the proposed

method outperforms Itti’s at the × 10, × 20 and × 40
objective magnifications in about 2dB, 3.5 dB and 4 dB,
and outperforms also Achanta’s, for the same magnifica-
tions, in 3.4 dB, 5 dB and 5.7dB respectively. Again, at ×
4 objective magnification the Itti’s model shows a gain
of about 2 dB over our method. In general, a gain of
1 dB in this kind of evaluation can be considered as a
visually representative difference [40], as illustrated in
Figure 6 which shows three different microscopical
fields (first column) for which the pathologist has manu-
ally drawn the RoIs (second column) and the results of
the three methods for each (third, fourth and fifth col-
umns). The quality measurements for the first microsco-
pical image and for the three evaluated methods, namely
Itti’s, Achanta’s and ours, was -57.3 dB, -63.3 dB and
-55.9 dB, respectively. For the second microscopical
field this measurement was -59.3 dB, -62.2 dB and
-55.1 dB, again following the same order for the meth-
ods. The evaluation measurements for the third image
were -60.48 dB, -64.9 dB and -52.7 dB, respectively.
Recall that this measurement quantifies differences
between the ground truth image and the result of any of
the methods. Finally, the Wilcoxon test (p > 0.05) was
applied to the whole set of images (at every magnifica-
tion) for the three evaluated methods and differences
were found to be significant.
The results herein presented support this selection, the

perceptual quality obtained with the proposed algorithm
is around -55.3dB, an acceptable value according to the

Table 2 Region based sensitivity

Method Magnification Sensitivity (%) Number of
meaningless regions

Itti’s × 4 47.3 ± 13.7 50786

× 10 40.0 ± 13.5 152743

× 20 47.6 ± 17.2 23332

× 40 44.1 ± 21.8 7879

Achanta’s × 4 45.5 ± 7.9 12207

× 10 41.4 ± 11.3 48751

× 20 20.3 ± 8.2 31294

× 40 14.0 ± 8.3 7017

Ours × 4 69.7 ± 13.6 5647

× 10 66.0 ± 12.0 18753

× 20 71.3 ± 14.0 1518

× 40 61.5 ± 16.9 526

Evaluation of the different methods at several magnifications for finding
regions with semantic meaning. Table shows the sensitivity in percentage and
the number of regions with an area smaller than a 70% of the area marked
by the pathologist to which these regions belonged.
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opinion of our pathologist. Likewise, table 3 shows the
importance of the figure-ground segmentation mechan-
isms since our method outperforms Itti’s, in average in
3.6 dB (4.9 dB when comparing with Achanta’s). In a non
linear scale, an average gain of 3.6 dB is an important
visual improvement, as illustrated in Figure 6. Also, as
shown in tables 1 and 2, our method demonstrates a
better sensitivity at retrieving not only about a 70% of
relevant pixels in the image, but also a similar percentage
when finding entire regions, case in which our method
clearly exceed Itti’s and Achanta’s methods in about a
20% and 30%, respectively.

Discussion
The present article has introduced a novel strategy, a com-
plex mix of “bottom-up” and “top-down” mechanisms, for

setting RoIs in histopathological images. The model is
inspired in the first phase of a pathological examination
[11,20,44,45], a process largely studied which starts by
scanning the slide at a low magnification zoom. So far the
underlying mechanism that controls a RoI selection in his-
topathological samples has been poorly studied [46].
Recent studies suggest that some visual mechanisms, such
as the one that allows to highlight an object from the
background (figure-ground segmentation), and the visual
attentional process, are connected [46]. The figure-ground
segmentation models the process that occurs when an
individual is exposed to a two-dimensional surface with
some gentle structural differences, and then she/he sepa-
rates it into parts, one of which is consciously recognized
as having a distinctive form whereas the surrounding
regions have not [38]. This visual segmentation

Figure 7 Villegas-Marichal quality measure result by image. The x-axis represents the set of available images and the y-axis the quality
measure in decibels (dB).

Table 3 Perceptual quality measure results

Itti’s model Achanta’s model Proposed model

Train (dB) Test (dB) Train (dB) Test (dB) Train (dB) Test (dB)

False fore-ground -57.3 ± 0.2 -56.0 ± 2.0 -60.6 ± 0.2 -59.3 ± 1.9 -52.7 ± 0.3 -51.2 ± 3.2

Added back- ground -58.7 ± 0.1 -57.3 ± 1.4 -50.8 ± 0.4 -48.8 ± 5.5 -52.0 ± 0.1 -51.6 ± 1.2

Total -61.8 ± 0.1 -60.3 ± 1.4 -63.0 ± 0.1 -61.6 ± 1.1 -57.7 ± 0.1 -56.7 ± 1.6

Average ± standard deviation of the perceptual quality in false foreground, added background and total quality for proposed and Itti’s visual attention models
obtained on the training and test sets.
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mechanism follows certain invariable rules that have
shown to be relevant in diagnosis of certain dermatopatol-
ogies [46]. These rules include convexity of contours,
proximity of lines around it, closed contours, simple
shapes, proximity and resembling among their compo-
nents. The visual attention mechanism is related to the
cognitive process of selectively concentrating on one
aspect of the scene while ignoring others [29]. This fact
suggests that the visual system is able to selectively focus
on specific areas of the image, which besides are entailed
with a high relevant meaning. Yet these ideas are far from
being fully exploited, our approach has been able to cap-
ture these basic facts, that is to say, that relevancy is a glo-
bal property somehow constructed by integrating local
features. The proposed strategy is based on the interaction
of the visual cortex areas V1, V2 and V4 [35,36], being the
V1 cortex responsible for assigning local levels of rele-
vance to visual inputs while the V2 cortex gathers together
these small regions according to some weights modulated
by the V4 cortex, which stores some learned rules: the
working memory. While the V1 phase spans the first 20
ms, the others have been observed within the first 100 ms.
This complex network of interactions ends up by selecting
the relevant areas that are thus further processed in other
brain areas [47]. Our model, based on this type of associa-
tions, integrates these three stages as follows: 1) Using the
conventional Itti’s model, a local region level of relevance
is set, using exclusively low level features. This process
emulates what happens in the first 20 ms of the visual per-
ception 2) The saliency map coming out from the prece-
dent phase is the input to this stage. The integration
process, carried out in the first 100 ms is modeled by a
clustering strategy, learned from the expert segmentation.
Hence the low level characteristics are grouped up using
an oversegmentation algorithm, which minimizes the
within-class variance whose parameters are learned from
the problem. 3) The saliency map is thresholded using two
types of information: a measure of the texture pattern
(simulates the V4 function) and the previouly described
Itti’s map (V1 function). The V4 function is herein con-
structed upon the base of two complementary processes,
the closeness gestalt law (rough segmentation) and the
grouping stratregy associated to the particular cell organi-
zation (working memory), which was estimated with a
general texture measurement: the local entropy.
Many endeavours have been dedicated to segmenting

areas with cancer in histopathological images. The
coarse structural recognition has been already imple-
mented as an still-segmentation algorithm, using KNN
and spectral clustering [14,48], but these strategies only
cope with local spatial relationships, and no perceptual
meaning has been assigned. Other methods have
attempted to find structures using different representa-
tions of the work of memory. Specifically, images are

represented by small patches, collected together as a
Bag of Features [49]. These patches are then stored in a
database and used as the knowledge to which any other
input must be compared. Two main issues arise with
this representation: it is neither clear the number of
patches used for optimally represent a concept nor the
selected metrics to define similarity. Some strategies,
such as the Scale Invariant Feature Transform (SIFT) or
the SIFT descriptor have been used to detect the most
relevant patches. However, these methods are exclu-
sively local and very noise sensitive, crucial issues in his-
topathological images. Likewise, texture descriptors have
been used to over-segment natural scenes, [50,51] such
as we did using the luminance channel. This is very dif-
ferent from what we presented here because texture
measurements were included after the segmentation was
achieved, thereby capturing and learning from the user
the configuration of local units of information, i.e., parti-
cular pixel arrangements with semantic meaning. In the
present investigation we used a scalar measurement of
such configurations (entropy), but notice that this mea-
sure could be replaced by more complex models, with
vectorial information for instance. The advantage with
this measurement is that it replaces a database and
introduces the V4 modulation (working memory). In the
present investigation two state-of-the-art visual models
were used for comparison. Yet it is true that these
methods were not specifically devised for medical
images, they are nevertheless general purpose
approaches which can be adapted to define RoIs. What
we have demonstrated so far is that these general pur-
pose visual models are not adequate for a specific
domain such as the medical images, in which the prior
knowledge results fundamental. As shown in Figure 6
the Itti’s, model finds scattered regions that very hardly
could be assembled into a unique structure, such as
those drawn by the pathologist as the ground truth
(Figure 6). The Achanta’s method detects larger regions,
but they are completely different from what the patholo-
gist marked, very likely because it disregards texture
information.
One of the most challenging issues in histopathologi-

cal images regarded the fact that semantic interest is
related to similarity, no matter whether these regions
are neighbors or not. This drawback was herein dealt
with a graph-based image segmentation algorithm [37],
which in contrast to previous approaches, was capable
of capturing perceptually important regions such as tis-
sue distribution. As illustrated in Figure 6 regions
obtained with the proposed strategy are perceptually
more consistent and coherent with what the expert set.
They are surrounded by closed contours and follow the
proximity and resembling relationships, i.e., these
regions satisfy the figure-ground segmentation rules.
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Interestingly, the ground truth also follows these figure-
ground segmentation rules, as illustrated in Figure 1 a
finding that supports the choice of still-segmentation
methods in this type of problems. The results herein
presented support this selection, the perceptual quality
obtained with the proposed algorithm is around
-56.7dB, an acceptable value according to the opinion of
our expert in the domain. Likewise, table 2 shows the
importance of the figure-ground segmentation mechan-
isms since our method outperforms Itti’s, in average in
3.6 dB (4.9 dB when comparing with Achanta’s). In a
non linear scale, a gain of 3.6 dB in the mean perfor-
mance is an important improvement, as illustrated in
Figure 6.
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