
 International Journal of 

Molecular Sciences

Article

Identification of Overexpressed Genes in Malignant
Pleural Mesothelioma

Federica Morani 1,† , Luisa Bisceglia 1,†, Giulia Rosini 1, Luciano Mutti 2 , Ombretta Melaiu 1,3,
Stefano Landi 1,* and Federica Gemignani 1

����������
�������

Citation: Morani, F.; Bisceglia, L.;

Rosini, G.; Mutti, L.; Melaiu, O.;

Landi, S.; Gemignani, F. Identification

of Overexpressed Genes in Malignant

Pleural Mesothelioma. Int. J. Mol. Sci.

2021, 22, 2738. https://doi.org/

10.3390/ijms22052738

Academic Editor: Giulia Piaggio

Received: 23 February 2021

Accepted: 5 March 2021

Published: 8 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biology, University of Pisa, 56126 Pisa, Italy; federica.morani@biologia.unipi.it (F.M.);
luisa.bisceglia@student.unisi.it (L.B.); giulia.rosini@student.unisi.it (G.R.); ombretta.melaiu@unipi.it (O.M.);
federica.gemignani@unipi.it (F.G.)

2 Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science
and Technology, Temple University, Philadelphia, PA 19122, USA; chairman@gime.it

3 Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
* Correspondence: stefano.landi@unipi.it; Tel.: +39-050-221-1528
† These authors contributed equally to this work.

Abstract: Malignant pleural mesothelioma (MPM) is a fatal tumor lacking effective therapies.
The characterization of overexpressed genes could constitute a strategy for identifying drivers of
tumor progression as targets for novel therapies. Thus, we performed an integrated gene-expression
analysis on RNAseq data of 85 MPM patients from TCGA dataset and reference samples from
the GEO. The gene list was further refined by using published studies, a functional enrichment analy-
sis, and the correlation between expression and patients’ overall survival. Three molecular signatures
defined by 15 genes were detected. Seven genes were involved in cell adhesion and extracellular
matrix organization, with the others in control of the mitotic cell division or apoptosis inhibition.
Using Western blot analyses, we found that ADAMTS1, PODXL, CIT, KIF23, MAD2L1, TNNT1,
and TRAF2 were overexpressed in a limited number of cell lines. On the other hand, interestingly,
CTHRC1, E-selectin, SPARC, UHRF1, PRSS23, BAG2, and MDK were abundantly expressed in over
50% of the six MPM cell lines analyzed. Thus, these proteins are candidates as drivers for sustaining
the tumorigenic process. More studies with small-molecule inhibitors or silencing RNAs are fully
justified and need to be undertaken to better evaluate the cancer-driving role of the targets herewith
identified.

Keywords: malignant pleural mesothelioma; MPM; RNAseq; gene signature; overexpressed genes;
therapeutic targets

1. Introduction

Malignant pleural mesothelioma (MPM) is a rare cancer of the pleura caused by a past
exposure to asbestos. The patients’ median overall survival (OS) is <1 year with a 5-year
survival rate <5% [1]. To date, beyond surgery, the combination of pemetrexed with
cisplatin is the only clinically approved first-line chemotherapy, but it improves the OS by
only 12.1 months [2,3]. Therefore, it is urgent to identify novel targets for future therapies,
in the hope of improving patients’ survival and their quality of life. In the attempt to detect
genes that play a role in determining the malignant phenotype and that could be exploited
as possible therapeutic targets, many studies were carried out with the use of microarrays.
These tools allow the parallel measurement of the transcriptome in a single experiment
and, theoretically, they could allow the definition of a minimal set of deregulated genes
relevant in the carcinogenesis process [4–7]. However, the practical experience showed
a large interstudy variability with the definition of different deregulated genes according
to different sample settings, methods of investigation, and analysis. Thus, there is a poor
consistency among published studies and the obtained results have a limited robustness,
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creating a need for more research. Recently, in an effort to improve results from previous
studies [6,8,9], Bai et al. applied computational analyses to gene-expression profiling
data, validated with RNAseq, to identify MPM-specific, differentially expressed genes
ending with a five-gene molecular signature that improved the risk stratification of MPM
patients [10].

In order to detect novel targets for MPM, we carried out a computational analysis on
RNAseq data from MPM tissues of 85 patients within The Cancer Genome Atlas (TCGA)
database. The data were filtered and guided by patients’ prognostic information and by
the results from published literature, allowing us to consolidate past results with novel
investigations. Thus, a total of 15 overexpressed genes, the candidate drivers of MPM
progression, have been detected. It is conceivable that if the overexpression of a given
gene is relevant for driving and maintaining the malignant condition, this state also should
be preserved when the primary tumor is cultivated in vitro. Moreover, once the tumor
elicited permanent cell lines, the overexpressed state should be maintained indefinitely,
at least for some of the genes. Then, in order to sort driver genes from the passenger
ones, we analyzed in vitro the expression of the 15 proteins encoded by the detected genes
in 6 MPM permanent cell lines (Mero-14, Mero-41, Mero-95, ZL-55, REN, and MSTO) and
in 1 nonmalignant cell line (Met-5A). Our findings might provide specific biomarkers for
prognosis and novel putative therapeutic targets for MPM.

2. Results
2.1. Identification of Differentially Expressed Genes (DEGs)

The selection process for identifying the relevant DEGs is reported in detail in Figure 1.

Figure 1. Flowchart of the DEG selection process.

Firstly, RNAseq data from healthy pleural tissues are not present in the available
online resources. Thus, in order to obtain a list of statistically significant, differentially
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expressed (DE) genes of MPM, we intersected RNAseq-based transcriptomic data of MPM
tissues obtained from TCGA dataset (n = 85) with the RNAseq data from three normal
lung samples (n = 3) available in the Gene Expression Omnibus (GEO). We are aware
that this type of reference sample was not optimal; however, this step was only used for
a first analysis for a mild reduction of the number of genes. Thus, we identified 18,048
TCGA-derived DE genes (T-DE: 9536 high-expressed and 8512 low-expressed) in tumor
samples (|FoldChange| > 1.3, and p-value < 0.05), as shown in the volcano plot in Figure 2.

Figure 2. (A) Volcano plot. Cut-off criteria: p-value < 0.05 and |log2FC| > 0.38. The differentially expressed genes are
in red (high-expressed) and in green (low-expressed), while the insignificantly changed genes are in black. (B) Principal
component analysis (PCA) plot of 85 MPM patients (in black) and 3 normal lung samples (in grey). The PCA score plot
showed that samples from MPM patients and controls were clustered separately.

It should be considered that these genes do not necessarily describe the signature of
a malignant state of the pleural tissue, but they could be normally overexpressed in healthy
mesotheliocytes (as compared to the lung tissue) or in several types of cancers not limited
to MPM. Thus, this broad list of T-DE genes was refined by the use of the manuscripts
published from 2001 to date. By looking the literature, we selected genes showing at least
one evidence of being differentially expressed in MPM, compared to nonmalignant pleura
or nonmesothelioma cancer (the genes from the literature are defined as L-DE genes).
In carrying out this step, we did not limit the positive selection to the main hits reported
by the various authors. Rather, we went deep into the Supplementary Materials available
for this study and selected genes showing any extent of differential expression, provided
it was statistically significant. Thus, we intersected the T-DE list with the 1155 detected
L-DE genes (T-DE ∩ L-DE), ending with 839 DE genes (600 high- and 239 low-expressed;
Table S1), hereafter acronymized as DEGs. The 839 DEGs are reported in the heatmap
in Figure 3.
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Figure 3. Heatmap and one-dimensional hierarchical clustering of the 839 filtered differentially
expressed genes (DEGs) across MPM patients and a group of 3 nonmalignant lung samples. The genes
are displayed in rows and samples are displayed in columns. High-expressed genes are in red; low-
expressed genes are in green.

2.2. Molecular Signatures Associated with the OS

In order to detect relevant targets for MPM, first we focused our attention on the genes
whose extent of overexpression could correlate with a reduced patients’ OS. In fact, in view
of identifying actionable targets for future therapies, inhibitors are easier to be designed as
compared to gene activators. Thus, we carried out a survival analysis using a univariate
Cox proportional hazard regression model on the 600 overexpressed genes ending, with 133
DEGs showing a nominal p-value < 0.05 and hazard ratio (HR) > 1 (Table S2). Then, the list
of 133 DEGs was further reduced by using the unique criterion of correlating the extent of
overexpression with the patients’ prognosis. In this case, two different approaches were
employed: (a) the unreduced; or (b) the FDR-reduced.

For (a), the 133 DEGs were further refined by applying a robust likelihood-based
survival modeling, and the Akaike information criterion (AIC) values showed 43 DEGs
associated with OS. This list was further reduced by applying the multivariate Cox propor-
tional regression analysis ending with seven DEGs positively associated with the OS: CIT,
KIF23, PODXL, PRSS23, SPARC, TRAF2, and UHRF1 (Table 1A).
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Table 1. Multivariate Cox analysis of the three gene signatures: (A) unreduced; (B) FDR-reduced; (C) GO-reduced.

(A)

Multivariate Cox Results

Symbol Ensembl ID Coef HR Se(Coef) Z p-Value

SPARC ENSG00000113140.9 1.40 4.05 0.53 2.63 8.44 × 10−3

CIT ENSG00000122966.12 2.03 7.64 0.65 3.11 1.9 × 10−3

TRAF2 ENSG00000127191.16 3.26 26.13 0.97 3.36 7.86 × 10−4

PODXL ENSG00000128567.15 0.74 2.10 0.32 2.29 2.2 × 10−2

KIF23 ENSG00000137807.12 3.94 51.57 1.19 3.31 9.21 × 10−4

PRSS23 ENSG00000150687.10 1.20 3.31 0.35 3.44 5.86 × 10−4

UHRF1 ENSG00000276043.3 3.83 46.05 0.99 3.88 1.04 × 10−4

(B)

Multivariate Cox Results

Symbol Ensembl ID Coef HR Se(Coef) Z p-Value

MAD2L1 ENSG00000164109.12 1.85 6.34 0.40 4.68 2.93 × 10−6

KIF23 ENSG00000137807.12 1.39 4.02 0.67 2.08 3.75 × 10−2

UHRF1 ENSG00000276043.3 1.35 3.87 0.52 2.62 8.86 × 10−3

ADAMTS1 ENSG00000154734.13 0.68 1.98 0.24 2.89 3.86 × 10−3

TNNT1 ENSG00000105048.15 0.63 1.87 0.23 2.78 5.43 × 10−3

BAG2 ENSG00000112208.11 0.40 1.49 0.17 2.39 1.71 × 10−2

(C)

Multivariate Cox Results

Symbol Ensembl ID Coef HR Se(Coef) Z p-Value

MDK ENSG00000110492.14 1.46 4.29 0.40 3.60 3.17 × 10−4

SELE ENSG00000007908.14 1.09 2.99 0.33 3.29 9.88 × 10−4

CTHRC1 ENSG00000164932.11 1.69 5.40 0.70 2.40 1.66 × 10−2

DSC3 ENSG00000134762.15 0.86 2.37 0.39 2.23 2.57 × 10−2

For (b), the p-values of the univariate Cox proportional hazard regression model
tests were corrected for multiple testing using Benjamini’s false-discovery rate (FDR)
method. Thus, the 133 DEGs associated with the OS at the nominal value of p < 0.05 were
reduced to 114. Next, we ran the robust likelihood-based survival modeling followed by
the multivariate Cox proportional regression analysis, ending with six DEGs: ADAMTS1,
BAG2, KIF23, MAD2L1, TNNT1, and UHRF1 (Table 1B).

2.3. Molecular Signature Following a Functional Enrichment Analysis and Associated with the OS

The list of 839 genes was also refined by applying a preliminary selection based on
a functional enrichment assay with the software ToppFun, and a high share of DEGs (288)
was shown to belong to the gene ontology (GO) biological process, molecular function,
and pathway categories predominantly involved in cell adhesion and extracellular matrix
(ECM) organization (p-value < 0.05). The detailed results of the enrichment analysis are
reported in Figure 4.
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Figure 4. Bar plots showing significantly enriched GO terms associated with the (A) biological process, (B) molecular
function, and (C) pathway categories in MPM. The number of DEGs for each term is indicated in bold alongside.

Then, similarly to the analyses carried out before (a) and (b), we focused on the 600
overexpressed DEGs, and 225 were found to belong to these fields (Table S3). Thus, out
of the 133 DEGs derived from the univariate COX regression analysis, 46 belonged to
the above-mentioned functional pathways. These were directly used as input in the mul-
tivariate Cox proportional regression analysis, and 4 DEGs were found associated with
the prognosis constituting a GO-reduced molecular signature (c): CTHRC1, DSC3, MDK,
and SELE (Table 1C).

2.4. Construction of a Prognostic Risk Scoring System Using the Three Molecular Signatures

The molecular signatures extracted with the different approaches were evaluated for
their strength of correlation with patients’ OS through the construction of a prognostic
risk-scoring system. This was developed using the multivariate Cox proportional hazard
regression coefficients and the degree of gene expression. Thus, the survival risk score (RS)
for each patient was calculated as follows:

RS unreduced = 2.033× CIT + 3.943× KIF23 + 0.744× PODXL
+1.198× PRSS23 + 1.399× SPARC + 3.263× TRAF2 + 3.83
×UHRF1

RS FDR− reduced
= 0.681× ADAMTS1 + 1.390× BAG2 + 1.39× KIF23
+ 1.847× MAD2L1 + 0.6271× TNNT1 + 1.353×UHRF1

RS GO− reduced
= 1.686× CTHRC1 + 0.863× DSC3 + 1.455×MDK
+1.094× SELE

Then, we stratified the samples into a high-risk group (43 MPM samples) and a low-
risk group (42 MPM samples) according to the median of the 3 risk-scores, and we carried
out a survival analysis by plotting the Kaplan-Meier curves. As expected (Figure 5), there
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was a statistically significant shorter OS in high-risk patients than in low-risk patients
(log-rank test p-value < 0.0001) for all the signatures.

Figure 5. Kaplan-Meier (KM) survival curve of samples divided into high- (red) and low-risk (blue) groups according to
the median (log-rank test p-value < 0.0001). (A) KM of unreduced gene signature; (B) KM of FDR-reduced gene signature;
(C) KM of GO-reduced gene signature.

We used time-dependent receiver operating characteristic (ROC) curves and the area
under the ROC curve (AUC) to evaluate the sensitivity and specificity of each signature.
We found that the a and b signatures showed similar performances with AUC, ranging from
0.816 (for the 1-year OS, signature a) to 0.896 (for the 2-year OS, signature b). Signature
c showed a slightly lower performance (AUC = 0.729 and 0.764 for 1- and 2-year OS,
respectively). In Figure 6, the plots are reported for the OS at 2 years.

Figure 6. Time-dependent receiver operating characteristic (ROC) curve for predicting 2-year sur-
vival.
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2.5. The Signatures Are Independent Prognostic Factors

The gene-signature risk scores were evaluated as covariates, together with other
patient parameters, including age, gender, stage, and histological type. The univariate Cox
regression analysis showed that the histological type of the tumor and the risk scores of
the three signatures were the only covariates associated with OS in a statistically significant
way (p < 0.05 and HR >1) (Table 2).

Table 2. Univariate survival analysis concerning clinical parameters. HR, hazard ratio; RS, risk score.

Variable Beta HR (95% CI for HR) Wald Test p-Value

Age at index median 0.29 1.3 (0.83–2.1) 1.5 0.23
Primary diagnosis:

epithelioid vs. other −0.64 0.53 (0.32–0.86) 6.4 0.01

Primary diagnosis:
biphasic vs. other 0.63 1.9 (1.1–3.2) 5.3 0.02

Gender: male vs. female −0.008 0.99 (0.54–1.8) 0 0.98
Tumor stage −0.036 0.96 (0.58–1.6) 0.02 0.89

RS: unreduced median 1.4 4 (2.4–6.7) 28 1.2 × 10−7

RS: FDR-reduced
median 1.5 4.3 (2.6–7.2) 31 2.6 × 10−8

RS: GO-reduced median 0.98 2.7 (1.6–4.3) 16 7.6 × 10−5

When evaluated in a multivariate model, RS for FDR-reduced and GO-reduced sig-
natures remained the only statistically significant covariate, suggesting an independent
prognostic factor for MPM (Table 3).

Table 3. Multivariate survival analysis concerning clinical parameters. HR, hazard ratio; RS, risk
score; se, standard error.

Variable Beta HR Se(Coef) Z p-Value

Age at index median 0.192 12.122 0.268 0.718 0.472
Primary diagnosis: epithelioid

vs. other −0.625 0.535 0.463 −1.352 0.176

Primary diagnosis: biphasic vs. other −0.280 0.756 0.512 −0.547 0.584
Gender: male vs. female −0.480 0.619 0.342 −1.405 0.160

Tumor stage −0.317 0.728 0.282 −1.124 0.261
RS: unreduced median 0.683 19.800 0.591 1.156 0.248

RS: FDR-reduced median 12.228 33.967 0.469 2.607 0.009
RS: GO-reduced median 0.980 26.655 0.279 3.520 4 × 10−4

2.6. In Vitro Validation of the Prognostic Signatures by Protein Analysis of MPM Cell Lines

The three signatures defined a pool of 15 overexpressed DEGs likely relevant for
driving and maintaining the malignant state of MPM cells. Thus, in order to validate these
findings, the expression levels of the encoded proteins were evaluated in vitro by the use
of Western blotting. We analyzed the nonmalignant cell line Met-5A and the MPM cell
lines ZL-55, REN, MSTO, Mero-14, Mero-41, and Mero-95 for the expression of SPARC, CIT,
TRAF2, PODXL, KIF23, PRSS23, UHRF1, E-SELECTIN, CTHRC1, MDK, ADAMTS1, DSC3,
TNNT1, BAG2, and MAD2L1. Relative to Met-5A, CTHRC1 was overexpressed in all MPM
cell lines, while E-selectin, SPARC, and UHRF1 were overexpressed in five out of six MPM
cell lines (Figure 7A). Compared to Met-5A, PRSS23 and BAG2 were abundantly expressed
in 4 MPM cell lines, whereas MDK was in 3 MPM cell lines (Figure 7B). The remaining
seven proteins (ADAMTS1, PODXL, CIT, KIF23, MAD2L1, TNNT1, and TRAF2) were
found at high levels in only two or one MPM cell lines (Figure 7C). Finally, DSC3 was
not detectable in our cellular models (data not shown). Representative blots are reported
in Figure S1.
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Figure 7. The densitometry ratios of proteins encoded by genes obtained from in silico analyses normalized versus
GAPDH. (A) Proteins overexpressed in at least 5 MPM cell lines; (B) proteins overexpressed in 4 or 3 MPM cell lines; (C)
proteins overexpressed in only 2 or 1 MPM cell lines. Data shown in this figure were reproduced independently 3 times.
Corresponding blots are reported in Figure S1 and Supplementary File S1.

3. Discussion

In an effort to identify actionable targets for MPM, the detection of overexpressed
DEGs is of pivotal importance. In the present work, we began with the RNAseq data
of 85 MPM patients available in TCGA. Then, we carried out a differential expression
analysis followed by a comparison with the published literature, yielding a gene list of
839 DEGs enriched with MPM-specific genes. The application of statistical models based
on the patients’ OS and a GO-enrichment ended with the computation of 3 molecular
signatures associated with the OS and identification of 15 genes. The computational
methods allowed cross-validation, which is essential in predictive modeling for data with
large variability. These classifiers could successfully identify two groups of MPM patients
(high-/low-risk) associated with significant differences in OS. Furthermore, a multivariate
Cox regression analysis suggested that the molecular signatures were also independent
prognostic factors from other clinical parameters such as age at diagnosis, stage, and
histology. In this study, the epithelioid was confirmed to be the histotype with longer OS
compared to the other histotypes. Nevertheless, the signatures could discriminate patients
on the basis of their OS at a molecular level and showed to be a more robust marker than
age or stage. Present findings may provide novel specific biomarkers for prognosis and
could have significant implications in the understanding of therapeutic targets for MPM.

Despite showing that the increased expression of the 15 genes was associated with
the OS, it is still unknown whether the overexpression of these DEGs is a driver or a passen-
ger of the malignant state. In the attempt to shed some light, we measured the expression
of the encoded proteins by Western blot in a series of MPM cell lines. We are aware that
cell lines are not fully representative of their tumor of origin. However, the rationale is
that an overexpression of oncoproteins responsible for sustaining the malignant phenotype
should be maintained, at least for some of them, in the derivative cell lines also after many
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passages of in vitro growth conditions. Of the 15 proteins, CTHRC1 was overexpressed
in all MPM cell lines (relative to MeT-5A), while E-selectin, SPARC, and UHRF1 were in 5
out of 6. PRSS23 and BAG2 were abundantly expressed in four MPM cell lines; MDK
in three MPM cell lines. According to our departing hypothesis, these proteins are likely
important drivers for sustaining MPM tumorigenesis. On the other hand, the remaining
seven proteins (ADAMTS1, PODXL, CIT, KIF23, MAD2L1, TNNT1, and TRAF2) were
overexpressed in only two or one MPM cell lines, and this could be interpreted as a sign of
a limited role in driving the malignancy. However, a high level of KIF23 and MAD2L1 has
been found in the majority of MPM clinical cases, and it correlated with a poor OS. In addi-
tion, their increased expression also was found in several human MPM cell lines [11,12].
Interestingly, an increased expression of MDK, UHRF1, and SPARC was observed in MPM
tissues as well, and it correlated with poor patients’ OS together with elevated expres-
sion in MPM cell lines [13–15]. Thus, all these observations are in agreement with our
results and strongly suggest that at least CTHRC1, E-selectin, SPARC, UHRF1, PRSS23,
BAG2, MDK, KIF23, and MAD2L1 could play an important role in MPM carcinogenesis as
biomarkers of prognosis, and constitute novel therapeutic targets for MPMs.

With intent to understand the relevance of these proteins for MPM, we attempted to
group them based on their molecular function. CTHRC1, E-selectin (encoded by SELE),
MDK, and SPARC are known to be involved in cell adhesion and ECM. In detail, CTHRC1
(collagen triple helix repeat containing-1) is a cancer-related extracellular protein. It reg-
ulates multiple signaling pathways, promoting tumor development and metastasis [16].
Furthermore, in different microenvironments, CTHRC1 shows specific cellular localization
and activity. A future detailed investigation on its role in vitro in our cellular models will
be required to elucidate its putative role as biomarker for predicting tumor recurrence
or metastasis in MPM. E-selectin, also called CD62E, is a cell adhesion protein located
on endothelial cells activated by cytokines and involved in inflammation and in tumor
cells adhesion to the endothelium. Since most of solid tumors over-express E-selectin,
a large body of literature describes its potential use as therapeutic target. In particular,
new immunoliposomes and nanocarrier systems for targeted delivery of rapamycin to
TNF-α activated endothelial cells have been developed [17–19]. Despite none is known on
whether E-selectin could be exploited for drug deliveries in MPM patients, present data are
encouraging to undertake this direction. MDK (Midkine), a heparin-binding growth factor,
is abnormally overexpressed in several human malignancies playing a key role during
tumor development [20]. SPARC (secreted protein acidic and rich in cysteine, also known
as osteonectin or BM-40) is a crucial protein for cell-cell interactions, ECM remodeling, and
bone mineralization [21]. In the tumor microenvironment, it plays a role in tumor growth,
metastasis formation, invasion, and EMT. SPARC is normally expressed by stromal cells,
showing either tumor suppressor or pro-oncogenic functions according to different types
of cancer [21]. In a recent study on MPM, Kao et al. used a proteomic-based approach to
explore potential biomarkers in the plasma of MPM patients, and they found SPARC to be
a circulating prognostic biomarker [15]. This is in agreement with our data obtained from
the transcriptome analysis that reported an increased expression of the encoded protein
correlating with shorter OS. However, the specific function of SPARC in MPM has not been
clarified yet, and further studies are needed to understand the actual role of this protein
in MPM tumorigenesis. The fact that SPARC protein was found to be upregulated in almost
all the MPM cell lines analyzed in the present work strongly suggests that it is an important
molecule for MPM progression, and more studies aimed to exploit it as therapeutic target
should be undertaken.

Conversely, KIF23, MAD2L1, and UHRF1 were involved in mechanisms related to
the control of mitotic cell division. In particular, KIF23 is a member of the kinesin motor
protein involved in the regulation of cytokinesis [22,23]. KIF23 overexpression is a common
event seen in various tumors, such as glioma [24], breast [25], and paclitaxel-resistant gastric
cancer [26]. MAD2L1 (MAD2 mitotic arrest deficient-like 1) belongs to the mitotic spindle
assembly checkpoint (MSAC) pathway. It is required during mitosis for preventing the start
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of anaphase when chromosomes are not properly aligned in the equatorial plate [27–29].
Dysregulation of MAD2L1 is associated with chromosomal instability and substantial
aneuploidy, which frequently occurs in cancer cells [30]. UHRF1 (ubiquitin-like with plant
homeodomain and ring finger domains 1) plays a major role in the G1/S transition, and
its expression is high throughout the cell cycle, until the late M phase. Its role during cell
division is not well characterized. However, it has been acknowledged as an important
master epigenetic regulator of gene expression, in particular during mitosis and DNA
repair, acting through DNA methylation and chromatin remodeling [31–35].

On a final note, BAG2 and PRSS23 showed an independent function that could not
be linked to the others. In depth, BAG2 (Bcl2-associated athanogene 2) displayed an
antiapoptotic role. It is a cochaperone with broad activities devoted to negatively regulate
various cellular functions involved in the pathogenesis of several disorders ranging from
cancers to neurodegenerative diseases. Among its targets, one of the most important is
the heat shock protein 70 (Hsp70) [36]. In agreement with our study, BAG2 is frequently
found to be upregulated in tumors, pointing out its ability to also promote proliferation and
metastasis by promoting the accumulation of mutant p53 [37–40]. According to the results
of our work and the knowledge on BAG2, studies evaluating strategies targeting BAG2
in the fight against MPM should be undertaken. PRSS23 instead belongs to the trypsin
family of serine proteases. PRSS23 is reported to be a positive regulator of EMT [41,42].
Upregulated PRSS23 was associated with breast cancer cell proliferation [43], and PRSS23
knockdown could inhibit gastric cancer [44]. However, studies on these molecules are very
limited in the context of cancer. Interestingly, in a recent study sharing analogies with our
work, PRSS23 was found to be a component of an 18-gene molecular signature associated
with the OS of patients affected by pancreatic ductal adenocarcinoma [45].

In the future, further analysis exploring the possibility of targeting these genes with
novel therapeutic agents is fully justified. In fact, our findings suggest that the studied
15 proteins could constitute effective druggable targets for patients with MPM. Certainly,
preliminary studies in vitro to investigate the specific gene function in MPM (e.g., gene
silencing and functional tests) will be required before testing candidate drugs.

4. Materials and Methods
4.1. Public Databases

Transcriptomic data of MPM patients (n = 85) were obtained from TCGA, available
online at: https://portal.gdc.cancer.gov/projects/TCGA (accessed on 25 March 2020).
We integrated TCGA data with the RNAseq data from a GEO cohort of normal lung
samples (n = 3), downloaded at the link: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi (accessed on 26 March 2020), as a control group (GSE94555).

4.2. Data Processing and Computational Analysis

RNA sequencing data for 85 patients with MPM and 3 samples from normal lung tis-
sues were processed/reprocessed using the same pipeline described in the GDC (Genomic
Data Commons Data Portal, https://portal.gdc.cancer.gov/, accessed on 25 March 2020),
the data portal of TCGA. In brief, the downloaded data were analyzed with FASTQC [46],
and then the processed reads were mapped to the human genome (GRCh38.d1.vd1) using
STAR [47]. To obtain quantification scores for all human genes and transcripts across all
samples, raw counts were calculated using HTSeq [48]. The genes ID was annotated to ob-
tain the gene names, the biotype, and general information using the biomaRt package [49].

4.3. Differential Expression Analysis

The raw counts for the 85 MPM and 3 normal lung specimens were used as input for
DESeq2 [50], allowing us to identify a set of genes differentially expressed (DE) in a statisti-
cally significant way, referred to here as T-DE genes. All data were processed and analyzed
using R language available at: https://www.R-project.org (accessed on 15 March 2020).

https://portal.gdc.cancer.gov/projects/TCGA
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://portal.gdc.cancer.gov/
https://www.R-project.org
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4.4. Literature Search Strategy

All papers inclusive of transcriptomics data on MPM and reporting a complete list
of DEGs were selected from literature. The search terms for studies selection on PubMed
were the following: “transcriptome” AND “analysis” AND “mesothelioma”. A final list
of genes was obtained from 13 eligible studies, published from 2001 to date [9,51–62],
and referred to here as L-DE genes. In detail, the comparisons carried out in the eligible
studies were: (a) Met-5A (an SV40 immortalized nonmalignant human mesothelial cell
line) vs. MSTO-211H (one MPM cell line) [51]; (b) cell lines derived from 4 patients
diagnosed with primary malignant mesothelioma vs. 2 primary mesothelial cell cultures
from pleural fluid of 2 noncancer patients [55]; (c) mesothelioma tissue specimens from
16 patients vs. 4 control pleural tissue samples [56]; (d) 2 MPM primary tumors and
the MSTO-211H cell line vs. MeT-5A [58]; (e) 11 mesothelioma cell lines and 4 primary
tumor specimens vs. Met5A [57]; (f) 40 human MPM tumor specimens and 4 MPM cell lines
vs. 4 normal lung sample, 5 normal pleura specimens, and Met-5A [9]; (g) 4 MPM samples
vs. 1 normal lung sample [60]; (h) 5 tissues from mesothelioma patients vs. normal and
visceral pleural samples from 6 noncancer patients [61,62]; (i) 61 MPM cell lines vs. 25 lung
adenocarcinoma or 15 benign tumors from pleural effusions [54]; (l) 100 MPM specimens
vs. 12 nonmalignant pleural samples [52]; (m) 6 epithelioid mesothelioma vs. 6 pulmonary
adenocarcinoma [53]; (n) 15 effusions of diffuse peritoneal MM (n = 6) vs. ovarian carcinoma
(n = 4)/primary peritoneal carcinoma (n = 5) [59]. In selecting L-DE genes, we did not
limit the positive selection to the main hits reported by the various authors. Rather, we
went deep into the Supplementary Materials available for this study and selected genes
showing any extent of differential expression, provided it was statistically significant, and
we considered the genes showing evidence of being differentially expressed in MPM in at
least one study.

4.5. Functional Enrichment Analysis

Functional annotation enrichment analysis of GO relative to biological functions,
biological processes, and pathways was performed assuming the statistical background
of the whole genome. The input list of T-DE ∩ L-DE genes was introduced to the portal
ToppFun, an application of the ToppGene Suite, available at: https://toppgene.cchmc.org/
(accessed on 30 April 2020). ToppFun reported functional enrichment analysis of an input
gene list based on ontologies (GO, pathway). Functional enrichments were provided by
the ToppFun algorithm, which employs hypergeometric distribution with multiple correc-
tion testing according to Benjamini’s FDR method [63] to determine statistical significance.

4.6. Gene Signature Identification

The identification of OS-related RNAs among the differentially expressed RNAs was
carried out by employing the univariate Cox proportional hazards regression analysis
(two-sided) and using the FDR for the calculation of the statistical significance. Hazard
ratios (HRs) and 95% confident intervals (95% CIs) were calculated for each gene. Then,
to obtain robust and survival-associated genes, we constructed a robust likelihood-based
survival model using the rbsurv package [64]. All patients were randomly assigned
to a training set with Nx(1-p) samples and a testing set with Nxp samples (p = 1/3).
This package uses a forward gene selection procedure to assign a parameter for each
gene and evaluated the log-likelihood with the parameter estimate and validation dataset.
The above procedure was repeated 10 times, resulting in 10 log-likelihoods for each gene.
The best gene with the largest mean log-likelihood was selected. The procedure was
iterated 10 times. The output was further refined by applying a multivariate model of
the Cox analysis (two-sided). The Cox proportional analysis was carried out by using
survival R package [65]. Then, an RS was established for each patient by calculating

https://toppgene.cchmc.org/
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the DESeq2-normalized expression values of the selected genes weighted by regression
coefficients in the multivariate Cox regression analysis. The formula used was as follows:

Risk score =
n

∑
i=1

expi × βi

where n is the number of selected genes, expi is the expression level of gene i normalized
by DESeq2, and βi represents the regression coefficient of gene i. Subsequently, the patients
were divided into two groups: high-risk score and low-risk score, based on the risk score’s
median. A ROC curve analysis was carried out to compare the predictive accuracy of
the gene signature. A p-value < 0.05 was set as the statistically significant difference.
Heatmaps were generated in R with the ComplexHeatmap package [66] with z-score
normalization within each row.

4.7. Survival Analysis

Based on the median of each risk score, we classified the patients into two groups
(high-risk and low-risk). The prognosis of each group of patients was examined by Kaplan-
Meier survival estimators, and the survival outcomes of the two groups were compared
by log-rank tests. The Kaplan-Meier analysis with the log-rank test for difference was
performed with the R package survival.

4.8. Cell Culture

Normal human mesothelial cells Met-5A and MPM cell lines ZL-55, REN, and MSTO
were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). MPM
cell lines Mero-14, Mero-41, and Mero-95 were obtained from European Collection of Au-
thenticated Cell Culture (ECACC, Porton Down, UK). Met-5A cells were grown in Medium
199 supplemented with 10% FBS, 3.3 nM EGF, 400 nM hydrocortisone, and 870 nM zinc-free
bovine insulin (all from Gibco, Carlsbad, CA, USA). Mero-14, Mero-41, and Mero-95 cells
were grown in HAMS F10; ZL-55 and MSTO cells were grown in a 1:1 mixture of DMEM
and Ham’s F-12; REN cells were grown in DMEM (all from Euroclone S.p.A., Milan, Italy).
All MPM cells were maintained in medium supplemented with 10–15% heat-inactivated
FBS, 2mM L-glutamine, 100 U/mL penicillin, and 100 U/mL streptomycin (all from Eu-
roclone S.p.A., Milan, Italy). Cells were kept at 37 ◦C in a constant humidified 5% CO2
atmosphere.

4.9. Western Blot Analysis

Cells were collected at confluence, washed twice with PBS, and then homogenized
in Mammalian Protein Extraction Reagent (M-PER, ThermoFisher Scientific, Waltham,
MA, USA) containing inhibitors of proteases and phosphatase (Roche Diagnostics GmbH,
Rotkreuz, Switzerland), following standard protocols. Then, 7 µg of proteins, determined
by BCA assay (Invitrogen-Life Technologies, Carlsbad, CA, USA), were denatured, sepa-
rated by electrophoresis using precast Novex 8–16% or 4–12% Wedge Wells Tris-Glycine
Gels (Invitrogen-Life Technologies, Carlsbad, CA, USA), and electroblotted onto PVDF
membranes (Bio-Rad Laboratories Inc., Hercules, CA, USA). The membranes were blocked
with 5% milk TBST and probed overnight at 4 ◦C with the specific primary antibody:
anti-CIT rabbit polyclonal antibody (1:500; Proteintech, Rosemont, IL, USA); anti-CTHRC1
rabbit polyclonal antibody (1:1000; Proteintech, Rosemont, IL, USA); anti-E selectin rabbit
polyclonal antibody (1:750; Proteintech, Rosemont, IL, USA); anti-Midkine (MDK) rabbit
polyclonal antibody (1:500; Proteintech, Rosemont, IL, USA); anti-SPARC rabbit poly-
clonal antibody (1:750; Proteintech, Rosemont, IL, USA); anti-TRAF2 rabbit polyclonal
antibody (1:1000; Proteintech, Rosemont, IL, USA); anti-UHRF1 rabbit polyclonal anti-
body (1:1000; Proteintech, Rosemont, IL, USA); anti-DSC3 mouse polyclonal antibody
(1:500; Genetex, Irvine, CA, USA); anti-KIF23 rabbit polyclonal antibody (1:500; OriGene,
Rockville, MD, USA); anti-PRSS23 rabbit polyclonal antibody (1:500; Abcam, Cambridge,
MA, USA); anti-ADAMTS1 rabbit polyclonal antibody (1:500; GeneTex, Irvine, CA, USA);
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anti-PODXL rabbit polyclonal antibody (1:500; Proteintech, Rosemont, IL, USA); anti-BAG2
rabbit polyclonal antibody (1:1000; Proteintech, Rosemont, IL, USA); anti-TNNT1 rab-
bit polyclonal antibody (1:1000; Proteintech, Rosemont, IL, USA); anti-MAD2L1 rabbit
polyclonal antibody (1:800; Proteintech, Rosemont, IL, USA). An antibody specific for
GAPDH (1:10,000; Proteintech, Rosemont, IL, USA) was used as an index of homogenate
protein loading in the lanes. Secondary antibodies anti-rabbit IgG-HRP (1:10,000; Jackson
ImmunoResearch laboratories, West Grove, PA, USA) and anti-mouse IgG-HRP (1:20,000;
Proteintech, Rosemont, IL, USA) were added for 1 h at room temperature and used for
signal detection. Reactive bands were detected using Clarity MaxTM Western ECL Sub-
strate (Bio-Rad Laboratories Inc., Hercules, CA, USA), according to the manufacturer’s
instructions. Visualization was performed using a ChemiDoc Imaging System (Bio-Rad
Laboratories Inc., Hercules, CA, USA). Densitometry of Western blot bands was carried
out with the ImageLab 6.0 software (Bio-Rad Laboratories Inc., Hercules, CA, USA).

5. Conclusions

In summary, we identified an elevated expression of 15 genes in MPM tissues asso-
ciated with a worse patient OS. Among them, seven also showed a high protein expres-
sion in the panel of MPM cell lines herewith analyzed, and two more were reported as
overexpressed in other published studies on MPM cells. All these findings suggest that
the identified molecules could be exploited as prognostic biomarkers and new therapeutic
targets for MPM. A better understanding of the role of these putative biomarkers remains
to be elucidated. To this end, further functional analyses in vitro on MPM cellular lines
will be needed.
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