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Beta hemoglobinopathies are widely spread monogenic lethal diseases. Delta-globin

gene activation has been proposed as a possible approach for curing these pathologies.

The therapeutic potential of delta-globin, the non-alpha component of Hemoglobin A2

(α2δ2; HbA2), has been demonstrated in a mouse model of beta thalassemia, while its

anti-sickling effect, comparable to that of gamma globin, was established some time

ago. Here we show that the delta-globin mRNA level is considerably increased in a

Deoxyribonuclease II-alpha knockout mouse model in which type 1 interferon (interferon

beta, IFNb) is activated. IFNb activation in the fetal liver improves the delta-globin mRNA

level, while the beta-globinmRNA level is significantly reduced. In addition, we show that

HbA2 is significantly increased in patients with multiple sclerosis under type 1 interferon

treatment. Our results represent a proof of principle that delta-globin expression can be

enhanced through the use of molecules. This observation is potentially interesting in view

of a pharmacological approach able to increase the HbA2 level.

Keywords: erythropoiesis, δ-globin gene, interferon type 1, beta thalassemia, sickle cell anemia

INTRODUCTION

Modulations of Fetal-hemoglobin (HbF) and possibly hemoglobin-A2 (HbA2) are of interest
given their potential roles in ameliorating beta thalassemia (beta thal) and sickle cell anemia
phenotypes (1–4).

Recently, through genome-wide association studies (GWASs) in the SardiNIA cohort, Danjou
et al. identified new variants associated with levels of HbF, HbA1 (Hemoglobin A1), and HbA2
(5). In the regional association plots, at the loci associated with HbF reported by the authors (5),
we noticed some suggestive, although not genome wide significant, signals covering a region on
chromosome 19 were two genes related to erythropoiesis are present: Krüppel-like factor 1 (Klf1)
andDeoxyribonuclease II-alpha (DNase2a). The effect of Klf1 on HbF, HbA1, and HbA2 expression
has been largely elucidated (6–9), while a possible effect of DNase2a on hemoglobins expression
has not yet been investigated (10, 11).

DNase2a is expressed in the central macrophage of erythroblastic islands (CMEI), where it is
involved in the digestion of extruded nuclei of developing erythrocytes (10, 12).DNase2a knockout
(KO) mice die at around embryonic day 17 (E17) of lethal anemia, which is caused by IFNb
production by macrophages (12). Undigested DNA directly stimulates CMEIs to express IFNb and,
therefore, Interferon-responsive genes (12). Ifnar1 KO rescues the impaired erythropoiesis of the
DNase2a KO phenotype (12).
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To investigate a possible effect of DNase2a on the expression
of beta-like (gamma, delta, and beta) globin genes, we inter-
crossed DNase2a KO mice with a transgenic mouse line
(ln72) containing the full human beta-globin gene cluster (13).
Expression of globin genes and erythropoiesis have been analyzed
in fetal liver. Here we show that type I interferon activation led
to a significant increase in the delta-globin mRNA level offset
by a decrease in the beta-globin mRNA level and to a different
pattern of erythroid differentiation compared to the control
mice. No significant increase in the gamma-globin mRNA level
was observed.

With the aim of verifying whether the use of type I interferon
was able to modify the expression of HbA2 in humans, we
conducted a study in patients with multiple sclerosis (MS) who
underwent therapy with IFNb. Our results show a significant
increase in HbA2 level in patients.

Beta hemoglobinopathies affect the health of countless people
worldwide (14). At present, bone marrow transplantation
provides the only definitive cure for these diseases. Alternative
therapies such as gene therapy (15, 16) will be difficult to apply
on a large-scale basis and in developing countries. Therefore,
the development of a pharmacological approach for these
pathologies would make care accessible in countries where these
diseases are more widespread and mortality is very high (17–19).

Recently, we have validated the therapeutic potential of the
delta-globin gene in a mouse model of beta thal (4). It is also
well-known that HbA2 can inhibit Sickle hemoglobin (HbS)
polymerization as efficiently as HbF (3).

Our results show, just as proof of principle, that HbA2 can
be increased pharmacologically, and this observation could be a
starting point for future studies aimed at increasing HbA2 levels
through the use of molecules.

MATERIALS AND METHODS

Mice
All experimental protocols were approved by the Cagliari
University Institutional Animal Care and Use Ethical Committee
(OPBA, Approval number: 22/2016). All methods were
performed in accordance with relevant guidelines/regulations.

The original ln72 (provided by Dr. Frank Grosveld’s
laboratory) and the DNase2a/Ifnar1 KO (bought from RIKEN
BioResource Center, Japan) mouse lines were maintained on a
hybrid C57BL/6 background.

Genotyping
Genotypes were determined from genomic DNA by PCR.

Transgenic mouse line ln 72, an established single copy
transgene that contains the full human beta-globin cluster (12),
was genotyped using the primers listed in Supplemental Table 1.

WT and Ifnar1 KO were detected with a wild-type-specific
primer or mutant-specific reverse primer and a common
forward primer.

WT and DNase2a KO were detected with a wild-type-specific
or mutant-specific primer and an antisense primer. All primers
are listed in Supplemental Table 1.

Real-Time Quantitative PCR (RT-qPCR)
Total RNA was extracted from E12.5, E14.5, and E 16.5 fetal
livers, or human tissue culture cells, using the RNeasy Mini
Kit (Qiagen) as described by the manufacturer’s protocol. The
cDNA was made from total RNA using Superscript III reverse
transcriptase (Invitrogen). RT-qPCRs were performed using
SYBRGreen chemistry (Applied Biosystems) with an ABI PRISM
7900 thermocycler (Applied Biosystems, Foster City, CA).

RT-qPCR was performed to measure the gamma, beta,
and delta globin gene mRNA expression, and samples were
normalized with respect to alpha mouse levels or HPRT
human levels.

All primers are listed in Supplemental Table 1.
The reactions were performed on at least three different

samples in triplicate for mice fetal liver and three times for two
separate samples of human tissue culture cells. The analysis of
RT-qPCR data was done using the 11CT method.

Flow Cytometry Analysis
Fetal liver cells were collected, from aminimum of three embryos
per genotype, at 14.5 and 16.5 days post coitum (dpc). Cell
suspensions were obtained, and isolated cells (1 x 106 per sample)
were stained with anti-mouse Ter119 FITC and anti-mouse
CD71 PE antibodies (BD-Bioscience) at a final concentration
1:100. Cells were incubated for 20min at 4◦C, washed with PBS
(5% BSA), and re-suspended in FACS buffer. A FACSCANTO
(BD-Bioscience) flow cytometer was used to collect data and
analyzed with FACSDiva software Version 6.1.3 (BD Biosciences)
and FlowJo V7.6.5.

Primary Human Erythroid Cultures
Human erythroid progenitor cells from peripheral blood were
obtained from healthy individuals.

Donors cells were cultured using the two-phase liquid culture
described by Fibach et al. (20) and Pope et al. (21) in the presence
of 0, 10, or 100 UI IFNb 1a.

Written, informed consent was provided by the
study participants.

Patient Selection and Blood
Sample Analysis
All experimental protocols were approved by the Ethics
Committee ATS Sardegna (approval number 85/2018/CE). All
methods were carried out in accordance with relevant guidelines
and regulations. Written informed consent was obtained from
all subjects.

A total of 81 Multiple Sclerosis patients were enrolled in
the study from the Multiple Sclerosis Center (Binaghi Hospital,
ATS Sardegna, Department of Medical Sciences and Public
Health, University of Cagliari). Blood samples were collected
from all patients in tubes containing EDTA anticoagulant for
hemoglobin electrophoresis. Hemochrome was carried out by
standard techniques. HbA2 levels were measured with high-
performance chromatography.

Globin chain analyses were performed on a VARIANT
II high-performance liquid chromatography system (Bio-Rad,
Segrate MI, Italy). Two-level calibration of the instrument and
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sample analysis were carried out according to the manufacturer’s
recommendations. Types of interferon administrated during the
study are listed in Supplemental Table 2.

Statistics
In order to avoid problems related to non-normal distribution
of values when applying statistical parametric tests (i.e., the t-
test) to blood sample measurements, the inter-group difference
was assessed with the non-parametric Wilcoxon signed-rank
test (one-sided). In particular, differences in HbA2 levels
between groups were assessed using the unpaired two-samples
Wilcoxon test while, when comparing HbA2 levels before and
after treatment, the paired samples Wilcoxon test was applied
(Supplemental Table 3). Statistical power was calculated with a
Wilcoxon-Mann-Whitney test for two groups at a significance of
0.05, one-sided.

Otherwise, statistical differences were calculated using the
unpaired Student’s t-test.

P-value< 0.05 was considered statistically significant, and
a Bonferroni correction for multiple testing was applied
when appropriate.

The statistical analyses were performed using R (http://www.
Rproject.org) and G∗Power Version 3.1.9.2.

RESULTS

Human Delta-Globin Gene Expression Is
Increased in DNase2a-Deficient Mouse
Fetal Liver
In this study, we aimed to evaluate the possible effect of DNase2a
deficiency on human beta-like globin gene expression in vivo.
To this end, we crossed a transgenic line containing the entire
human beta-globin gene locus (ln72) (13) with the DNase2a KO
mouse model (12).

Since mice deficient in DNase2a die around E17, we evaluated
beta-like globin mRNA levels in fetal liver at 12.5, 14.5, and
16.5 dpc.

No effect on the gamma-globin mRNA level was detected
(Figure 1A).

The beta- and delta-globin mRNA levels at 12.5 dpc were
comparable in WT and DNase2a-deficient mouse fetal livers
(Figures 1B,C).

At 14.5 dpc, the beta-globin mRNA level was diminished
in DNase2a KO with respect to WT fetal liver (0.48 ±

0.07, p = 8.93 x 10−5). The decreased level of beta-
globin mRNA was also observed at 16.5 dpc (0.37 ± 0.06,
p= 5.57 x 10−5) (Figure 1B).

FIGURE 1 | Human delta-globin gene expression is increased in DNase2a-deficient mouse fetal liver. (A–C) represent the mRNA expression level of the human

gamma, beta, and delta globin genes, respectively, in DNase2a +/+ Ifnar1+/+ (n = 4 for each time point) and DNase2a −/− Ifnar1+/+ (n = 4 for each time point) fetal

liver at 12.5, 14.5, and 16.5 dpc. (D–F) represent the expression levels of the human gamma, beta, and delta globin genes, respectively, in DNase2a +/+ Ifnar1−/− (n

= 4 for each time point) and DNase2a−/− Ifnar1−/− (n = 4 for each time point) fetal liver at 12.5, 14.5, and 16.5 dpc. Levels of significance, calculated by Student’s

t-test, are indicated. ***p < 0.001.
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At the same time the delta-globin mRNA level was increased
inDNase2a KO embryos with respect toWT embryos at 14.5 dpc
(6.15± 0.4, p= 2.30 x 10−4) and 16.5 dpc (5.34± 0.2, p= 1.09 x
10−5) (Figure 1C).

As a control, we crossed ln72 mice to DNase2a/Ifnar1 double
KO mice. Embryos with a double deficiency for DNase2a and
Ifnar1 do not show differences in the expression of the human
globin genes with respect to WT (Figures 1D–F).

These results indicated that IFNb affects the levels of beta-
and delta-globin mRNAs. Starting from day 14, when definitive
erythropoiesis definitely takes place, the delta-globin mRNA
level is increased (6.15- and 5.34-folds at 14.5 and 16.5 dpc,
respectively) while the beta-globin mRNA level is significantly
reduced (0.48- and 0.37-fold at 14.5 and 16.5 dpc, respectively).

The mouse alpha-globin mRNA level is not affected by
DNase2a deprivation (Supplemental Figure 1).

Fetal Liver Erythropoiesis in
DNase2a-Deficient Mouse
In DNase2a-deficient mice, definitive erythropoiesis is impaired
due to IFNb activation (12). However, fetal liver erythropoiesis
in DNase2a KO mice has never been analyzed by flow cytometry
before. To evaluate whether the observed increase in delta-globin
gene expression could be somewhat correlated to a modification
of the normal erythropoietic kinetics (22), we analyzed, through
flow cytometry, fetal liver definitive erythropoiesis. Analysis was
conducted on WT, DNase2a KO, and DNase2a/Ifnar1 double
KO freshly isolated fetal liver cells from 14.5 and 16.5 dpc
mice embryos according to levels of expression of TER119 and
CD71 (23) (Figure 2A). We excluded from the analysis all events
that expressed neither TER119 nor CD71, since only cells in
the erythroid lineage were considered. Four different states of
maturation were analyzed: Pop. I (TER119 low or absent/CD71
low or absent), Pop. II (TER119 low or absent/CD71 high),
Pop. III (TER119 high/CD71high), and Pop. IV (TER119
high/CD71 low or absent). No significant differences were
observed in the frequency, morphology, and levels of expression
of Ter119 and CD71 in maturing erythroid cells between WT
and DNase2a/Ifnar1 double KO mice fetal livers at 14.5 dpc or at
16.5 dpc (Figure 2B). On the other hand, analysis of mice lacking
DNase2a gene displayed different frequencies of the maturing
cells (Figure 2B). Analysis showed a significant increase in Pop I
in 16.5 dpc (WT: 15.6%± 1.44;DNase2a KO: 34.5%± 3.4 in 16.5
dpc, P= 1.79 x 10−5). No significant difference in the percentage
of Pop. II was detected, while a significant reduction of Pop. III
was observed (WT: 76.82%± 2.37;DNase2a KO: 49.53%± 13.31
in 14.5 dpc, P= 0.0032,WT: 74.45%± 2.86;DNase2a KO: 30.98%
± 6.22 in 16.5 dpc, P = 4.13 x 10−6). A significant contemporary
increase in Pop. IV was registered in the DNase2a KO genotype
in comparison toWT (WT: 4.21%± 1.09;DNase2a KO: 21.5%±

7.63 in 14.5 dpc, P= 0.001, andWT: 5.64%± 2.22;DNase2a KO:
23.98%± 6.03 in 16.5 dpc, P = 7.3 x 10−4).

Taken together, our data show a variation in the erythropoietic
pattern of differentiation in mice lacking DNase2a gene, with a
decreased frequency of Pop. III and an increased frequency of
later populations (Pop. IV).

An increased frequency of Pop I, containing the earliest
erythroid progenitors (21), is observed in the 16.5 dpc
DNase2a KO. This increase, which is not observed in the 14.5
dpc KO mice, is most likely explained by the anemia that
becomes progressively more and more severe starting from
the establishment of definitive erythropoiesis in the fetal liver
of DNase2a KO mice (12). The observed varied pattern of
erythroid differentiation in DNase2 KO fetal liver is, however,
distinct from that observed in the ineffective erythropoiesis
seen, for example, in beta thal, which is characterized by a
decrease in the number of the later population (Pop IV) and
an increased number of earlier populations (Pop I, II, and
III) (24, 25).

Hemoglobin A2 Levels Increase After IFNb
Treatments in Multiple Sclerosis Patients
In this study, we have shown that the delta-globin mRNA level is
increased inDNase2a null fetal liver at 14.5 and 16.5 dpc.We have
also shown that higher delta-globinmRNA is the consequence of
type 1 interferon (IFN1) activation.

To evaluate the effect IFNb on the delta-globin mRNA level
in human erythroid cells, we carried out human erythroid
progenitor liquid culture (20, 21) from two healthy donors. The
relative normalized mRNA level of the human delta vs. beta-
globin genes at 12 and 14 days after stimulation with 0, 10, or 100
UI of IFNb 1a was evaluated. The results did not show statistical
differences in the expression of the delta-globin gene in either of
the two independent cultures analyzed (Supplemental Figure 2).

It has been reported that multiple sclerosis patients treated
with IFNb have higher levels of HbA2 in comparison to those
treated with other drugs (26). For the purpose of verifying
whether therapy with IFNb was the cause of the increase in HbA2
in vivo, we performed a study in MS patients.

First, a transversal study was carried out on 47MS patients
undergoing IFNb therapy for at least 1 year; HbA2 average did
not show any difference compared to the control population
(2.70% ± 0.26 vs. 2.71% ± 0.32). Since a compensatory
mechanism could occur in the erythropoiesis of patients treated
for a long period, we carried out a longitudinal study (n = 25)
analyzing HbA2 levels at the diagnosis of the disease (T0) and
after 3 months of drug treatment (T1). HbA2 average in MS
patients before IFNb treatment (T0) was 2.75%± 0.71, while after
treatment, it was 2.87%± 0.80. Blood counts were within normal
limits for all patients, and no significant differences were detected
between at T0 and T1 (Supplemental Table 4).

Interestingly, in a beta thal carrier patient, the effect of
interferon therapy was found to be the highest in all of the studied
samples, from 5.9% (T0) to 6.4% (T1) g/dl.

The box plot in Figure 3A shows HbA2 before and after
treatment, and the Wilcoxon test revealed a significant difference
in HbA2 levels (p = 1.6 x 10−3, one-sided). Stratification of the
sample according to the type of IFNb administrated (IFNb 1a or
IFNb 1b, see Supplemental Table 2) revealed that this difference
is mainly due to IFNb 1a (IFNb 1a + IFNb 1a peg) treatment.
HbA2 in patients before treatment with IFNb 1a was 2.8% ±
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FIGURE 2 | Flow cytometry analysis of fetal liver cells from 14.5 and 16.5 dpc embryos. In panel (A), Pop. I, Pop. II, Pop III, and Pop IV were gated (according to

levels of expression CD71 and TER119) and analyzed for each genotype studied at 14.5 dpc (upper panel) and at 16.5 dpc (bottom panel) in fetal liver cells. (B): Bar

plots showing flow cytometry analysis from 14.5 dpc (n = 4; left panel) and 16.5 dpc (n = 4; right panel) fetal liver cells. Levels of significance, calculated by Student’s

t-test, are indicated. *p < 0.05; **p < 0.01; ***p < 0.001.

0.8, while after treatment, it was 3.02% ± 0.9 (p = 1.8 x 10−3,
one-sided), as shown in Figure 3B.

A significant number (n = 9) of beta thal carriers were
represented in our transversal study, so we analyzed them
separately. Average HbA2 in beta thal carriers/MS patients was
6.24%± 0.42 compared to 5.84%± 0.53 in beta thal carriers.

The box plot in Figure 3C shows the HbA2 levels in the two
different carrier groups; the Wilcoxon test revealed a significant
difference in HbA2 levels (p = 0.01 one-sided). Stratification of
the sample revealed, as before, that this difference is mainly due
to IFNb 1a treatment. The HbA2 value in carriers of beta thal
treated with IFNb 1a was 6.55%± 0.1, while that of those treated
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FIGURE 3 | Hemoglobin A2 levels increase after interferon beta (IFNb) treatment in Multiple Sclerosis (MS) patients. (A) shows a box plot of HbA2 levels in (n = 25)

MS patients before (T0) and after (T1) IFNb treatment. (B) shows a box plot of HbA2 level in (n = 22) MS patients before (T0) and after (T1) IFNb treatment stratified by

IFNb type (16 and 6 patients under IFNb 1a + IFNb 1a peg and IFNb 1b treatment, respectively). (C) shows a box plot of HbA2 levels in beta thal carriers (n = 643)

and in beta thal carriers/MS patients under IFNb treatment (n = 9). (D) shows a box plot of HbA2 levels determined in beta thal carriers/MS patients stratified by IFNb

type (4 and 5 patients under IFNb 1a and IFNb 1b treatment, respectively). Levels of significance, calculated by Wilcoxon test, are indicated. *p < 0.05; **p < 0.01;

***p < 0.001.

with IFNb 1b was 5.9%± 0.5 (p = 0.023, one-sided), as shown in
Figure 3D.

Our results suggest that IFNb induced a significant increase in
Hemoglobin A2 levels in patients with MS. Moreover, this effect
seems to be more relevant and persistent in beta thal carriers/MS.

DISCUSSION

In this study, we have investigated the effect of DNase2a
deprivation on globin gene expression and erythropoiesis in
vivo. In DNase2a null fetal liver, the delta-globin mRNA level
is increased while the beta-globin mRNA level is significantly
reduced. Erythropoiesis is altered with an increased frequency of
the Ter 119 high/CD71 low or absent cell population (Population
IV) (23).

In definitive terminal erythropoiesis, in humans, the peak of
delta-globin expression appears in earlier stages compared to that
of beta-globin, and it tends to drop in enucleated circulating
reticulocytes and RBCs (3). A similar effect occurs with regards
to earlier delta-globin expression in the beta-locus transgenic
mice used in the present study (Supplemental Figure 3). Since
reticulocytes have little delta-globinmRNA, it can be deduced that
the observed increase is likely due to the increased proportion

of Pop. IV, which is mainly composed of orthochromatic
erythroblasts (23).

The asynchronous synthesis of beta and delta chains during
erythroid maturation is most probably due to a mechanism
linked to the activation of the promoter based on the proximity
to the LCR for which the closest promoter is activated earlier,
or more frequently, and then stabilized at the beta-globin
gene promoter (22, 27). Another contributing factor is the
different stability of the beta- and delta-globin mRNAs (28). The
combination of these mechanisms would explain the higher level
of deltamRNA in earlier populations.

The observed altered pattern of erythroid differentiation and
increase in delta-globin mRNA level is due to type I interferon
activation in the fetal liver, as demonstrated by the fact that
erythropoiesis and globin gene expression are rescued to those
of WT in DNase2a/Ifnar1 double KO mice. In support of
this notion, there is also the observation that there is a small
but significant increase of HbA2 in patients affected by MS
and undergoing IFNb therapy. The increase appears to be
more consistent and durable in beta thal carrier MS patients.
The effect is primarily due to the increase in HbA2 levels in
patients subjected to therapy with interferon-beta1a (IFNb 1a,
produced bymammalian cells), whereas interferon-beta1b (IFNb
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1b, produced by genetically modified E. coli) does not seem to
have an effect, at least with the doses used for MS. This difference
may be due to the difference in biological activity between the
two drugs, with IFNb 1a being ten times more active than IFNb
1b (29), as well as to the difference in dose and frequency of
administration of the two types of interferon (30). Despite the
low number of MS patients affected by beta thal (9 subjects) with
respect to non-MS beta thal patients [data derived from Danjou
et al. (5)] available for this study, the difference we observed was
supported by a moderate statistical power (52%). Even stronger
was the power to observe a significant difference in HbA2 levels
between beta thal MS patients treated with INFb 1a and 1b (67%),
further supporting the robustness of our results. However, it
would be interesting to assess the effect on HbA2 levels of IFNb
1a in carriers of beta thal not affected by MS, though this would
require a dedicated clinical study.

In humans, only three patients homozygous for a DNase2a
null mutation have been described in the literature (31). In
these patients, type one interferon is activated. An effect on
erythropoiesis with mild anemia, especially at birth, has been
described (28). We had the chance to test mRNA levels for
delta-globin in one of these patients before and after treatment,
which strongly ameliorated patient condition (31). A significantly
different level of delta-globin mRNA was detected, with a 30%
(±4.15%) higher delta-globin mRNA level before treatment than
after treatment (p = 0.031, technical triplicate). These data,
although limited to a single patient, suggest that in humans, the
activation of type 1 interferon affects erythropoiesis (31), with
effects on the delta-globinmRNA level.

The increase in delta-globin represents an alternative
experimental approach for the treatment of beta thal and sickle
cell anemia (3, 4). A therapeutic strategy for beta thal and sickle
cell anemia based on the increase in delta-globin may have the
advantage over reactivating gamma-globin that the expression of
the delta-globin gene is pan-cellular, while that of the gamma-
globin gene is heterocellular (3). Moreover, the oxygen affinity of
HbA2 is more similar to that of HbA1 than is HbF. In this work,
we also observed that, as a consequence of interferon activation,
the increased delta-globinmRNA level corresponds to a decrease
in the beta-globin mRNA level. In sickle cell anemia, this may
represent a further advantage.

Several drugs are under investigation as HbF-inducing agents.
However, up to today, only Hydroxyurea is utilized in the clinic,
with many limitations (32). Other strategies for the reactivation
of the gamma-globin gene have been based on interventions
aimed at modifying hemoglobin switching through genomic
modification (1, 2). Similar approaches have been proposed for
the delta-globin gene (4, 33). These strategies, however, are in
their infancy, and several issues concerning safety and efficacy
have to be addressed before translating these approaches to
the clinic.

It is difficult to predict what increase in HbA2 could be
achievable with a targeted pharmacological approach. In the case
of sickle cell anemia, HbA2 above 10% (about 4 times the normal
level) of total hemoglobin would be beneficial. Levels above 30%
(about 12 times the normal level) should be curative (34, 35).
These predictions are based on the anti-sickling properties of

HbA2, which are similar to those of HbF (3). On the other
hand, higher increases would be needed for an improvement
in beta thal major. However, even if the achievable increase
was not enough to cure the diseases in combination with other
globin therapies, this may be a contributing factor to improve
patient condition.

The precise molecular pathway by which IFNb causes a
perturbation of terminal erythroid maturation, with an increase
in Pop IV, and of delta-globin mRNA is not fully elucidated and
needs further investigation. Most likely, however, the observed
change in erythroid maturation kinetics is in part due to the
perturbation of the apoptotic program, necessary to terminal
erythroid differentiation (36, 37), caused by IFNb (38).

We are aware that repositioning of IFNb for beta
hemoglobinopathies is unlikely, since type 1 interferon has
been universally known as a lethal inhibitor of erythropoiesis
(39, 40). Other pathways that may affect the erythropoietic
cell cycle kinetics should be investigated. In this regard, it is
interesting to note that CCND3, a D-type cyclin that coordinates
the cell cycle during erythroid differentiation (41), was found
to be associated with increased HbA2 levels in a recent study
(5). CCND3 gene product cyclin D3 plays a critical role in
regulating the number of cell divisions that erythroid precursors
undergo during terminal differentiation (41). CCND3 null
mice are viable and fertile and do not show important signs of
anemia (41). These observations suggest that there could be a
viable pathway to alter the cell cycle during terminal erythroid
differentiation, as happens in CCND3 KO mice, through the use
of molecules and without serious pathological consequences.
The molecular mechanism through which CCND3 affects
delta-globin gene expression remains, however, to be more
clearly determined.

In summary, our study represents “a proof of principle”
that elevation of delta-globin could be an interesting target
for a pharmacological approach aimed at the therapy of
beta hemoglobinopathies.
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