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Retinal degenerative disease (RDD) refers to a group of diseases with retinal degeneration
that cause vision loss and affect people’s daily lives. Various therapies have been
proposed, among which stem cell therapy (SCT) holds great promise for the treatment
of RDDs. Microglia are immune cells in the retina that have two activation phenotypes,
namely, pro-inflammatory M1 and anti-inflammatory M2 phenotypes. These cells play an
important role in the pathological progression of RDDs, especially in terms of retinal
inflammation. Recent studies have extensively investigated the therapeutic potential of
stem cell therapy in treating RDDs, including the immunomodulatory effects targeting
microglia. In this review, we substantially summarized the characteristics of RDDs and
microglia, discussed the microglial changes and phenotypic transformation of M1
microglia to M2 microglia after SCT, and proposed future directions for SCT in
treating RDDs.
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1 INTRODUCTION

The retina is a stratiform sensory tissue that consists of various cell types, including retinal pigment
epithelium (RPE) cells, photoreceptors, intermediate neurons, retinal ganglion cells (RGCs) and glial
cells (Malhotra et al., 2011; Madeira et al., 2015). Three distinct glial cell types are present within the
retina: Müller cells, astrocytes, and microglia (Vecino et al., 2016). Müller cells are responsible for
providing metabolic support to retinal neurons and regulating synaptic activity (Reichenbach and
Bringmann, 2013). Together with Müller cells, astrocytes integrate the vascular and neuronal activity
of the retina (Kolb, 1995). Microglia, the third type of retinal glial cell, are regarded as resident tissue
macrophages and play important roles in retinal homeostasis (Langmann, 2007). Generally,
microglia are proposed to originate from the yolk sac and are distributed widely in the whole
retina. The main functions of microglia are phagocytosis and regulation of tissue inflammation. Two
phenotypes of microglia have been identified: M1 microglia and M2 microglia. The former
phenotype is generally considered pro-inflammatory, while the latter phenotype is anti-
inflammatory (Tang and Le, 2016; Jiang et al., 2020).

Retinal degenerative diseases (RDDs) are a group of irreversible diseases characterized by the
progressive degeneration of retinal cells, which eventually culminate in cell death. Certain conditions
lead to an imbalance in the retinal microenvironment, which in turn causes retinal degeneration
(Gorbatyuk and Gorbatyuk, 2013). The chronic inflammatory response is a nonnegligible part, where
microglia serve as the culprit. Different therapeutic approaches have focused on controlling the
activity of microglia to inhibit retinal inflammation (Karali et al., 2020; Lew et al., 2020), including
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stem cell therapy (SCT). The “control” was aimed at alleviating
the functions of activated microglia, which normally refer to M1
microglia. However, recent studies also confirmed that SCT was
likely to modulate microglial polarization toward the anti-
inflammatory M2 phenotype (Jha et al., 2018). This review
therefore offers a comprehensive overview of the
interrelationship among RDDs, microglial modulation, and
SCT. In addition, assumptions that SCT may be better used to
treat RDDs by targetingmicroglial polarization are also discussed.

2 CHARACTERISTICS OF RETINAL
DEGENERATIVE DISEASES

RDDs are a common form of neural degenerative diseases
worldwide. They affect approximately 3.4 million people in the
United States alone and are considered the dominant health issue.
The number of patients continues to increase due to the aging of
the population in industrialized countries. People with RDDs
may suffer from a substantial loss of quality of life when their
vision decreases to a certain extent (Wert et al., 2014).
Additionally, RDDs have become a heavy burden for patients
and society (Brown et al., 2006; Sapieha et al., 2010). For instance,
over 250 billion dollars per year are spent on care for patients with
age-related macular degeneration (AMD) in the United States
(DeAngelis et al., 2017). A group of retinal diseases, such as
retinitis pigmentosa (RP), diabetic retinopathy (DR), AMD,
glaucoma, and Alzheimer’s disease (AD)-related retinal
degeneration, are collectively known as RDDs (Yang et al.,
2013; Madeira et al., 2015; Jin et al., 2019; Nashine et al.,
2019). As substantial genetic and allelic heterogeneity exist
among different RDDs, the specific classification of these
diseases can be ambiguous (Wert et al., 2014). Considering the
genetic perspectives, RDDs are classified as inherited retinal
degeneration and noninherited retinal degeneration. For
example, RP belongs to the former and DR to the latter.
Currently, a cure for RDDs is unavailable. However, various
therapies have been proposed, including pharmacotherapy (e.g.,
9-cis-retinyl acetate), neuroprotection (application of
neurotrophic factors), gene replacement (e.g., RPE65), retinal
prostheses (restore visual function with devices), and SCT
(Cideciyan et al., 2008; Zrenner et al., 2011; Trifunovic et al.,
2012; Scholl et al., 2015; da Cruz et al., 2018). Although all current
therapies have limitations in controlling the progression of RDDs,
SCT is still one of the promising treatments. The implementation
and related benefits of SCT will be discussed in the next sections.

The pathological characteristics of RDDs are similar but
different. For example, loss of retinal neurons occurs in all
RDDs, while neovascularization is a unique feature of AMD
and DR. More importantly, a certain RDD itself can also be
highly variable. Patients with RP can develop symptomatic visual
loss both in childhood and in middle age (Hamel, 2006). Many
patients suffer from nyctalopia in adolescence and loss of the
mid-peripheral visual field in early adulthood (Hartong et al.,
2006). The corresponding pathogenic process in RP is the gradual
degeneration of two photoreceptor cells: the primary atrophy of
rod cells and the subsequent death of cone cells (Wert et al.,

2014). DR is a common and specific microvascular complication
of diabetes. In the early stages, DR is largely asymptomatic.
However, it can result in retinal detachment and sudden loss
of vision as the disease progresses (Lechner et al., 2017). Chronic
exposure to hyperglycemia and other risk factors (e.g.,
hypertension) is postulated to enhance the biochemical and
physiological changes that lead to microvascular damage of
the retina (Cheung et al., 2010). Vasculopathy subsequently
leads to retinal hypoxia and harmful neovascularization
(Grossniklaus et al., 2010). Besides, DR exhibits characteristics
of low-grade chronic inflammation. Increased expression of
inflammatory cytokines, such as TNF and IL-1β, subsequently
increases the endothelial cell permeability, promotes the
breakdown of blood-retinal barrier (BRB), and induces the
adhesion of leukocytes (Madeira et al., 2015). Affecting the
macula, AMD compromises the central, fine vision of patients.
It has become the leading cause of visual impairment in the aging
population, especially in those over 55 years of age (DeAngelis
et al., 2017). Two major forms of this disease have been identified.
“Dry AMD” is the most prevalent form related to slow
progressive degeneration of the RPE and loss of
photoreceptors. “Wet AMD” is the less frequent but more
symptomatic form characterized by the formation of choroidal
neovascularization (CNV). Similar to harmful neovascularization
in DR, CNV causes intraretinal or subretinal leakage,
hemorrhage, and RPE detachment (Salvi et al., 2006; Velez-
Montoya et al., 2013). Macula-affected CNV is the primary
cause of vision loss in patients with wet AMD (Ambati and
Fowler, 2012). The two AMD forms are not mutually exclusive, as
one patient can present both pathological changes (Ashraf and
Souka, 2017). Glaucoma is often divided into two major subtypes,
open angle and angle closure. Open-angle glaucoma is a chronic
process. Patients are often asymptomatic until vision loss has
progressed significantly. Angle-closure glaucoma can be an acute
process with more immediate symptoms and tends to be more
destructive (Mantravadi and Vadhar, 2015). Both subtypes have
typical structural and functional defects characterized by the
death of a substantial number of RGCs in the inner retina and
the loss of their axons in the optic nerve (Quigley, 2011). The loss
of RGCs in patients with glaucoma is closely related to the level of
intraocular pressure (Weinreb et al., 2014). AD also causes retinal
degeneration, which becomes a prominent feature of AD
pathology (Koronyo-Hamaoui et al., 2011; Mirzaei et al.,
2020). AD patients may suffer from various visual
impairments such as loss of contrast and color sensitivity,
limited visual field, compromised visual attention and reduced
stereopsis (Hart et al., 2016). The hallmark pathology in ocular
tissues of AD patients is the deposition of amyloid β (Aβ) and
phosphorylated tau protein aggregates, which lead to the RGC
degeneration and thinning of retinal nerve fiber layer (Gao et al.,
2015; Ashok et al., 2020).

In addition to the abovementioned differences, chronic
inflammatory responses also play important roles in the
development of RDDs (Madeira et al., 2015). A group of main
immune cells within the central nervous system (CNS) and the
retina, namely, microglia, plays major roles in chronic
inflammation (Li et al., 2015; Rashid et al., 2019). Damage to
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retinal cells activates microglia to restrict injuries and eliminate
cellular debris. However, the overactivation of microglia results in
the excessive production of inflammatory factors, which damages
retinal cells and aggravates other harmful processes, such as
enhancing Aβ-induced toxicity (Qin et al., 2002; Madeira
et al., 2015). Therefore, microglia play leading roles in the
initiation and persistence of inflammation within RDDs, which
subsequently traps RDDs into vicious cycles. More detailed
descriptions of the conditions are provided below.

3 MICROGLIA AND THE RETINA

3.1 Origin, Maintenance, and Morphology of
Microglia
Microglia were first declared a population in the CNS different
from neurons and astrocytes by del Río-Hortega (1993).
Previously, microglia in the brain were presumed to have a
hemopoietic origin, with monocytes serving as their precursor
cells (Imamoto and Leblond, 1978). In contrast, an authoritative
study reported that microglia were mainly derived from primitive
macrophages in the yolk sac (Ginhoux et al., 2010). Hoeffel et al.
(2015) used a fate mapping system to reveal two waves of
erythromyeloid precursors (EMPs) in the yolk sac of mice.
The first wave of E7.5 progenitors gave rise to early EMPs and
subsequently differentiated into primitive macrophages. The
second wave of EMPs generated other hematopoietic
progenitors and differentiated into hematopoietic stem cells
(HSCs) that colonize the fetal liver. Between these two waves,
the first wave of EMPs is the origin wave for microglia (Hoeffel
et al., 2015). Consistent with these findings, another in vitro study
confirmed that the vast majority of mouse microglia in the brain
originated from EMPs distinct from HSCs (Gomez Perdiguero
et al., 2015). A study of human tissue indicated that microglia
migrated to the retina mainly from two sources: The retinal
margin and the optic disc (Diaz-Araya et al., 1995). In summary,
microglia are generally considered to originate from the yolk sac
and invade the retina later. Afterwards, the production of
microglia is different from the process occurring in the
developmental period. Although the origin of microglia in
vertebrate model animals is clear, the ontogeny of human
microglia is still a matter of debate due to the lack of direct
evidence.

Microglia exhibit a self-renewal pattern under both
physiological and pathological conditions (Bruttger et al.,
2015). After comparing cases, the density of microglia was
shown to be remarkably stable in young and aged brains of
both mice and humans in one study. Coupled proliferation and
apoptosis maintained the turnover of microglia, while no extra
infiltration of monocytes was involved. Additionally, an average
of 0.69% of microglia were in S phase at a particular time, which
allowed researchers to estimate that the microglia population in
the mouse brain is renewed every ∼95 days (Askew et al., 2017).
Another study used a special strategy to retrospectively analyze
the birth date of microglia isolated from human adults and found
that the age of microglia can be long to 6 decades. The majority of
microglia in the healthy human cortex were replaced by newly

produced cells at a median rate of 28% per year (or 0.08% per day)
and the average age was 4.2 years (Reu et al., 2017). These results
established that the microglial population in the human brain is
sustained by continuous slow turnover throughout life. However,
researchers have not clearly determined whether microglia in the
retina have the same self-renewal pattern. In addition to self-
proliferation, bone marrow (BM)-derived macrophages and
monocytes invade the CNS and contribute to the microglial
pool under specific conditions, such as irradiation (Jin et al.,
2017).

Normally, microglia adopt a quiescent phenotype
characterized by very small stomata and extensively ramified
filopodia-like processes. They monitor the entire CNS, including
the retina, by continuously moving their processes (Karlstetter
et al., 2015). Microglia in the CNS are activated when
encountering acute damage and adopt an amoeboid shape.
Amoeboid microglia differ from ramified microglia with
spherical shapes because they lack processes and have
numerous phagocytic vacuoles (Boche et al., 2013). The label
“amoeboid” implies that such cells are capable of motility. In
addition, several other morphological states of microglia have
been identified, such as rod cells, multinucleated cells, and
“dystrophic” microglia. Rod cells have elongated nuclei, scant
cytoplasm, few processes and are most notable in chronic
disorders. Multinucleated cells form as a reaction to
indigestible material and are commonly observed in
mycobacterial infection. “Dystrophic” microglia are cells with
dysfunction due to aging (Boche et al., 2013).

3.2 Microglial Polarization Toward Different
Phenotypes
Activated macrophages have consistently been shown to present
different phenotypes in several inflammation-induced human
diseases (Shapouri-Moghaddam et al., 2018). Microglia are
recognized as a specialized macrophage population within the
CNS (McMenamin et al., 2019). Similar to macrophages,
microglia have two activation phenotypes, the M1 phenotype
and the M2 phenotype (Tang and Le, 2016), which represent
simplified models to describe two polar states of inflammatory
responses, namely, pro- and anti-inflammatory responses.
Polarization refers to the activation of microglia toward a
specific phenotype (Kobashi et al., 2020).

Classical M1 microglia contribute to the release of pro-
inflammatory substances such as TNF-α, IL-1β, IL-6,
superoxide, inducible nitric oxide synthase (iNOS), reactive
oxygen species, and proteases (Le et al., 2001; Indaram et al.,
2015; Collmann et al., 2019). These substances promote
neuroinflammation and result in a poor outcome. For
example, the secretion of pro-inflammatory molecules such as
TNF-α and IL-1β by microglia cause chronic inflammation and
lead to the damage of the BRB in the diabetic retina (Kinuthia
et al., 2020). Several markers, including CD11b, CD16, CD32,
CD68, and CD86, are used to identify M1 microglia (Jiang et al.,
2020). This phenotype is typically induced by stimuli such as
lipopolysaccharide (LPS) or granulocyte-macrophage colony-
stimulating factor (GM-CSF) (Liu et al., 2019; Kobashi et al.,
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2020). In contrast, M2 microglia dampen the inflammatory
response by producing four major anti-inflammatory
cytokines: IL-4, IL-13, IL-10, and TGF-β (Butovsky et al.,
2005; Zhou et al., 2012). For example, IL-4 has been shown to
decrease the production of several pro-inflammatory mediators,
and IL-10 inhibits the activity of many pro-inflammatory factors
(Vanderwall and Milligan, 2019). In addition, these cytokines
promote the release of neurotrophic factors such as insulin-like
growth factor 1 (IGF-1) to increase neuron survival (Suh et al.,
2013). M2microglia also play a beneficial role in CNS diseases. By
secreting chitinase-3-like protein 3, IL-10, and TGF-β, M2
microglia promote angiogenesis and ultimately mitigate blood-
brain barrier (BBB) leakage (Zhu et al., 2019). In addition,
M2 microglia-derived exosomes attenuate ischemic brain
injury and promote neuronal survival (Song et al., 2019). M2
microglia can be identified by markers such as CD206, CCL22
and arginase-1 (Arg-1) (Jiang et al., 2020), and can be induced by
IL-4 (Kobashi et al., 2020).

3.3 Roles of Microglia in the Normal Retina
3.3.1 Microglia Play a Supporting Role in the
Development of the Retina
During the developmental period, the proliferation, survival, and
neurite outgrowth of embryonic neurons are promoted by
microglia-mediated trophic factors (Morgan et al., 2004). More
recently, microglia have been shown to play an important role in
the postnatal maturation of retinal photoreceptors (Jobling et al.,
2018). They also participate in the retention of selected neurons
and the elimination of unwanted cells, a process that is achieved
by the microglia-mediated phagocytosis of cellular debris,
pruning of weak presynaptic terminals of RGCs, and decrease
in costly neural connections deemed to be unfit for proper
function (Bodeutsch and Thanos, 2000; Schafer et al., 2012).
In addition, microglia are important in the process of retinal
vascularization, which comprises two phases. The first phase is
that hyaloid vessels extend from the optic disk to the lens and
supply blood and nutrients to the developing eye. In the second
phase, hyaloid vessels regress and the retina develops its own
independent vascular network (Li et al., 2019a). Microglia-
mediated apoptosis of vascular endothelial cells contributes to
the main step in the first phase (Lobov et al., 2005), the failure of
which can cause persistent hyperplastic primary vitreous in the
postnatal period. In the next phase, microglia are closely apposed
to endothelial tip cell filopodia, which guide blood vessel growth
through the tissue (Checchin et al., 2006).

3.3.2 Microglia Keep Silent and Supervise the Healthy
Retina
After development, microglia maintain the ramified morphology
with small cell bodies and long cellular protrusions and form a
non-overlapping microglia network, which provides a
comprehensive surveillance coverage of the entire retina
(Damani et al., 2011). Some researchers propose that there are
mechanisms of inhibiting microglial activation in the healthy
retina to prevent deleterious effects. Cell types including
photoreceptors, vascular endothelial cells, ganglion cells, and
Müller cells are involved in this process (Dick et al., 2003;

Langmann, 2007). Especially, microglia perform an active
cross-talk with Müller cells. On the one hand, Microglia can
directly trigger the release of several neurotrophic factors from
Müller cells. On the other hand, Müller cells can limit microglial
reactivity and potentially transform activated microglia into their
ramified surveillance state (Karlstetter et al., 2015). However,
these mechanisms lose control of microglial behavior in
pathological conditions where microglia become activated
(Rathnasamy et al., 2019).

3.4 Roles of Microglia in Retinal
Degenerative Diseases
3.4.1 Microglia Phagocytose Both Wastes and Living
Cells
Phagocytosis by microglia has been extensively studied in adult
individuals. The main phagocytic targets of microglia in the brain
and retina include pathogens, dead cells, dying cells and protein
aggregates (McMenamin et al., 2019). Following interventions
such as axotomy, microglia that removed debris of neuronal cells
in the postnatal retina were reactivated later in life to phagocytose
damaged neurons (Thanos, 1991). Nonetheless, phagocytosis by
microglia is a double-edged sword. In a mouse model of RP,
activated microglia phagocytosed not only cell debris (Gupta
et al., 2003) but also living neurons and accelerated retinal lesions
(Zhao et al., 2015). In addition, microglia contributed to the
leakage of the BRB by phagocytosing endothelial cells in another
rat model of DR (Xie et al., 2021). The molecular mechanisms
involved in microglial phagocytosis are still under investigation.
Retinal microglia promote the clearance of infectious microbes
by expressing receptors such as Toll-like receptors (TLRs) and
dectin-1 (Maneu et al., 2011; Kochan et al., 2012). The
expression of TLR4 in microglia contributes to their
activation and phagocytosis of photoreceptor proteins
(Kohno et al., 2013). In addition, phagocytosis is mediated
by triggering receptor expressed on myeloid cells 2 (TREM2)
and Mer receptor tyrosine kinase (MerTK) in the brain (Neher
et al., 2013; Kim et al., 2017). However, whether they participate
in microglial phagocytosis of apoptotic retinal neurons is still
unknown.

3.4.2 Microglia Promote the Neovascularization
As mentioned above, microglia play an important role in retinal
vascularization during development. It is noted that microglia
also contribute to the retinal neovascularization in retinal
diseases, which is associated with the microglia migration and
microglia-related inflammation (Usui-Ouchi et al., 2020). In
AMD, microglia contribute to the formation of CNV through
accumulating in the subretinal space, releasing inflammatory
cytokines (IL-1β, TNF-α, IL-6 and TGF-β), producing pro-
angiogenic cytokines and growth factors (VEGF and PGF),
and activating microglial VEGF receptors (VEGFR1 and
VEGFR2) (Alves et al., 2020). In DR, angiogenesis and
inflammation are not independent. Microglia might induce the
neovascularization by releasing pro-angiogenic mediators,
including cytokines, growth factors, and proteases (Altmann
and Schmidt, 2018).
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3.4.3 Microglia Aggravate Retinal Inflammation
Regarding immune surveillance and regulatory functions,
microglia act as surveillants with their processes continuously
extending and retracting in all directions in a random and
repeated manner. These cells can sense subtle changes in the
retinal microenvironment through various surface receptors and
rapidly react to these changes (Nimmerjahn et al., 2005). During
the rapid phase of RDDs, microglia are activated immediately and
proliferate and migrate to degenerative sites (Zhou et al., 2017).
The morphology of microglia also changes to an amoeboid shape
(Zhou et al., 2017). Simultaneously, by secreting TNF-α and IL-
1β, microglia participate in retinal inflammation and function as
a “double sword” again (Krady et al., 2005; Sivakumar et al.,
2011). On the one hand, these cytokines initiate immune
defenses. On the other hand, they aggravate the death of
retinal neurons and damage the integrity of the BRB (Claudio
et al., 1994; Tezel and Yang, 2004; Abcouwer et al., 2008). In
addition, microglia release pro-inflammatory cytokines,
including IL-3, IL-6, IL-8, IL-10, IL-12, and IL-18 (Liu et al.,
2012; Grigsby et al., 2014). Moreover, microglia express major
histocompatibility complex class II (MHC II) and share
phenotypic characteristics with professional antigen-presenting
cells (Penfold et al., 1993). Normally, quiescent microglia express
low levels of MHC II proteins (Kreutzberg, 1996). Once activated,
microglia upregulate MHC II molecules that are required for
antigen presentation to T cells. This feature suggests the
capability of microglia to reactivate primed T cells entering
the CNS (Rawji and Yong, 2013). In addition, microglia are
related to the activation of the complement system, an innate
immune response that protects host tissue from immunological
stimuli. Luo et al. identified microglia and RPE cells as the main
sources of retinal complement gene expression (Luo et al., 2011).
Unfortunately, in DR models, microglia contribute to the
deposition of complement C3 and C1qa, which promote the
apoptosis of photoreceptors and RGCs (Howell et al., 2011; Rutar
et al., 2011).

It can be seen that microglia exert M1 phenotype due to the
release of pro-inflammatory factors. However, some studies
propose that M2 microglia also exist in the retina of RDDs.
The polarization tendency of microglia in the retina is an intricate
process, which is a topic of extensive debate. According to Arroba
and Valverde (2017), M2 microglia and M1 microglia both
appear at the early stage of DR; however, during the
progression of DR, the M1 phenotype is maintained, whereas
the M2 phenotype decreases. Different results were obtained for
the polarization of microglia in a model of retinal degeneration.
Initially, most of the activated microglia (CD86+, CD16/32+,
CD40+) tended to exhibit the M1 phenotype and release pro-
inflammatory cytokines. Although no M2 microglia (CD206+)
were observed at this stage, many microglia were colabeled with
CD86 and CD206, indicating an intermediate state of microglial
polarization (Zhou et al., 2017). Another study examining
oxygen-induced retinopathy models found that M1 microglia
dominated during the initial period, but M2 microglial activity
predominated during the late phase (Li et al., 2021a). Consistent
with these findings, in a study of light-induced retinal damage,

pro-inflammatory M1 macrophages/microglia dominated in the
early phase, while the chronic postexposure period was
accompanied by persistent upregulation of the M2 phenotype.
The authors speculated that resident macrophages/microglia
might switch to the M1 phenotype in response to light
damage; however, infiltrated BM-derived macrophages/
microglia mainly contributed to M2 polarization (Jiao et al.,
2015). Therefore, more research is needed to better
understand the spatiotemporal cadence of microglial
polarization in the retina.

Taken together, in the diseased retina, microglia exert both
beneficial and detrimental effects. However, the function of
promoting inflammation is widely considered pernicious.
Many treatments are currently focusing on the regulation of
microglial behavior patterns. The question is whether all
microglia should be eliminated. As the two phenotypes of
microglia are closely linked to the progression of retinal
inflammation, microglia polarization may be a vital target for
the treatment of RDDs. Since SCT plays a beneficial role in
treating retinal diseases, we propose that the modulation of
microglia phenotype following SCT is also valuable, which will
be discussed in the next sections.

4 BASIC APPROACHES OF STEM CELL
THERAPY TO DEVELOP THERAPEUTIC
EFFECTS
Stem cells are a population of undifferentiated cells characterized
by the ability to extensively proliferate and differentiate into
different types of cells and tissues (Kolios and Moodley, 2013).
Recent years, SCT has been extensively applied in the treatment
of various diseases, including neurological disorders
(Alessandrini et al., 2019), heart diseases (Muller et al., 2018),
and discogenic back pain (Barakat et al., 2019). The eye is
“immune privileged” due to the protection of the BBB and
BRB (Forrester et al., 2018). In addition, the high operability
and convenient observability make the eye an ideal target organ
for stem cell transplantation. Currently, numerous studies have
transplanted RPE cells, photoreceptors and RGCs derived from
induced pluripotent stem cells (iPSCs), embryonic stem cells
(ESCs) and retinal progenitor cells (RPCs), and some of them
have advanced to clinical trials (Liu et al., 2017; Mandai et al.,
2017; Zhang et al., 2020b). Previously, we used human ESCs
(hESCs), human mesenchymal stem cells (MSCs), human RPCs
(hRPCs) and neural stem cells (NSCs) to treat retinal
degeneration in animal models (Qu et al., 2017; Zhai et al.,
2020; Li et al., 2021b). Stem cells are directly transplanted or
differentiated into anticipated cell types prior to transplantation.
Basically, stem cells contribute to the retinal recovery through two
approaches: cell replacement and secretome (Figure 1). Here, we
will briefly discuss these two approaches.

4.1 Cell Replacement
To date, SCT has been widely studied in animal models for cell
replacement in RDDs. ESCs and iPSCs have the greatest potential
for cell replacement in RDDs while MSCs and NSCs are sparsely
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reported to differentiate into retinal cells after transplantation
(Mead et al., 2015). As the loss of RPE cells and photoreceptors
primarily contributes to visual impairments in these RDDs,
studies have more frequently focused on replacing these two
cell types.

RPE cells are a layer of pigment cells that transport nutrients
from the blood to photoreceptors and digest deciduous disks
from the outer segment of photoreceptors (Ma et al., 2019). Both
hESCs and human iPSCs (hiPSCs) can be induced to generate
RPE cells (Figure 1) (Klimanskaya et al., 2004; Buchholz et al.,
2009). In 2018, successful delivery of hESC-derived RPE cells in
two patients was reported in a clinical trial and indicated the
feasibility and safety of hESC-derived RPE transplantation (da
Cruz et al., 2018). Additionally, clinical trials of cell replacement
based on RPCs and iPSCs have been conducted in recent years
(Liu et al., 2017; Mandai et al., 2017). A scalable protocol was
published that facilitated the production of high-quality RPE cells
in a short time span and convenient application for both

investigative and clinical use to solve the problem of high cost
and low purity when generating RPE cells. Pure functional RPE
monolayers have been derived from hiPSCs within 90 days using
simplified 2D cultures (Buchholz et al., 2013; Maruotti et al., 2015;
Michelet et al., 2020). However, no further studies have adopted
this protocol to date.

Photoreceptors are irreplaceable in sensing light signals and
visual cues by converting exogenous cues into bioelectrical signals
(Gollisch and Meister, 2010). Photoreceptors have been
generated from hESCs, iPSCs and RPCs (Figure 1) (Qiu et al.,
2007; Lamba et al., 2009; Lamba et al., 2010). The replacement of
photoreceptors differentiated from iPSCs has been studied in a
mouse model. Human iPSCs differentiated into photoreceptors
and subsequently survived and integrated into the host retina
(Lamba et al., 2010). Recently, hRPCs transplanted in patients
with RP successfully differentiated into photoreceptors in a
clinical trial. The results showed the long-term safety and
feasibility of vision repair following hRPC transplantation (Liu

FIGURE 1 | Basic approaches of SCT to develop therapeutic effects. (A) Basically, stem cells contribute to the retinal recovery through two approaches: Cell
replacement and the secretome. (i) iPSCs, ESCs, and RPCs can differentiate into retinal cells including RGCs and photoreceptors and can be used for cell replacement.
(ii) MSCs secret neurotrophic factors and exosomes which are beneficial for the recovery of regenerated retina. (B) Neurotrophic factors contribute to the reduction of
oxidative stress and the survival of retinal cells. (C)MSC-derived exosomes prevent the decline of RGCs and reduce the expression of inflammatory factors as well
as the infiltration of inflammatory cells.
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et al., 2017). One important obstacle to the clinical use of
photoreceptors is that an appropriate source of precursor cells
is required (Schmeer et al., 2012). Lately, an optimized protocol
for generating labeled and transplantable photoreceptor
precursors from hESCs was published, which was an advance
for future research (Markus et al., 2019).

Although cell replacement therapy has been implemented in
many animal studies, limitations still confine its further
applications in clinical trials due to several unsolved
challenges. The low survival rate of transplanted cells and
potential tumorigenicity risks have been widely studied
(Ballios et al., 2015; Wang et al., 2020). Moreover, the
immune rejection of allografts (Baker and Brown, 2009),
which is partially associated with the pro-inflammatory stimuli
caused by M1 microglia, also must be resolved in future studies.

4.2 Secretome
The secretome of stem cells is defined as the set of molecules and
biological factors secreted by stem cells into the extracellular
space by mechanisms including protein translocation, exocytosis,
and vesicle or exosome encapsulation (Xia et al., 2019;
Daneshmandi et al., 2020). Among these molecules and
factors, neurotrophic factors and exosomes are widely reported
to play beneficial roles in retinal diseases (Wen et al., 2012; Xiao
and Le, 2016; Hu et al., 2017; Mead et al., 2018). Although
paracrine effects have been discovered in many types of stem
cells, including MSC, NSC, ESC, and iPSC (Khan et al., 2015;
Bakondi et al., 2017; Mead et al., 2018; Taheri et al., 2019; Zhang
et al., 2020a), MSC is the major force of secreting neurotrophic
factors and exosomes (Mead et al., 2015; Mead and Tomarev,
2020). Thus, we will focus on the secretome of MSCs and related
therapeutic effects in the following sections.

4.2.1 Neurotrophic Factors
Neurotrophic factors are growth factors that nourish neurons and
promote the survival and regeneration of neurons, including
photoreceptors, RGCs and RPE cells (Wen et al., 2012; Xiao
and Le, 2016). They are classified into three families based on
their structures, receptors, and signaling pathways: 1) the
neurotrophin family, including nerve growth factor (NGF),
brain-derived growth factor (BDNF), neurotrophin-3 (NT-3),
and NT-4/5; 2) the glial cell-derived neurotrophic factor
(GDNF) family, including GDNF, neurturin, persephin, and
artemin; and 3) neuropoietic cytokines, including ciliary
neurotrophic factor (CNTF) and cardiotrophin-1 (Boyd and
Gordon, 2003). Transplantation of stem cells can play positive
roles of secreting neurotrophic factors which further improve the
survival of retinal neurons.

MSCs secrete neurotrophic factors via a paracrine mechanism
(Figure 1), which dampens retinal degeneration instead of
replacing damaged cells (Bakondi et al., 2017). MSCs derived
from different sources secret similar neurotrophic factors. To be
specific, bone marrow derived MSCs (BMSCs) secret an array of
neurotrophic factors involving all the three families including
CNTF, BDNF, GDNF, platelet derived growth factor (PDGF),
NGF, NT-3, NT-4/5 (Mead et al., 2015), IGF-1, basic fibroblast
growth factor 2 (FGF2), pigment epithelium-derived factor, and

erythropoietin (Usategui-Martin et al., 2020). Analogously,
adipose derived MSCs (ADMSCs) contribute to the release of
hepatocyte growth factor, CNTF, IGF (Fontanilla et al., 2015),
FGF2, VEGF, NGF, BDNF, GDNF, NT-3, and PDGF (Mead et al.,
2014; Ezquer et al., 2016).

Many studies have confirmed the protective effects of MSC-
secreted neurotrophic factors on eye diseases (Figure 1). For
example, in an experimental optic nerve crush model, intravitreal
transplantation of BMSCs that secrete GDNF and BDNF resulted
in a greater number of living RGCs than in the control group (Hu
et al., 2017). In addition, intravitreal administration of murine
ADMSCs prevented RGC loss and reduced oxidative stress in the
retina with increasing levels of NGF, FGF2 and GDNF in a
diabetic mouse model (Ezquer et al., 2016). As another option,
neurotrophic factors have also been delivered through direct
intravitreal injections (Daly et al., 2018). However, researchers
have not clearly determined whether the paracrine effects of
neurotrophic factors observed following SCT are more efficient
than direct injection of neurotrophic factors. More research is
required to expand the function of stem cell-secreted
neurotrophic factors and explore their neuroprotective effects
on retinal cells.

4.2.2 Exosomes
Exosomes are cell-derived nanovesicles that have low toxicity,
exquisite target-homing specificity and the potential for drug/
gene delivery (Kalluri and LeBleu, 2020). The secretion of
exosomes plays positive roles in SCT treating RDDs. Among
several types of MSCs, adipose, BM and umbilical derived-MSCs
are the main sources of secreted exosomes (Mead and Tomarev,
2020).

MSC-derived exosomes have many functions, such as
neuroprotection and immunoregulation. In a mouse model of
glaucoma, exosomes derived from BMSCs significantly reduced
the number of degenerating axons in the optic nerve. Meanwhile,
exosomes prevented the decrease in RGC function in the early
phase (Figure 1) (Mead et al., 2018). Regarding
immunoregulation, MSC-derived exosomes substantially
suppressed the progression of autoimmune uveoretinitis in a
rat model by reducing the infiltration of inflammatory cells, such
as T cell subsets (Figure 1) (Bai et al., 2017), and alleviated the
expression of inflammatory mediators in the injured retina,
including TNF-α, monocyte chemoattractant protein-1 and
intercellular adhesion molecule 1 (Harrell et al., 2018).
However, the key component of exosomes remains unknown.
More importantly, the production of highly purified exosomes
with stable long-term functional efficacy for clinical trials is a
great challenge (Zhang et al., 2021).

5 IMMUNOMODULATORY EFFECTS OF
STEM CELL THERAPY TARGETING
MICROGLIA
SCT has been proven to possess broad immunomodulatory
potential in neurodegenerative diseases by regulating
inflammatory responses. As mentioned above, microglia play a
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leading role in the immune system of the retina through
polarization toward two phenotypes. Here, we emphatically
discuss the immunomodulatory effects of SCT on regulating
the microglial polarization and microglia-mediated
inflammation.

5.1 Stem Cell Therapy Inhibit M1 Microglial
Polarization
In pathological states, microglia proliferate rapidly with a
distinctly increased number of cells. At the same time, they
migrate to degenerative sites upon activation. In many studies
of RDDs, microglia present the M1 phenotype by releasing pro-
inflammatory factors (Yuan and Neufeld, 2001; Krady et al., 2005;
Zeng et al., 2005). To date, many stem cell treatments have been
shown to exert regulatory effects on M1 microglia both in vitro
and in vivo. By coculturing the retinas of adult rats with human
BMSCs (hBMSCs) in vitro, researchers found that the number of
CD68+ ameboid microglia decreased and the loss of RGCs was
prevented (Teixeira-Pinheiro et al., 2020). Consistently, the
activation of CD11b+ M1 microglia was inhibited by
coculturing with MSC-derived microvesicles in an in-vitro
model. Meanwhile, the production of pro-inflammatory
molecules by M1 microglia, such as TNF-α, IL-6, IL-1β and
iNOS, was reduced (Jaimes et al., 2017). In our previous in-vivo
study, by transplanting organoid-derived hRPCs into the
subretinal space of rat RDD models (RCS rats), we found that
the number of Iba1+/CD68+ phagocytic M1 microglia was
significantly lower in the transplantation group than that in

the control group (Zou et al., 2019). In addition, we
performed a combined transplantation of human MSCs
(hMSCs) and hRPCs into the subretinal space of RCS rats.
The number of Iba1+ retinal microglia was significantly
reduced following transplantation, especially in the combined
transplantation group. The expression levels of TNF-α and IL-1β
were decreased while the expression levels of neurotrophic NGF
and BDNF were increased (Qu et al., 2017).

All these results confirmed the inhibitory effects of SCT onM1
microglia (Figure 2). Along with the inhibition of M1 microglia
activation, the expression levels of inflammatory factors and
cytotoxic molecules were decreased, which can alleviate the
chronic injury of the retina.

5.2 Stem Cell Therapy Enhance M2
Microglial Polarization
As mentioned above, polarization of microglia to the M2
phenotype is beneficial for treating RDDs. Several studies have
shown that SCT can promote M2 microglial polarization and
MSCs are the major force of this function (Zanier et al., 2014;
Park et al., 2016; Jha et al., 2018). In an in-vitro study of LPS-
stimulated microglia, treatment with ADMSCs or ADMSC-
derived GDNF enhanced the expression of the M2 marker
CD206. The expression levels of anti-inflammatory IL-10 and
TGF-β were upregulated (Zhong et al., 2020b). As for in-vivo
studies, the intravitreal injection of concentrated conditioned
media from ADMSCs restored the M1-M2 balance in a mouse
model of visual deficits following mild traumatic brain injury.

FIGURE 2 | Immunomodulatory effects of SCT targeting microglia. Ramified microglia can be activated with two phenotypes, namely M1 phenotype and M2
phenotype. Stem cells including MSCs, RPCs, and NSCs can modulate microglial polarization (M1-M2), among which MSCs are the major force. MSCs inhibit M1
microglial polarization and decrease the expression level of pro-inflammatory factors. On the contrary, M2microglial polarization is enhanced and the expression levels of
anti-inflammatory factors are increased. The transition of microglial phenotype alleviates the inflammation and improves the living-conditions of neuronal cells.
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This treatment increased the number of Arg-1+ M2 microglia
along with the increased expression of anti-inflammatory
cytokines. As a result, the inflammation-related loss of
endothelial barrier integrity and retinal cells was suppressed
(Jha et al., 2018). Unfortunately, the number of studies which
discovered M2 polarization-promotion effect following SCT in
the retina are limited. However, many studies focusing on brain
injury have confirmed the effects of MSCs on enhancing M2
microglial polarization. In a mouse model of neurodegeneration,
the intracerebral transplantation of MSCs promoted M2
polarization and increased the expression of anti-inflammatory
TGF-β and IL-10 (Liu et al., 2019). In addition, BMSCs promoted
the M2 microglial polarization in a rat middle cerebral artery
occlusion (MCAO) model and suppressed neuroinflammation
(Yang et al., 2020). According to some recent studies, MSCs from
human exfoliated deciduous teeth reduced neuroinflammation by
shifting microglial polarization (M1 to M2) through exosome
secretion and paracrine effects (Li et al., 2017; Kitase et al., 2020).
In addition to MSCs, transplantation of NSCs showed the
function of promoting microglial phenotypic transition from
M1 toward M2 phenotype in a study of traumatic brain
injury. This study showed the possibility of other stem cells
rather than MSCs to induce M2 microglial polarization
following SCT (Gao et al., 2016).

Taken together, SCT, especially MSC therapy, are capable of
enhancing M2 microglial polarization (Figure 2). The secretion
of anti-inflammatory factors by M2microglia help to alleviate the
inflammation and improve the living-conditions of neuronal cells

respectively. Related pathways and factors of MSC regulating
microglia polarization can be seen in Table 1. Unfortunately,
these pathways related to the regulation of microglial polarization
have all been identified in studies of the brain rather than the
retina. More specific further studies aiming at discovering the
effects and related mechanisms of microglial polarization in the
retina following SCT are urgently needed.

6 FUTURE DIRECTIONS

6.1 Cotransplantation of Therapeutic Cells
With Mesenchymal Stem Cells-Derived
Exosomes May be a Better Solution
Injury-induced inflammation is detrimental to the regeneration
of retinal cells (Silva et al., 2020). Moreover, the survival and
integration of transplanted cells are substantially influenced by
microglia and inflammation (Burns and Stevens, 2018). As
mentioned above, MSC-derived exosomes are capable of
suppressing retinal inflammation by reducing the expression of
inflammatory mediators. Additionally, MSC-derived exosomes
can enhance the M2 polarization of microglia (Li et al., 2019c).
Therefore, we speculate that the cotransplantation of the
anticipated cells with MSC-derived exosomes might be a better
choice to achieve therapeutic goals (Figure 3). In addition, the
application of MSC-derived exosomes remarkably does not cause
vitreous opacity, immunologic rejection, or proliferative vitreous

TABLE 1 | Related pathways and factors of MSC regulating microglia polarization.

Microglia
polarization

Pathways and
factors

Species Stem
cell

Model Paradigm Results References

M2-related TSG-6 Mouse BMSC LPS-induced
neuroinflammation

In vivo MSC treatment promoted M2 microglial
polarization but had little effect with knockdown of
TSG-6

Liu et al. (2019)

LPS-stimulated microglial
cell line

In vitro

MANF Rat BMSC MACO model In vivo Inhibition of MANF attenuated BMSCs-induced
M2 polarization but increased M1 polarization

Yang et al.
(2020)

PDGF-AA LPS-stimulated microglial
cell line

In vitro PDGF-AA treatment enhanced the expression of
MANF and increased M2 polarization

PI3K/AKT Rat BMSC Deafferentation pain In vivo BMSC increased M2 polarization and the levels of
p-PI3K and p-AKT. However, treatment with PI3K
inhibitor impaired BMSC-mediated M2
polarization

Zhong et al.
(2020a)

AMPK Rat MSC SAH model In vivo MSCs-exosomes promoted the phosphorylation
of AMPK and M2 microglial polarization

Han et al.
(2021)

M1-related NF-κB Rat BMSC Deafferentation pain In vivo BMSC suppressed the NF-κB signaling pathway
and M1 polarization

Zhong et al.
(2020a)

Rat BMSC SAH model In vivo MSC-derived exosomes inhibited the NF-κB
signaling pathway and M1 polarization

Han et al.
(2021)

CysLT2R Rat MSC MACO model In vivo MSC-derived exosomes suppressed CysLT2R
expression and ERK1/2 phosphorylation and
inhibited M1 polarization

Zhao et al.
(2020)ERK1/2

C3a-C3aR Human UC-
MSC

Chronic unpredictable
mild stress model

In vivo hUC-MSCs inhibited C3/C3a-C3aR activation
signaling and inhibited M1 polarization

Li et al. (2020)

Note: AKT, Protein kinase B; AMPK, AMP-activated protein kinase; BMSC, bone marrow derived mesenchymal stem cells; CysLT2R, CysLT type 2 receptor; C3, Complement C3; ERK,
Extracellular signal-regulated kinase; LPS, lipopolysaccharide; MACO,middle cerebral artery occlusion; MANF,Mesencephalic astrocyte-derived neurotrophic factor; MSC,mesenchymal
stem cells; PDGF, platelet derived growth factor; PI3K, Phosphatidylinositol 3-kinase; SAH, subarachnoid hemorrhage; TSG-6, Tumor-specific glycoprotein 6; UC-MSC, Umbilical cord-
mesenchymal stem cells.
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retinopathy (Zhang et al., 2018; Mathew et al., 2019). As
combined transplantation traditionally requires the injection of
at least two cell types, transplantation of a single cell type together
with MSC-derived exosomes may decrease the safety risk.

No documents have reported the use of cell-exosome
combined therapy to treat retinal diseases. However, recent
studies have reported successful paradigms of
cotransplantation of exosomes and stem cells and are worth
continuing in the field of RDDs. In a rat model of acute
ischemic stroke, combined transplantation of ADMSCs and
ADMSC-derived exosomes was confirmed to be superior to
either ADMSC or ADMSC-derived exosome transplantation
alone at reducing the brain infarct zone and improving the
recovery of neurological function (Chen et al., 2016). In one
study of acute myocardial infarction, the sequential delivery of
exosomes and MSCs enhanced the survival of MSCs and reduced
their apoptosis both in vitro and in vivo. Additionally, cardiac
function was improved to a greater extent in the
cotransplantation group than in the other groups treated with
exosomes or MSCs alone (Huang et al., 2019). In addition, Lin
et al. demonstrated that the combined treatment of ADMSCs and
ADMSC-derived exosomes resulted in the most significant
preservation of kidney function and the integrity of kidney
architecture compared to the single transplantation groups
(Lin et al., 2016).

Regarding the implementation of the new treatment, we
assume that two options exist (Figure 3). As MSC-derived
exosomes are usually administered by intravitreal injection in
studies of eye diseases (Harrell et al., 2018), cotransplantation
can combine the intravitreal injection of MSC-derived
exosomes and subretinal transplantation of other cells.
However, researchers have not clearly determined whether
the treatment would work since the two effectors are separately
transplanted at different sites. As an alternative, MSC-derived

exosomes and other cells could be mixed in advance and
subsequently transplanted into the subretinal space.
Although these two methods seem to be effective, studies
should be carried out to confirm their efficacy. Meanwhile,
the underlying cellular interactions and molecular
mechanisms also require further research.

6.2 Transplantation of Induced Pluripotent
Stem Cells-Derived M2 Microglia as a
Potential Tool for Retinal Degenerative
Disease Treatment
As M2 microglia are more beneficial than M1 microglia in
RDDs, the question of whether direct transplantation of M2
microglia into the retina is a feasible approach to modulate the
immune microenvironment and alleviate retinal inflammation
has been proposed. Unfortunately, no related research has
been published yet. However, studies have used this strategy to
treat other neurological injuries. Recently, M1 and M2
microglia were transplanted into mouse models of spinal
cord injury induced by GM-CSF and IL-4 and marked with
CD86 and CD206, respectively. Compared with the control
groups, significant recovery was observed in the M2 group,
while deterioration was found in the M1 group (Kobashi et al.,
2020). Similar outcomes have been reported in studies of brain
injuries where transplantation of M2 macrophages improved
cognitive impairment in a rat model of AD (Zhu et al., 2016)
and transplantation of M2 microglia promoted axonal
outgrowth and angiogenesis in a rat model of stroke
(Kanazawa et al., 2017).

An obvious limitation is the difficulty of collecting a sufficient
number of primary microglia directly from human tissues.
Fortunately, recent advances in iPSCs have provided exciting
new approaches to overcome this obstacle. Many protocols for

FIGURE 3 | Cotransplantation of therapeutic cells with MSC-derived exosomes. MSC-derived exosomes enhance the M2 microglial polarization and suppress
retinal inflammation. The cotransplantation can be implemented by two options: (a) The cotransplantation can combine the intravitreal injection of MSC-derived
exosomes with subretinal transplantation of therapeutic cells. (b) MSC-derived exosomes and therapeutic cells can be mixed in advance and subsequently be
transplanted into the subretinal space together.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 74136810

Jin et al. SCT Shapes Microglia in RDDs

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


generating microglia from hiPSCs have been published
(Douvaras et al., 2017; Haenseler et al., 2017; Pandya et al.,
2017). Hasselmann and Blurton-Jones (2020) concluded that
three techniques are useful to generate iPSC-derived microglia,
generally named “in-vitro microglia,” “organoid microglia,” and
“xenotransplanted microglia” (Figure 4). Each technique features
unique routes and has its own benefits and limitations. The “in-
vitro microglia” technique, as the name implies, differentiates
iPSCs into microglia in vitro. This technique is superior in terms
of high throughput but limited by transcriptomic deficiencies
(McQuade et al., 2018). “Organoid microglia” means that
microglia are innately generated from iPSC-derived organoids.
However, the branching pattern of organoid microglia is still
different from that of adult human microglia (Ormel et al., 2018).
Two steps are needed to generate “xenotransplanted microglia”.
Microglial precursors are first differentiated from iPSCs and then
transplanted into the brains of immune-deficient mice carrying
the human allele for the colony stimulating factor 1 protein. In
one study, microglia produced by this technique showed a better
microglial morphology and gene expression signatures that
closely resembled those of adult human microglia (Svoboda
et al., 2019).

After the production of microglial cells, the next step is to
drive them to transform into the M2 phenotype. Several
methods have been developed to induce polarization
in vitro (Figure 4). IL-4 is a cytokine that promotes tissue
repair and M2 microglial polarization. According to one study
using different concentrations (20 or 40 ng/ml) of IL-4, Arg1
(the M2 marker) expression significantly increased to similar
levels in both groups, indicating the dose-independent
characteristic of the M2 polarization-stimulating effect of
IL-4 (Kobashi et al., 2020). In another study, after
preconditioning by oxygen–glucose deprivation, microglia
polarized to the M2 phenotype. Under this condition,
cultures containing low-glucose medium were first placed in
a hypoxia chamber (95% N2 + 5% CO2) for 1 h and then closed

for 18 h (Kanazawa et al., 2017). In addition, several drugs,
such as minocycline (Ahmed et al., 2017) and Lycium
barbarum (Li et al., 2019b), were reported to modulate
microglial polarization from the M1 to M2 phenotype in
some in-vivo models. However, further studies are needed
to determine whether they can be used to induce M2
polarization of microglia in vitro.

Although current studies are still in their infancy, the
development of iPSC-derived microglia has provided insights
into the production of abundant M2 microglia for
transplantation. As studies in the brain have proven the
feasibility and advantages of M2 microglial transplantation, we
predict that the transplantation of M2 microglia will also become
a proper and effective method to treat RDDs.

7 CONCLUSION

In recent years, SCT in subjects with other neurological
disorders has been proven to exert positive effects of
switching the polarization of microglia from the M1 to M2
phenotype, providing good examples for the application of
SCT in the treatment of RDDs by targeting microglial
polarization. However, the function of regulating microglial
polarization by SCT in the retina is rarely reported and limited
in the field of MSCs. Thus, we wondered if solutions were
available to improve this situation and proposed some
expectations for SCT to be a better treatment for RDDs,
which may be helpful for future research. We postulate that
the therapeutic effects of SCT will be improved by
cotransplantation therapy with MSC-derived exosomes,
which enhance M2 microglial polarization and create an
optimized environment for the survival of transplanted cells
to achieve better results. Besides, advances in iPSC-derived
microglia may promote the development of transplantation of
M2 microglia to treat RDDs and alleviate retinal inflammation.

FIGURE 4 | Transplantation of iPSC-derived M2 microglia. Microglia can be generated from hiPSCs through three techniques (a–c). Afterwards, microglia are
induced to the M2 phenotype by using oxygen–glucose deprivation technique or IL-4 co-culture treatment. Direct transplantation of M2 microglia into the subretinal
space can influence the immune microenvironment and alleviate retinal inflammation.
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