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Abstract. In addition to lethal minute colony muta- 
tions which correspond to loss of mitochondrial DNA, 
acriflavin induces in Chlamydomonas reinhardtii a low 
percentage of cells that grow in the light but do not 
divide under heterotrophic conditions. Two such ob- 
ligate photoautotrophic mutants were shown to lack the 
cyanide-sensitive cytochrome pathway of the respira- 
tion and to have a reduced cytochrome c oxidase activ- 
ity. In crosses to wild type, the mutations are trans- 

mitted almost exclusively from the mating type minus 
parent. A same pattern of inheritance is seen for 
the mitochondrial DNA in crosses between the two in- 
terfertile species C. reinhardtii and Chlamydomonas 
smithii. Both mutants have a deletion in the region 
of the mitochondrial DNA containing the apocyto- 
chrome b gene and possibly the unidentified URFx 
gene. 

T 
HE green unicellular alga Chlamydomonas reinhardtii 
constitutes the best model for classical and molecular 
genetic studies of chloroplast biosynthesis and func- 

tion. This mainly results from the availability of a large col- 
lection of nuclear and non-Mendelian mutants affected in 
photosynthesis or synthesis of chloroplast components. Mu- 
tations localized in the mitochondrial DNA (mit DNA) ~ 
would be very useful for similar studies on the mitochon- 
dria and for the analysis of functional relations between 
the two organelles. However, attempts to isolate mit DNA 
mutations have been so far unsuccessful in Chlamydo- 
monas. 

In baker's yeast, the intercalating dye acriflavin (AF) in- 
duces vegetative petite mutations with 100% efficiency (7). 
The petite mutants are conditional lethal which survive only 
when grown on a fermentable carbon source. On a carbon 
source that must be respired, they die because essential ele- 
ments of the mitochondria, such as cytochrome oxidase or 
cytochrome b, are missing. AF-induced mutants either lack 
mit DNA or have mit DNA molecules containing large dele- 
tions (for a review, see reference 8). Alexander et al. (1) used 
AF to isolate mutants in Chlamydomonas. They found that 
the dye induces, with nearly 100% efficiency, mutant cells 
which before dying are able to undergo 8-9 mitotic divisions 
in the light and form very small colonies, called minutes. As 
these mutants do not die immediately, they have been used 
in crosses with wild-type cells to analyze the inheritance of 
the minute phenotype. A complex non-Mendelian transmis- 

1. Abbreviations used in this paper: AE acriflavin; KCN, cyanide; M, mini- 
mal medium; mit DNA, mitochondrial DNA; SHAM, salicylhydroxamic 
acid; TAP, Tris-acetam phosphate medium. 

sion was observed which led Alexander et al. (1) to conclude 
that the mutations might arise from alterations of mit DNA. 
This was recently confirmed by Gillham et al. (9) who 
showed that the induction of minute mutations is accompa- 
nied by specific loss of mit DNA. In addition, the non- 
Mendelian inheritance of the minute phenotype could be ex- 
plained in terms of transmission of mit DNA by the mating 
type minus (mt-) parent exclusively (9), as observed in 
crosses between the two interfertile species C. reinhardtii 
and Chlamydomonas smithii (4). 

Viable mutants affected in mitochondrial function have 
also been isolated in Chlamydomonas after mutagenic treat- 
ment with nitrosoguanidine (19, 20). Contrary to wild type, 
the mutants were unable to grow in heterotrophic conditions 
(darkness + acetate) and were defective in cytochrome oxi- 
dase activity. Most of these obligate photoautotrophs were 
mutated in nuclear genes (19). Two mutants however gave a 
non-Mendelian, random biparental pattern of transmission 
in crosses to wild type but the results were obscured by the 
fact that the mutant ceils segregated phenotypically wild 
cells through vegetative growth. Stable dark minus (dk-) 
mutant cells derived from the two clones were only obtained 
after acquisition of secondary nuclear mutations (20). 

We here describe the isolation of two conditional mutants 
in which the lesions are localized in the mitochondrial ge- 
nome. The mutants, induced by AF, are obligate photoauto- 
trophs. Both are defective in cyanide-sensitive respiration 
and possess deletions in their mitochondrial genomes. The 
mutations are most often inherited in a non-Mendelian, 
uniparental paternal fashion (i.e., from the mating type mi- 
nus or mr- parent only), as is mit DNA in interspecific 
crosses between C. reinhardtii and C. smithii (see above). To 
our knowledge, this is the first report of induction of viable 
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mutations affecting the mitochondrial genome in a photosyn- 
thetic organism. 

Materials and Methods 

Strain and Culture Conditions 
The wild-type strains mating type plus (mt +) and minus (mr-) are derived 
from strain 137c of C. reinhardtii. 

The cells were grown on agar plates (15 g/liter bacto-agar Difco) under 
cool white fluorescent light (90 × 10 -6 einsteins x m -2 x s -I) or in the 
dark at 25°C. Two media were used: minimal (M) medium containing 
mineral salts only (18) and Tris-acetate phosphate (TAP) inedium (10) con- 
raining acetate as a carbon source. 

Cells were also grown in TAP liquid medium (100 ml in 300-ml flasks) 
with continuous agitation under a 12-h light/12-h dark regime to induce syn- 
chronization of cell divisions (occurring in the middle of the dark period). 

Acriflavin Treatment 
The cells from synchronized liquid cultures were sampled at the beginning 
of the light period. They were inoculated (2 x 105 cells/ml) into flasks 
containing 100 ml TAP medium added with 2-8 /zg/ml acriflavin (AF; 
Sigma Chemical Co., St. Louis, MO). AF was always prepared freshly and 
sterilized by filtration through 0.22 ~m Millipore filters. Cells were treated 
for 1-3 d in the dark. Aliquots were sampled at 24-h intervals and after 
counting with the aid of a Coulter counter, 2 x 102, 2 x 103, and 2 x 104 
cells were plated on TAP agar solid medium and incubated under mixo- 
trophic (light + acetate) or heterotrophic (darkness + acetate) conditions. 

Genetic Analysis 
The zygotes resulting from crosses were matured for 5 d under continuous 
light on nitrogen-free minimal agar plates according to VanWinkie-Swif~ 
(17). After maturation, blocks of agar carrying 50-100 zygotes were trans- 
ferred to plates containing fresh M medium and, after meiosis, the spores 
were plated at random to yield isolated colonies. 

Whole Cell Respiration 
Respiratory rates of whole cells (harvested at the end of the log phase of 
growth) were measured at 30°C in the dark with a Clark electrode (Gilson 
oxygraph) in 2 ml TAP medium (107 celis/ml). Total oxygen consumption 
was recorded during 10-15 rain while the rate remains constant. Cyanide- 
(KCN) sensitive and salicylhydroxamic acid- (SHAM) sensitive respira- 
tions were determined in parallel assays by addition at 5-rain intervals of 
1 mM KCN and 1 mM SHAM (orthe reverse). Respiratory rates were ex- 
pressed in nmol 02 x rain -t x 10 -7 cells taking into account that ! ml 
TAP medium contains 210 nmol Oz. 

SHAM was purchased from Sigma Chemical Co. and dissolved in etha- 
nol; KCN was dissolved in 17 mM HCI at 0°C in a stoppered flask and used 
immediately. 

Cytochrome c Oxidase Activity 

Cytochrome c oxidase activity of homogenates (prepared by sonication 3 
× 30 s of cells suspended in 0.03 M phosphate buffer, pH 7.4, 0..1% BSA) 
was assayed in 0.1 M Tris-HCl buffer, pH 7.4, containing 0.15% Triton 
X-100, 50 tzM reduced cytochrome c as a substrate. The oxidation of cyto- 
chrome c was foUowed at 550-540 nm in an Aminco DW-2 spectrophotome- 
ter. Reduced cytochrome c was prepared by reduction with ascorbate. 

Molecular Analysis of Mitochondrial DNA 
To characterize physically the mit DNA of the mutant strains in comparison 
with wild type, two molecular probes were used: (a) the pULG-R1 plasmid 
containing the 5.8 kb Barn HI-Sal I fragment of the mit DNA (12; P1 in 
Fig. 3) and (b) the pCrm CE1 plasmid containing the 3.87 kh Cla I-Eco 
RI fragment (16; P2 in Fig. 3). 

Total DNA was digested with appropriate restriction enzymes and the 
resulting restriction fragments separated by electrophoresis on agarose gels. 
The gels were Southern blotted and the mit DNA fragments were detected 
by using biotinylated probes, according to procedures described earlier (12). 

Results 

Effects of AF 
Wild-type mt- cells were grown for 3 d in the dark in the 
absence or in the presence of AF (2-8/~g/ml). After treat- 
ment, the cell suspensions were diluted, plated on TAP (ace- 
tate containing) agar medium, and incubated in the light. The 
viability, estimated on the capacity of the treated cells to di- 
vide under mixotrophic conditions, was not substantially 
modified by the AF treatment: in all cases, the plating effi- 
ciency was >60%. However, at the three concentrations 
tested, the fraction of the cell population giving rise to mi- 
nute colonies increased with the duration of treatment (Fig. 
1). Among the cells giving rise to green viable colonies, 
some formed colonies of small size, possibly due to a reduc- 
tion of the cell division rate. The fraction of these small colo- 
nies also increased with the time of treatment. Fig. 2 (solid 
line) gives the results obtained for a concentration of 5 #g/ml 
AE 

When the treated cells were plated on TAP medium and 
grown heterotrophically for 7 d, only a small fraction of 
them formed colonies, all green and viable. After transfer to 
light, new colonies appeared, most of them of minute pheno- 
type (histogram in Fig. 2), the others were green and viable 
(broken line in Fig. 2). Hence, cells developing into minute 
or viable green colonies could survive at least for 1 wk in 
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Figure 1. Percentages of  minute 
colonies (minute colonies/min + 
viable colonies) induced by A F  
(2, 5, or  8 #g/ml) during 1-3 d. 
The percentages were determined 
after growth for 7 d in mixotro- 
phic conditions. No minute colony 
was observed in control.  
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Figure 2. Percentages of small size viable colonies induced by AF 
(5 t~g/ml, 1-3 d). After treatment, known numbers of cells were 
plated on TAP agar medium. Plates were incubated under continu- 
ous light for 7 d ( ) or in the dark (7 d) then transferred to 
the light (7 d) ( . . . . .  ). Histogram gives the percentages of minute 
colonies neoformed after transfer from darkness to light. 

the dark without dividing but grew only after transfer to 
light. 

One can imagine that among those viable cells unable to 
grow under heterotrophic conditions or that grow more 
slowly than wild-type cells under mixotrophic conditions, 
some are obligate photoautotrophic mutants which, like the 
dk- mutants, are unable to use acetate because certain mito- 
chondrial functions are missing. According to this hypothe- 
sis, AF might induce deletions in mitochondrial genes cod- 
ing for enzymes of the respiratory chain (e.g., cytochrome 
oxidase or cytochrome b; see Fig. 3). Such deletion mutants 
would be expected to be unable to grow heterotrophically. 

Small viable green colonies were thus isolated and tested 
for their ability to grow in the dark on acetate-containing 
medium. Out of 50 colonies analyzed, two were found to dis- 
play the sought for dk- phenotype. Both were obtained after 
treatment for 3 d by 8 t~g/ml AF and incubation for 1 wk in 
the dark before transfer to light. The two clones were com- 
pared to wild type for growth under mixotrophic (TAP 
medium) and photoautotrophic (M medium) conditions. The 
mutant colonies produced on TAP were smaller than the 
wild-type colonies whereas no significant difference was 
found on M agar medium. 

Genetic Analysis of the dk- Clones 

The two clones were crossed to wild-type mt÷ cells. The 
percentages of zygotes which after maturation were able to 
germinate after 24 h incubation on fresh M medium ranged 
between 20 and 50%. The individual meiotic progeny were 
analyzed for their capacity to grow heterotrophically. Where- 
as the segregation of the mr and mt- nuclear alleles (link- 
age group VI) was 1:1 as expected (data not shown), a ma- 
jority of the meiotic products were unable to grow in the dark 
(Table I). In each cross, one dk- mt÷ mutant clone was 
selected and crossed to wild-type mt- cells. In this case, the 

zygote germination was 100% and meiotic progeny were 
able to grow heterotrophically (Table I). Hence, the capacity 
to grow in the dark is inherited according to a non-Mendelian 
fashion. The transmission of the dk- phenotype carried by 
the rot- parent was frequent when that parent was mutant 
while the dk ÷ phenotype was transmitted to almost all prog- 
eny in the reciprocal cross. This pattern of inheritance is 
similar to that observed for mit DNA in crosses between the 
two interfertile species C. reinhardtii and C. smithii (4, 12) 
and the reverse of that found for markers located in the chlo- 
roplast genome (mr or maternal inheritance) (for a review, 
see reference 8). 

The two mutants were named dum-1 and dum-2 (dark 
uniparental transmission by the minus parent). 

Mitotic Segregation and Reversion of the dum Mutants 

The two mutants were plated on agar medium (TAP or M) 
at low density to obtain individual colonies. After 8 d of incu- 
bation in the light, the plates were examined under the dis- 
secting microscope. In addition to green colonies, minute 
colonies representing ~10% of the total were observed. 

Two subclones of the original dum mt- mutant and the 
dum mr isolates also segregated mitotically dk- cells (*90%) 
and cells which formed minute colonies (~10%). It thus 
seems that the production of ceils which form minute colo- 
nies constitutes an intrinsic property of the dum mutants. 

The capacity for reversion of the dum mutants was tested 
by plating a total of 14 × 107 viable cells (10 7 cells/plate) 
on TAP agar medium and incubating the plates in the dark 
for 15 d. No revertants were obtained in this experiment. 

Respiratory Chain Activity 

As in many plants, the respiratory chain of Chlamydomonas 
is composed of the classical cyanide-sensitive (cytochrome) 
pathway and a second pathway that branches from the main 
chain and is insensitive to cyanide but sensitive to SHAM 
(11, 15). 
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Figure 3. Restriction map of the 15.8 kb linear mitochondrial DNA 
of C. reinhardtii. Restriction enzyme sites: B, Barn HI; E, Eco RI; 
H, Hpa I; Hi, Hind III; K, Kpn I. Genes: CO1, cytochrome oxidase 
subunit I; CYB, apocytochrome b; 18S and 26S RNA, small and 
large subunit ribosomal RNA; URb2 and URF5, unassigned open 
reading frames homologous to mammalian mitochondrial genes; 
URFx, unidentified open reading frame (from references 2, 3, 13, 
16). P1, Barn HI-Sal I fragment present in probe 1; P2, Eco RI-Cla 
I fragment present in probe 2 (Sal I and Cla I sites are not indicated 
in the figure), del, probable location of the deletion (see text). 
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Table I. Segregation of the dk + and dk- Phenotypes in 
Reciprocal Crosses between Wild-Type (dk*) and Mutant 
(dk-) Strains 

Segregation of capacity 
Crosses to grow in the dark 

Wild-type mt÷ x mutant  1 rot- 26 dk+/157 dk- 
Wild-type mY x mutant 2 mt- 28 dk+/15l dk- 
Mutant 1 mt÷ × wild-type mr- 239 dk÷/l dk- 
Mutant 2 mt + x wild-type mt- 240 dk+/0 dk- 

Total respiratory rates, measured in the dark with the en- 
dogenous substrates, were lower in dum-1 and dum-2 than in 
the wild-type strain (16 and 38 %, respectively; see Table 11). 
In the wild type, the total respiration was inhibited 65 % by 
cyanide whereas the further addition of SHAM reduced the 
percentage to 12%. In contrast, the respiratory rate of the 
two mutants was insensitive to cyanide but remained sensi- 
tive to SHAM. These results indicate that both mutants have 
a lower respiratory rate because cyanide-sensitive respiration 
is absent or greatly reduced. 

This conclusion was corroborated by the data obtained 
when SHAM was added before KCN. In the wild type, 
SHAM alone did not modify the respiration, perhaps be- 
cause the alternative pathway does not function when the 
cytochrome main pathway is not saturated, as hypothesized 
by Bahr and Bonner (15). In the two mutants however, the 
addition of SHAM strongly reduced the respiration rate. The 
further addition of cyanide largely affected the respiration of 
the wild type but not that of the mutants. 

The activity of cytochrome c oxidase was measured on cell 
homogenates. The activity was much lower in the mutants 
(3.7 and 3.6 nmol cytochrome c oxidized × min -t × 10 -7 
cells ofdum-1 and dum-2, respectively) than in the wild type 
(32 nmol cytochrome c oxidized × min -~ × 10 -7 cells). 
These activities were completely inhibited by 1 mM KCN. 
Thus, a deficiency in cytochrome c oxidase may be responsi- 
ble, at least partially, for the low cyanide-sensitive respira- 
tion found in the two mutants. 

Analysis of  the Mitochondrial Genome 

The phenotype and the pattern of inheritance of the dum mu- 
tants strongly suggest that the mutations alter the mit DNA. 
As AF induces large deletions in the mitochondrial genome 
of yeast, we searched for the presence of such deletions in 
the mutants. 

The mitochondrial genome of C. reinhardtii is a small 
(15.8 kb) linear DNA molecule present in 40-50 copies per 
cell (3, 13, 14). Several genes and restriction sites have been 
identified in the genome (Fig. 3). To analyze the mit DNA 
of the two mutants, total DNA was digested with Barn HI + 
Eco RI or Bam HI + Hind III. Fig. 4 shows the fragments 
detected on Southern blots by the PI probe (Fig. 3) for the 
wild type and the dum-1 strain. The larger fragment obtained 
after Barn HI + Eco RI digestion was smaller in dum-I than 
in wild type, indicating that a deletion of '~,1.5 kb is present 
in the segment containing CYB, URFx, URF5, and COI 
genes. (In dum-l, a fragment of higher molecular weight, 
resulting from the partial digestion of the mit DNA, was also 
present.) In contrast, the Barn HI-Hind III fragments were 
identical in both mutant and wild-type strains; thus, the dele- 

tion is located at the left side of the Hind II1 site present in 
URFx (Fig. 3). Digestion with Kpn I and hybridization with 
the P2 probe confirmed that the deletion is present in the seg- 
ment containing CYB and URFx (Fig. 4). Finally, the detec- 
tion of the Hpa I fragments with P2 indicates that the seg- 
ment covering a part of CYB, URFx, and a part of URF5 is 
shorter in the mutant (2.8 instead of 3.25 kb). 

The same restriction patterns were found for dum-2 mt- 
as well as for the two mutant m r  isolates obtained from 
crosses. 

The conclusion is that both mutants contain a deletion of 
,~1.5 kb, probably terminal, including the Hpa I site located 
in CYB-URFx genes (del in Fig. 3). 

Discuss ion  

The two dum mutations described here exhibit a paternal 
(rot-) mode of transmission, characteristic of the inheri- 
tance of the mit DNA observed in crosses between C. rein- 
hardtii and C. smithii (4, 12). In crosses between wild-type 
strains and dum mutants, the uniparental paternal transmis- 
sion was almost absolute when the mt- parent was wild 
type, whereas when the mr- parent was mutant, '~15 % mei- 
otic products transmitted the marker from the wild mt + par- 
ent. In this latter cross, many zygotes did not germinate, 
maybe as a result of their lack of cyanide-sensitive respira- 
tion. The rare zygotes possessing the wild phenotype and a 
high rate of germination would have a selective advantage, 
increasing the probability to find dk + meiotic progeny. A 
low germination ofdum meiotic products would still amplify 
the phenomenon. 

The present work demonstrates that in Chlamydomonas 
acriflavin induces not only loss of mit DNA with subsequent 
lethality (9) but also nonlethal deletions in the organelle ge- 
nome. The two mutants isolated here are deleted in the por- 
tion of the genome that contains the apocytochrome b (CYB) 
gene and possibly a short sequence of the unidentified gene 
URFx. The size of the deletions (~1.5 kb) are rather small 
in comparison to those generally observed in yeast (6). The 
restriction analyses suggest that the deletions are probably 
terminal. The capacity of both mutants to give rise by mitotic 
segregation to ~10% of minute colonies could result from 
the absence of the terminal region, making the mit DNA rel- 
atively unstable. 

As a consequence of the deletion, the two mutants lack 
cyanide-sensitive cytochrome pathway and become obligate 
photoautotrophs. The cytochrome c oxidase deficiency ob- 
served in the two mutants is rather puzzling since the dele- 
tions do not affect the COI gene. One can postulate that the 

Table II. Respiratory Rate (nmol 02 x min -~ × 10 -7 
cells) of  Wild Type and Mutants Measured at 30°C in the 
Dark in 2 ml TAP Medium Containing 107 Cells/ml. (At 
5-Min Intervals, the lnhibitors Were Added.) 

Respiratory rate after addition of 

Total KCN 
respiratory followed by 

rate KCN SHAM SHAM 

SHAM 
followed by 

KCN 

Wild type mt- 23.2 8.1 2.9 23.4 1.4 
Dum-1 mt- 3.7 3.7 0.9 0.4 0.3 
Dum-2 mt- 8.8 8.8 1.3 1.3 1.3 
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Figure 4. Hybridization patterns obtained with P1 and P2 probes after electrophoresis followed by Southern blotting of wild type (lanes 
a) and dum-1 (lanes b) total DNA digested by the indicated restriction enzymes. Only the fragments equal or larger than 0.85 kb are visible 
in the figure. Arrows indicate the size of the new fragments present in the mutant. Abbreviations like in Fig. 3. 

deletions affect a gene that encodes (1) another subunit of 
the cytochrome oxidase (URFx?), (2) a product controlling 
the transcription or the translation of cytochrome oxidase 
gene(s), or (3) a product necessary for the assembly and the 
activity of the cytochrome oxidase. Another less likely possi- 
bility is that both mutants possess a second mutation located 
in CO1, greatly reducing cytochrome oxidase activity. 

Neither mutant uses acetate in the dark but both grow at 
near wild-type rate under photoautotrophic conditions. This 
indicates that the cytochrome pathway and subsequent oxida- 
tive phosphorylation are dispensable in the light, sufficient 
ATP being provided by photosynthetic activities. Like the 
dk- nuclear mutants (19), the dum mutants however possess 
a normal alternative SHAM-sensitive pathway. As discussed 
by Wiseman et al. (19), in the absence of cytochrome path- 
way, the alternative pathway might be essential to shuttle 
electrons from the Krebs cycle and regenerate NAD ÷ from 
NADH. The minute mutants may die because they have lost 
the ability to carry out both cyanide-sensitive and SHAM- 
sensitive pathways (9). Deletions in URF2 and URF5 (two 
open reading frames homologous to mammalian mitochon- 
drial genes whose products were recently found to be com- 
ponents of the NADH: ubiquinone reductase [5]) might be 
lethal for the cell since the ubiquinone pool is common to 
both pathways. Similarly, mutations localized in ribosomal 
RNA genes will prevent protein synthesis in the organelle 
and induce lethality. In contrast, deletions inside the gene 

coding for subunit I of cytochrome oxidase (CO1) are ex- 
pected to lead to obligate photoautotrophy since the dk- 
nuclear mutants isolated by Wiseman et al. (19) lack that 
enzyme. This brings the question why the two mutants ap- 
parently possess the same deletion. As both were isolated in 
the same experiment (AF 8/~g/ml, 3 d of treatment), they 
might result from the same mutational event. However, two 
additional mutants recently isolated in independent experi- 
ments were shown to possess a similar deletion in the same 
region of the genome (S. Remy and R. Matagne, unpublished 
observations). The isolation and analysis of new mutations 
leading to obligate photoautotrophy will tell us more about 
the possible location of deletions in the mit DNA. 
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