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Abstract: Raman spectroscopy has proven valuable for determining the composition of manufactured
drug products, as well as identifying counterfeit drugs. Here we present a simple method to
determine the active pharmaceutical ingredient (API) mass percent in a sample that does not require
knowledge of the identities or relative mass percents of the inactive pharmaceutical ingredients
(excipients). And further, we demonstrated the ability of the method to pass or fail a manufactured
drug product batch based on a calculated acceptance value in accordance with the US Pharmacopeia
method for content uniformity. The method was developed by fitting the Raman spectra of 30
Claritin® tablets with weighted percentages of the Raman spectrum of its API, loratadine, and
a composite spectrum of the known excipients. The mean loratadine mass of 9.79 ± 40 mg per
100 mg tablet compared favorably to the 10.21 ± 0.63 mg per 100 mg tablet determined using high-
performance liquid chromatography, both of which met the acceptance value to pass the 10 mg API
product as labelled. The method was then applied to a generic version of the Claritin product that
employed different excipients of unknown mass percents. A Raman spectrum representative of all
excipients was created by subtracting the API Raman spectrum from the product spectrum. The
Raman spectra of the 30 generic tablets were then fit with weighted percents of the pure loratadine
spectrum and the created excipient spectrum, and used to determine a mean API mass for the
tablets of 10.12 ± 40 mg, again meeting the acceptance value for the 10 mg API product. The data
suggest that this simple method could be used to pass or fail manufactured drug product batches
in accordance with the US Pharmacopeia method for content uniformity, without knowledge of
the excipients.

Keywords: active pharmaceutical ingredient; drug content uniformity; acceptance value; process
control; Raman spectroscopy; loratadine

1. Introduction

In the past two decades, Raman spectroscopy has become an important analytical
tool for determining the amount of a pharmaceutical active ingredient (API) in solid dose
medications [1–8]. Knowledge of the API mass, or mass percentage, is essential in the
development and quality control of drug product formulations, as well as in the identi-
fication of counterfeit drug products [9–11]. The fact that the API mass percent in tablet
medications can be determined non-destructively, without sample preparation, and within
a few minutes makes Raman spectroscopy ideal for these applications. Consequently,
Raman spectroscopy is being used in pharmaceutical company laboratories and production
facilities, as well as by enforcement agencies, such as the US Food and Drug Adminis-
tration [9]. However, making quantitative measurements is challenging. The problem is
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two-fold. First, the uniformity of the API in a tablet decreases with its mass percent, and
second, the size of the focal volume of a typical laser used to generate Raman radiation is
several orders of magnitude smaller than the volume of a tablet. Consequently, a single
point measurement could miss the API, especially in the case of low dose tablets.

There are a number of publications describing various optical schemes to overcome
this under-sampling of the API in such drug products [12–17]. The first approach is to
simply map the entire surface volume of a tablet, either point-by-point, line scanning,
or imaging using back-scattering geometry [6,13,14]. While these approaches generally
only measured the surface volume to a depth of 1–2 mm, good quantitative results can be
obtained. However, these mapping approaches often take an hour or more. More recently,
forward scattering Raman [18], now frequently called transmission Raman [16,17,19], has
been developed to measure most of the tablet by collecting the Raman radiation on the
tablet side opposite the laser irradiation. While this has proven successful in some cases, it
suffers from a decrease in Raman signal intensity by at least an order of magnitude; and,
more importantly, scattering due to inactive pharmaceutical ingredients (or excipients),
such as diluents and binders, can lead to predicted API mass percents that are incorrect by
more than a factor of two [19].

However, in virtually all of these publications, the approach is tailored to a single
medication, where model tablets are prepared to mimic products, so that mass percentage
plots can be prepared to quantify the API in actual products [7]. This approach may work
when the API represents the major portion of the tablet, or only 1 or 2 excipients are present,
and known. However, in most tablets, there are at least 4 excipients and sometimes more
than 10. Furthermore, the relative excipient mass percentages are often a trade secret,
making analysis particularly difficult for forensic samples [20].

Here, we describe a method to overcome this limitation imposed by the excipients
by creating a composite Raman spectrum of all of the excipients, which can then be used
to quantify the API mass percentage with high accuracy and precision. The method was
applied to the determination of the mass percentage of loratadine, the API in the original
product Claritin® and the mass percentage of loratadine in an alternative generic product.
In addition, the data were compared to high-performance liquid chromatography data,
and both data sets were evaluated in terms of acceptance values for passing or failing
a manufactured lot, as defined by the US Pharmacopeia (USP) procedure to test dosage
content uniformity [21]. Claritin was chosen for this study to represent moderately low
dose drugs that require measuring the API mass percent for such USP tests, and not simply
the total tablet mass, as is the case for high dose drugs.

2. Materials and Methods
2.1. Materials

Loratadine, desloratadine, lactose monohydrate, corn starch and magnesium stearate
were purchased from USP (Rockville, MD, USA), while acetonitrile, de-ionized (DI) water,
phosphoric acid, and potassium dihydrate were purchased from Sigma Aldrich (St. Louis,
MO, USA). Reference tablets at 1 cm diameter and ~400 mg, composed of the USP grade
Claritin chemical components, loratadine, magnesium stearate, lactose monohydrate and
cornstarch, were prepared using a hydraulic press set to 1500 psi. Tablets of Claritin
and a generic product (Schering-Plough, Memphis, TN, USA and MSD Consumer Care,
Whitehouse Station, NJ, USA, respectively) were purchased from a local pharmacy. Thirty
of the Claritin tablets were separately weighed prior to Raman and HPLC measurements.

2.2. Method 1: Raman Spectroscopy

All Raman spectroscopic measurements were performed using a LabRaman Analyzer
(Real-Time Analyzers, Inc., RTA, Middletown, CT, USA). The analyzer employed a 1064 nm
laser that provided a 275 mW, ~100 µm diameter spot, and a diffraction grating—InGaAs
array detector combination that provided a 200 to 1800 cm−1 spectral region with ~10 cm−1

resolution. The tablets were placed in a machined plate, designed to hold various size and
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shape tablets, and mounted above the laser on an XY positioning stage (Conix Research,
Springfield, OR, USA). The stage positioning resolution is ~1 µm, with an XY repeatability
of ~20 µm. A 9 × 9 grid covering a 4 × 4 mm2 section of one Claritin tablet having a
diameter of 6.35 mm and a thickness of 2.44 mm was measured using the XY stage. The
laser focal point was set to a depth of ~1 mm below the surface and scanned back and forth
over a distance of 3.3 mm for each of the 81 spectra, which consisted of 10 averaged, 4-s
integrations (total time at 40 s/spot was ~1 h) [12].

Heat maps, indicating the loratadine mass percent, were prepared for this Claritin
tablet using Plotly Chart Studio software (Montreal, Canada). The loratadine mass percent-
age for this tablet was also determined using S-Quant software (version 1.3.5 RTA) [22].
This and the remaining tablets were each measured as a 3 × 3 grid covering 2 × 2 mm2 to
a depth of ~1 mm. The 9 spectra, consisting of 10 averaged, 2-s integrations (3 min/tablet),
were averaged and then treated using a 3rd-order, 13-point running smooth. The S-Quant
software was used to determine the mass percents for all remaining tablets.

2.3. Method 2: High-Performance Liquid Chromatography

The HPLC analysis was performed using a Shimadzu LC-10ATvp (Kyoto, Japan)
with a D2 lamp and a 254 nm detector. A Supelco C8 5 µm 15 cm × 4.6 mm column
(Center County, PA, USA) was selected to satisfy the USP L1 phase requirement. A buffer
solution was prepared by dissolving 1.75 g potassium dihydrate in 250 mL DI water, which
was adjusted to a pH of 3.5 using phosphoric acid [23]. A mobile phase was prepared
by adding 150 mL of buffer to 350 mL of acetonitrile, which was sonicated for 20 min
and then passed through a 0.45 µm filter. An internal standard was prepared by adding
400 mg of USP desloratadine to 400 mL of the mobile phase, while a calibration series for
loratadine was prepared at 0.05, 0.10, 0.15, 0.20, and 0.25 mg/mL in the mobile phase by
diluting a 1 mg/mL loratadine reference standard (Sigma Aldrich). Each concentration
was measured three times, and the averages were used to prepare the calibration plot. Each
Claritin tablet, previously measured by Raman, was weighed, then crushed by mortar
and pestle, placed in a 20 mL glass vial, to which 10 mL of the internal standard mobile
phase was added. Each sample was vortexed and sonicated to dissolve the tablet. These
samples were further dilution by adding 1 mL of the dissolved sample into 9 mL of the
internal standard mobile phase to yield an approximate 0.1 mg/mL concentration for both
desloratadine and loratadine. These samples were also sonicated for 20 min and passed
through 0.45 µm filters.

The column was heated to 35 ◦C and conditioned first using a 50:50 v/v acetoni-
trile/DI water solution for 30 min, and second with the mobile phase, which was flowed at
0.5 mL/min for 15 min, then 1.0 mL/min for an additional 15 min. For each sample, 20 µL
were injected into a loop, 10 µL of which were transferred to the column. All samples were
measured in triplicate.

3. Results and Discussion

Commercial 100 mg Claritin tablets are composed of 10 mg loratadine (the antihis-
tamine API), and magnesium stearate, lactose monohydrate, and corn starch at un-labelled
mass amounts [24]. The Raman measurement parameters, i.e., laser power, integration
time, and spectral averages, were examined to optimize the measurement of loratadine and
the Claritin excipients. It was found that 275 mW at 1064 nm, 10 averaged, 2-s integration
scans produced quality spectra. In the case of the loratadine, magnesium stearate, lactose
monohydrate, and corn starch reference tablets, 100 spectra were averaged to yield high
signal-to-noise ratio spectra. These spectra subsequently served as the reference spectra
for tablet analysis using the S-Quant software. The Raman spectra for loratadine and
magnesium stearate are clearly different than those of lactose monohydrate, and corn
starch, however the latter two spectra share several common vibrational modes, as their
chemical structures suggest (Figure 1).
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Figure 1. (a) Chemical structures for all four Claritin chemicals. Raman spectra of (b) loratadine, (c) magnesium stearate,
(d) lactose monohydrate, and (e) cornstarch. Sample conditions: Tablets (pressed at 1500 psi). Spectral Conditions: 275 mW
at 1064 nm, 10 averaged, 2-s integration scans/spectrum (total time was 200 s).

An initial Claritin tablet was used to examine the uniform distribution of loratadine
in the tablet. This was accomplished by measuring the Raman spectra of 81 discrete points
in a 9 × 9 point grid covering a 4 × 4 mm2 to a depth of ~1 mm section of the tablet. The
loratadine mass percent was calculated using two methods. First, the raw spectra were
analyzed by simply measuring the baseline corrected 1630 cm−1 carbonyl peak height. The
height for each tablet was divided by the average height from all the tablets multiplied by
10, the expected mass percentage. Second, the 1st-derivative, smoothed spectra from 200
to 1800 cm−1 were fit with weighted percentages of pure loratadine, magnesium stearate,
corn starch and lactose monohydrate, the total of which was set to 100% (Figure S1a). The
1st-derivative was used to remove the effects of baseline offset and slope. The software
indicated that magnesium stearate ranged from −2 to +2%, which was not surprising,
as this ingredient is used as a mold release agent typically at ~1% [25]. Consequently,
magnesium stearate was excluded from further analysis. Not unexpectedly, the peak
height method yielded somewhat more scatter in the loratadine mass percent than the
full spectrum fitting method. The former ranged from 8.0 to 11.6 mass percent, while the
latter ranged from 9.2 to 11.5 mass percent, both indicating uniform distribution of this
API throughout the tablet. To further illustrate the API distribution, the loratadine mass
percentages for both methods were plotted as 4 mm × 4 mm “heat maps”, in which red
was set to 12.0 mass percent and blue to 8.0 mass percent (Figure 2). Overall, these high
color-contrast maps show similar distribution of the loratadine, with the highest mass
percent in the upper left corner, and lower mass percents in the middle. It is worth noting
that the spectral fit method yielded lactose monohydrate and cornstarch mass percentages
of 74.4 and 15.6% for the 100 mg tablet. While the excipient mass percentages are not
given on the product label, they are likely intended to be 75 and 15 mass percent, since the
Summary of Product Characteristics for a generic loratadine product sold by Actavis UK
Ltd. (Devon, UK) lists the former as 75 mg per 100 mg tablet [26].
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Figure 2. False color heat maps showing the loratadine mass percent (blue = 8%, red = 12%) for a 9 × 9 point grid covering
a 4 × 4 mm2 surface section to a depth of ~1 mm of a Claritin tablet using 81 Raman spectra determined by (a) the
1630 cm−1 peak height (baseline corrected) and (b) the weighted percentage, 1st-derivative, 200–1800 cm−1, spectral fits
using pure loratadine, lactose monohydrate and cornstarch. Spectral conditions: 275 mW at 1064 nm, 10 averaged, 4-s
integrations/spectrum (total time at 40 s/spot was ~1 h).

Since it is critical to provide the public with medications that contain the label specified
API dosage, the US Pharmacopeia developed a method for pharmaceutical companies
to calculate an acceptance value, AV, which indicates the API content uniformity of a
production batch and if it passes, i.e., can be released to the public [21]. The AV is calculated
in terms of the mean of the API contents, Xbar, expressed as a percentage of the label claim,
k, an acceptance constant (k = 2.4 for 10 samples, k= 2.0 for 30 samples), and the sample
standard deviation, s, for three conditional cases based on the value of the mean, Xbar,
according to the following Equations (1)–(3):

AV = ks, if 98.5% ≤ Xbar ≤ 101.5%, (1)

AV = 98.5 − Xbar + ks, if Xbar < 98.5%, (2)

AV = Xbar − 101.5 + ks, if Xbar > 101.5%. (3)

In general, 10 samples from a batch are analyzed to determine if the API is within 15%
of the label claimed dosage. If the calculated AV is modestly greater than 15%, then an
additional 20 samples are analyzed. This procedure was followed first for 10, then 30 total
Claritin tablets. As described above, each tablet was measured for ~3 min (200 s) using
275 mW at 1064 nm. The loratadine mass percentage for each tablet was calculated by fitting
1st-derivative Raman spectrum of each tablet with the pure spectra of the loratadine, lactose
monohydrate, and cornstarch 1500 psi tablets using the S-Quant software (Figure S1a). It
was found that the first 10 tablets yielded a mean value of 9.72 mass percent per tablet or
97.2% of the loratadine label claim. Using Equation (2), an AV of 11.9% was obtained, which,
being less than 15%, indicates the batch passes. The same procedure was followed for all
30 tablets, yielding 97.0% of the loratadine label claim, and an AV of 9.3%, again passing
the batch (Table 1 and Table S1). Even though only 9 points were measured per tablet, it
appears to be a good compromise in terms of determining the fate of the batch and the time
required to make the measurement. It is worth noting that calculating the loratadine mass
percentage for the same 30 tablets using the tablet-to-pure 1500 psi loratadine tablet ratio
of the 1630 cm−1 Raman peak heights, baseline offset and tilt corrected, yielded 7.75 mg
per tablet, with an AV of 31.6, indicating that the batch should be rejected (Table 1, note
that the calculated 10-tablet AV using peak heights was worse).
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Table 1. Calculated Acceptance Values for 10 and 30 tablets each of Claritin and a generic product based on loratadine mass
percents by HPLC, Raman chemical component analysis, and Raman created composite excipient analysis.

Loratadine Number of
Samples, n Mean, X-bar Acceptance

Constant, k
Standard

Deviation, s EquationUsed Acceptance
Value, AV

Pass?
(<15%?)

Claritin

Raman Pure
Chemicals 10 97.2 2.4 4.4 2 11.9 Yes

Raman Pure
Chemicals 30 97.0 2.0 3.9 2 9.3 Yes

Raman 1630 cm−1

Peak Height
10 77.3 2.4 6.8 2 37.6 No

Raman 1630 cm−1

Peak Height
30 77.5 2.0 5.3 2 31.6 No

HPLC 10 98.7 2.4 5.6 1 13.5 Yes

HPLC 30 102.1 2.0 6.3 3 13.2 Yes

Raman Created
Excipient 10 97.8 2.4 4.1 2 10.6 Yes

Raman Created
Excipient 30 97.9 2.0 4.0 2 8.7 Yes

Generic

Raman Created
Excipient 10 102.5 2.4 3.9 3 10.3 Yes

Raman Created
Excipient 30 101.2 2.0 4.0 1 8.0 Yes

The same 30 tablets were then individually analyzed by high-performance liquid
chromatography, the standard method for determining acceptance values for drugs [27–29].
Since these measurements employed manual sample introduction into the injection loop,
all samples were prepared with 0.1 mg/mL desloratadine as an internal concentration
standard. The standard was measured 10 times on the two days that HPLC was performed,
and the averaged integrated peak areas were used to correct the loratadine peak areas. Prior
to analysis, a calibration curve was developed by measuring loratadine concentrations
ranging from 0.05 to 0.25 mg/mL. The loratadine concentration standards, measured
in triplicate, produced excellent concentration-to-peak area linearity over the desired
concentration range (Figure 3a). For each sample, three 10-µL injections, which produced
desloratadine and loratadine peaks with retention times at 1.26 and 2.77 min with peak
heights of ~7 × 10−5 and 4.5 × 10−5 absorbance units, respectively, were averaged to
calculate their concentrations. The values were also corrected by the measured mass of
each tablet.

As before, the acceptance values were calculated for the first 10 tablets, then all
30 tablets. Analysis of the first 10 tablets yielded a mean value of 9.87 mg per tablet or
98.7% of the loratadine label amount. Therefore, Equation (1) was used (Table 1). An AV of
13.2% was obtained, less than 15%, passing the batch. In the case of all 30 tablets, the mean
percent of the label amount was 101.6%, so Equation (3) was used, which yielded an AV of
14.1%, just below 15%, but still passing the batch.
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As indicated by these analyses, both methods gave mean tablet loratadine mass
percentages close to 10% of the total mass, or 10 mg for the 100 mg tablets, and both
methods passed the batch based on measuring 10 and 30 tablets. However, the percentage
coefficient of variation for the HPLC 30 tablet data was significantly greater than the Raman
30 tablet data using the created excipient spectrum, viz: 6.2% versus 4.1% (Table S1). It is
also interesting to note that tablet 12 produced the highest mass percent by both techniques,
11.0 and 10.7 mass percent for HPLC and Raman, respectively. However, there was no such
correspondence for the lowest values; Tablet 3 at 8.8 mass percent for HPLC and Tablet 11
at 9.1 mass percent for Raman and (Figure 4a).
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uct was taken one step further. As stated in the introduction, many drugs use multiple 
excipients, and their relative mass percentages may be a trade secret. While this may not 
be a matter for the original manufacturer, it may be important in forensic studies or iden-
tifying counterfeit drugs. To demonstrate this approach, the Raman spectra for a batch of 
thirty 10 mg per 100 mg loratadine product tablets, as a generic for Claritin, were meas-

Figure 4. Plots of loratadine mass percentage as a function of tablet number for (a) HPLC and Raman using all excipients,
and (b) Raman using all excipients and a created composite excipient.

While the above data suggest that Raman spectroscopy is as good as, or better than,
HPLC for determining API mass percents to qualify batches, it required the Raman spectra
of the excipients, which may be difficult to obtain or are unknown. These limitations can be
overcome by creating a composite excipient spectrum by simply subtracting the spectrum
of pure loratadine from the 10 and 30 tablet averaged spectra, respectively (Figure 5a). For
this case, the S-Quant software was used to determine the loratadine mass percent for the
10 and 30 tablets using weighted percentages of the pure loratadine 1st-derivative Raman
spectrum and the corresponding composite excipient spectrum (Figure S1b).
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Again, the acceptance values were calculated for the first 10 tablets, then all 30 tablets.
Analysis of the first 10 and 30 tablets yielded mean percentages of 97.8 and 97.9% of the
loratadine label amount, respectively. Since these values were both less than 98.5%, Equa-
tion (2) was used to calculate their respective AVs, which were 10.6 and 8.7%, respectively,
both less than 15%, passing the batches. The created excipient spectrum AV values are
slightly better than those obtained using lactose monohydrate and cornstarch pure chemi-
cal spectra (Table 1). This improvement is attributed to using one less variable, i.e., one
created excipient spectrum instead of two chemical spectra. It is also worth noting that
the individual calculated mass percentages for the 30 tablets are nearly identical, with a
percentage coefficient of variation only 0.07% higher than the lactose monohydrate and
cornstarch-based mass percentages (Figure 4b, Table S1).

The use of a created excipient to determine the API mass percentage for a drug
product was taken one step further. As stated in the introduction, many drugs use multiple
excipients, and their relative mass percentages may be a trade secret. While this may not be
a matter for the original manufacturer, it may be important in forensic studies or identifying
counterfeit drugs. To demonstrate this approach, the Raman spectra for a batch of thirty
10 mg per 100 mg loratadine product tablets, as a generic for Claritin, were measured. Then,
the pure loratadine spectrum was subtracted from first 10 then 30 tablet averaged spectra
to create excipient spectra (Figure 5). The excipient spectra for the generic are considerable
different than the Claritin-generated excipient spectra (compare Figure 5b to Figure 5e).

Once again, the acceptance values were calculated for the first 10 tablets, then all
30 tablets. Analysis of the first 10 and 30 tablets yielded mean percentages of 102.5%
and 101.2% of the loratadine label amount, respectively. The AVs were then calculated
according to Equations (3) and (1), to yield 10.3 and 8.0%, respectively, both less than 15%,
and both batches passed (Table 1 and Table S1). These values are slightly better than those
obtained using lactose monohydrate and cornstarch spectra.

It is worth noting that the Raman-based created excipient method required less than
5 hr: ~1 hr to prepare the 1500 psi loratadine tablet, ~1.5 hr to measure the loratadine and
30 Claritin tablets at 3 × 3 points each, ~1 hr to fit the spectra and determine the loratadine
mass percent for each tablet, and ~1 hr for the USP analysis. In contrast, the HPLC method
required more than 13 hr: ~1 hr to prepare buffer solutions and carrier solvents, ~1 h to
prepare the reference solution and the calibration standards, ~2 hr to weigh and prepare
the 30 individual sample solutions, ~2 hr to pre-treat the column, ~4 hr to measure the 15
calibration and 30 Claritin samples, ~2 hr to determine the loratadine mass percent for each
tablet, and ~1 hr for the USP analysis. In addition to analysis time, the development of the
Raman method for a new drug only requires preparing and measuring a pressed tablet of
the target API, and establishing the best spectral region to use, whereas, the development
of an HPLC method requires selecting a column, appropriate buffers, solvents, a reference
material, and the measurement conditions. The former can be accomplished in 1 day, while
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they latter typically takes a week or more [29]. It is of course realized that the Raman
method relies on uniform distribution of the API in the tablet, and may be limited to
relatively thin tablets, such as those less than 3 mm thick. The analyses of the Claritin and
generic tablets clearly indicate that such uniformity exists in these tablets, and likely in
similar products.

4. Conclusions

Here, we demonstrated a method to determine the API mass percent of a drug product
without knowing the excipients, by subtracting the API Raman spectrum from the product
Raman spectrum to create a composite excipient spectrum that could be used in mass
percentage calculations. The method proved equivalent to the standard HPLC method, at
least for Claritin tablets. We believe that the method could be used to (1) qualify content
uniformity of a manufactured drug product batch in accordance with the prescribed USP
method, even if the excipients are unknown; and (2) identify counterfeit drugs without
needing to know the identity or concentration of excipients of the purported drug product.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-492
3/13/3/309/s1, Figure S1: Images of S-quant software used to fit the 1st-derivative Raman spectrum
of (a) a single Claritin tablet with loratadine, corn starch, and lactose monohydrate 1st-derivative
Raman spectra, and (b) the 1st-derivative Raman spectrum of a single generic tablet with loratadine
and a created excipient 1st-derivative Raman spectra. Measured Raman spectra are shown for clearer
presentation, Table S1: Calculated loratadine mass percents with statistics for 1st 10 and all 30 Claritin
and a generic tablets by HPLC, Raman chemical component analysis, Raman created excipient
analysis, and 1630 cm−1 peak height analysis.
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