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ABSTRACT Turicibacter sanguinis MOL361 (DSM 14220) is the reference and type
strain for the Turicibacter genus, commonly found in the intestinal tract of animal
species. Long-read sequencing was performed on this strain to complement publicly
available Illlumina HiSeq-based data, producing a complete annotated genome se-
quence.

uricibacter is a genus of the Firmicutes phylum, commonly identified in the intestine

of animals (1-8). Turicibacter species are capable of interaction with host-derived
compounds, suggesting that they contribute to physiological processes (9-13). Here,
we describe the complete genome sequence of Turicibacter sanguinis MOL361+.

Turicibacter sanguinis MOL361 is the type strain for the type species of Turicibacter
and was sequenced in 2019 as part of the Department of Energy (DOE) Joint Genome
Institute project Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase IV:
the One Thousand Microbial Genomes (KMG V). The incomplete draft genome was
uploaded to NCBI (assembly accession number GCA_004338625.1). To complete the T.
sanguinis genome, long-read sequence data were generated for assembly with existing
short-read data. T. sanguinis DSM 14220 was obtained from the German Collection of
Microorganisms and Cell Cultures (DSMZ) and grown anaerobically at 37°C on brain
heart infusion (BHI) broth prior to sequencing. Genomic DNA was isolated using the
PureLink genomic DNA extraction minikit (Invitrogen, Waltham, MA) according to the
manufacturer’s instructions. The extracted DNA was assessed using gel electrophoresis,
a Qubit fluorimeter (double-stranded DNA [dsDNA] broad-range [BR] kit; Life Technol-
ogies, Waltham, MA), and a NanoDrop instrument (Thermo Fisher Scientific, Waltham,
MA) prior to sequencing. The genomic library for Nanopore sequencing was prepared
with the SQK-RBK004 rapid barcoding kit (Oxford Nanopore, Oxford, UK) according to
the manufacturer’s instructions.

Default parameters were used for all software unless otherwise noted. A FLO-
MIN106 (R9.4.1) flow cell was used on a MinlON device (Oxford Nanopore) for sequenc-
ing of the T. sanguinis MOL361; genomic DNA. The flow cell was run for 48 h, and reads
were quality (Q) scored (Q = 7), demultiplexed, and trimmed with Guppy v3.1.5 (14). A
total of 66,759 MinlON reads (genomic coverage, 30X) with a mean length of 2,632 bp
(Nso, 4,949 bp) were generated. Paired-end lllumina HiSeq reads (2 X 150 bp; genomic
coverage, 240X) were downloaded from GenBank’'s Sequence Read Archive (SRA)
(accession number PRJNA500327) using the SRA Toolkit (15). lllumina and Nanopore
reads were assembled into 2 contigs with Unicycler v0.4.7 in “bold” mode (16).
Geneious Prime v2019.1.1 (Biomatters, Ltd., Auckland, New Zealand) was used to map
the Illlumina HiSeq and MinlON reads to both contigs using the “map to reference”
command with “medium sensitivity” settings. The smaller (1,400-bp) contig was present
in the lllumina reads but not in the Nanopore reads. A BLASTn search of the NCBI
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nucleotide database identified the small contig as similar (>97% identity) to DNA
sequences originating from several ungulates, a Clostridium botulinum genome, an
Actinoalloteichus sp. genome, and a Babesia bigemina genome. This observation, and
the Geneious mapping, suggested that this second contig was a contaminant, and it
was removed from the final assembly.

The remaining circular contig was annotated using the NCBI Prokaryotic Genome

Annotation Pipeline (PGAP) v4.11 (17). The annotated chromosome for Turicibacter
sanguinis MOL36" was 2,999,687 bp long with 34.4% G+C content. Turicibacter sangui-
nis MOL36T has 2,752 protein-coding sequences, with 43 pseudogenes and 121 tRNA
genes.

Data availability. This genome sequence has been deposited in GenBank under the

accession number CP053187. The Nanopore reads are available in the NCBI SRA under
accession number SRR11185522.
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