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The central nervous system (CNS) has historically been viewed as an immune-privileged 

site, but recent data demonstrate a diverse landscape of immune cells within the meninges, 

the membranes that surround the brain and spinal cord1. Studies to date have focused on 
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macrophages and T cells, but a detailed analysis of meningeal humoral immunity is lacking. 

Here, we show that the murine and human meninges contain IgA-secreting plasma cells 

during homeostasis. These cells are positioned adjacent to dural venous sinuses, regions of 

slow blood flow with fenestrations that can potentially permit blood-borne pathogens to 

access the brain2. Peri-sinus IgA plasma cells increased with age and following intestinal 

barrier breach. Conversely, they were scarce in germ-free mice, but their presence was 

restored by gut re-colonization. B cell receptor sequencing confirmed that meningeal IgA+ 

cells originated in the intestine. Specific depletion of meningeal plasma cells or IgA-

deficiency resulted in reduced fungal entrapment in the peri-sinus region and increased 

spread into the brain following intravenous challenge, revealing a critical role for meningeal 

IgA in defending the CNS at this vulnerable venous barrier surface.

The meninges consist of three membranes that provide a protective covering to shield the 

CNS from physical trauma and pathogen infiltration. Adjacent to the skull is the dura mater 

that houses meningeal blood and lymphatic vessels as well as the dural venous sinuses3,4. 

The arachnoid mater adheres to the dura and is separated from the inner pia mater by the 

cerebrospinal fluid (CSF)-containing subarachnoid space. Healthy meninges also contain 

both innate and adaptive immune cells that provide a defense against pathogens4. Most 

meningeal immune cells are in the dura mater, including T cells, dendritic cells, mast cells, 

and meningeal macrophages. Meningeal macrophages lie adjacent to meningeal vessels, and 

together with the perivascular macrophages that line pial vessels, provide surveillance and 

protection along these barrier structures5,6. To date, few studies have focused on the 

phenotype or function of the humoral immune system in the meninges.

B cells develop in the bone marrow and circulate between blood and secondary lymphoid 

organs until they encounter a cognate antigen. Following activation, they undergo iterative 

rounds of proliferation, during which somatic hypermutation and class switching from IgM 

to other isotypes may occur7. The IgG-producing plasma cells generated home to bone 

marrow niches, where they may survive for decades8. In the mucosal-associated lymphoid 

tissue of the gut, specific cues lead to the development of IgA-producing plasma cells that 

localize to the lamina propria, secreting IgA dimers joined by a J-chain9. Circulating 

antibodies are thought to be largely excluded from the CNS in health, but increased levels of 

IgG and IgA antibodies have been observed in the CSF during many disease states10–13. It 

has been assumed that these antibodies are produced systemically and enter the CSF from 

the blood due to pathology-associated blood-brain barrier breach. A recent study extended 

this paradigm, showing the presence of gut-derived IL10-producing IgA+ plasma cells 

within the brain and spinal cord during inflammation in a mouse model of multiple 

sclerosis14.

To profile steady state meningeal humoral immunity, we investigated mouse dura mater. We 

found that meningeal B cells were mostly naïve (IgD+IgM+) (Extended Data Fig. S1a). In 

addition, there were CD138+ Blimp1-expressing plasma cells predominantly located 

adjacent to the superior sagittal and transverse venous sinuses (Fig. 1a). Surprisingly, in the 

unchallenged meninges, most of the peri-sinus plasma cells were IgA positive (Fig. 1b–e, 

Extended Data Fig. S1b–c), and RNA sequencing of murine meninges confirmed the 

presence of IgA heavy chain transcripts and plasma cell-supporting cytokines (Fig. 1e, 
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Extended Data Fig. S1d). These meningeal IgA+ plasma cells also expressed CXCR4 

(Extended Data Fig. S1e), a chemokine receptor important in regulating plasma cell homing 

to niches15, as well as J-chain (Fig. 1f), suggesting that they secrete dimeric IgA like 

intestinal IgA+ plasma cells. Intravital two-photon imaging confirmed that these Blimp1+ 

cells were adjacent to, rather than within, venous sinuses (Fig. 1g, Video 1). Dural IgA+ 

plasma cells increased with age (Fig. 1h), as has been observed in the intestine16, and were 

almost absent in T cell-deficient mice (Fig. 1i). In human dura mater, we similarly identified 

CD138+IgA+ plasma cells adjacent to the dural sinuses (Fig. 1j, Extended Data Fig. S1f).

Since the presence of IgA+ cells in the gut is dependent on the microbiome17, we 

investigated whether treatment of specific pathogen free (SPF) mice with antibiotics to 

reduce their colonizing microbiome would impact dural plasma cells. Six weeks following 

oral antibiotic administration, there was a substantial reduction in IgA+ plasma cells in the 

meninges (Fig. 2a). IgA+ plasma cells were also almost completely absent in the meninges 

of germ free (GF) mice, but their presence was restored in GF mice reconstituted with either 

a murine microbiome or human gut microbiome (donor A (DA) and donor B (DB)) (Fig. 

2b–d), which was also apparent by expression of IgA heavy chain transcripts (Fig. 2e). 

Remarkably, the phenotype of the plasma cells in the meninges of these two human 

microbiome-reconstituted mouse strains differed, with IgG+ plasma cells present in the GF-

DA mice in addition to IgA+ cells (Fig. 2f). Metagenomic sequencing of the fecal content of 

GF-DA and GF-DB mice demonstrated a reduction in bacterial diversity in GF-DA mice 

(Extended Data Fig. S2a–b) and differing frequency of some bacterial species between GF-

DA and GF-DB (Extended Data Fig. S2c). Together, these data show that the nature of, and 

variation in, the intestinal microbiome can significantly impact the magnitude and antibody 

isotype of the meningeal plasma cell pool.

To test whether the presence of a single bacterial species within the intestine was sufficient 

to restore dural IgA+ plasma cells, we infected GF mice with wild type (WT) and an 

avirulent mutant (ΔEspA) of Citrobacter rodentium18, a model of human attaching-effacing 

enteropathogenic infection. In GF mice infected with ΔEspA C.rodentium, a mutant that is 

incapable of epithelial cell invasion19 and therefore of systemic spread18, we observed 

similar numbers of IgA+ plasma cells within the meninges as SPF mice or mice infected 

with WT C.rodentium (Fig. 2g–h). The meningeal IgA+ cell compartment was also 

replenished following reconstitution of GF mice with segmented filamentous bacteria (SFB) 

(Fig. 2d), another gut-restricted commensal20. By contrast, skin-limited monocolonization of 

GF mice with either S. epidermidis or S. aureus did not restore meningeal plasma cells (Fig. 

2d). Collectively, these data suggest an intimate relationship between intestinal and 

meningeal plasma cells. We postulated the latter might be educated in the gut and arise from 

intestinal B cell clones that subsequently localize to the dura mater and differentiate into 

plasma cells in situ. Alternatively, plasmablasts or plasma cells might migrate to the 

meninges after differentiation in the intestines.

To better understand this relationship, we performed B cell receptor (BCR) sequencing on 

paired meningeal and small intestinal tissue (1cm of jejunum) samples. In SPF mice, 21.5% 

of meningeal clones were related to those in the small intestine, despite the limited 

proportion of intestine sampled relative to the total intestinal length (approximately 50cm)21, 
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confirming a substantial overlap between intestinal and meningeal BCR specificities (Fig. 

2i), significantly greater than would be expected by random chance (Extended Data Fig. 

S3a). Of the shared clones, a greater proportion of intestinal BCR sequences were found to 

lie closer to germline sequences compared to meningeal clones, (65% versus 35%), 

consistent with an intestinal origin of meningeal plasma cells, but raising the possibility of 

bi-directional movement between the meninges and intestine (Extended Data Fig. S3b). 

Overall, the BCR repertoire was less diverse in the meninges (Extended Data Fig. S3c), and 

there was evidence of clonal expansion, with dissimilarity in the most abundant meningeal 

and intestinal clones as well as some unique BCR sequences in the meninges (Fig. 2j, 

Extended Data Fig. S3d). Similarly, when comparing BCR sequences in intestine and 

meninges of GF-DA and GF-DB mice, there was overlap of BCR sequences detectable in 

intestine and meninges as well as evidence of clonal expansion in the meninges (Extended 

Data Fig. S3e–f). These data show that a considerable proportion of dural B cells and/or 

plasma cells present in homeostasis arise from gut-educated B cells or plasma cells and may 

undergo local expansion.

Given their intestinal origin, we next asked how intestinal inflammation and barrier breach 

would impact meningeal humoral immunity. Following oral administration of dextran 

sodium sulphate (DSS), a colitogen that causes osmotic damage to intestinal epithelial cells 

resulting in barrier breach and inflammation, there was a significant increase in meningeal B 

cells, particularly naïve and IgM+IgD- cells as well as IgA+ plasma cells (Extended Data 

Fig. S4a–d). Many B cells were found within clusters adjacent to the dural sinuses with IgA+ 

plasma cells located at the periphery of the clusters, and these cells were outside of Lyve-1+ 

dural lymphatics (Extended Data Fig. S4a). Some B cells within these clusters were Ki67+, 

indicating local proliferation (Extended Data Fig. S4e). RNA sequencing of meninges post-

DSS colitis confirmed an increase in IgA heavy chain transcripts as well as a modest (but 

not significant) increase in the abundance of some IgG heavy chain transcripts (Extended 

Data Fig. S3g, S4d).

In the gut, IgA plays an important role in maintaining barrier integrity by trapping microbes 

within the mucus layer keeping them away from the epithelium22. In addition, protective 

IgA antibodies develop following vaccination and challenge with bacteria, viruses and 

fungi23,24. These antibodies may opsonize pathogens for uptake by phagocytes, induce 

antibody-dependent cellular cytotoxicity, and mediate proteasomal destruction of 

intracellular pathogen23,25. Given the localization of meningeal IgA+ plasma cells adjacent 

to dural sinuses, we hypothesized that the IgA secreted locally may form part of a peri-sinus 

barrier that prevents spread of intravenous pathogens from the slow-moving blood within the 

sinus into the CNS. To test this hypothesis in vivo, we challenged mice with intravenous 

Candida albicans, a cause of meningoencephalitis in neonates and the 

immunocompromised26. Candidal species also form part of the normal microbiome in mice 

and humans27. Following candida challenge, there was marked expansion of B and IgA+ 

plasma cells as well as fungal entrapment along the wall of the dural sinuses (Fig. 3a, 

Extended Data Fig. S5a, Video 2) within areas including CD45+ cells and diffuse 

extracellular IgA staining (Fig. 3b, Extended Data Fig. S5b). Some of the IgA+ cells also 

expressed Ki-67 (Extended Data Fig. S5c) and activation-induced cytidine deaminase (AID) 

(Extended Data Fig. S5d), suggesting local proliferation and somatic hypermutation.
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In IgA-deficient mice lacking meningeal IgA+ cells (Extended Data Fig. S6a), we observed 

a failure to confine candidal spread to the peri-sinus regions (Extended Data Fig. S6b) and a 

concomitant increase in fungal spread to the brain parenchyma (Extended Data Fig. S6c). To 

determine whether local rather than global IgA was required for pathogen defense in the 

meninges, we depleted meningeal plasma cells by applying transcranial bortezomib (Fig. 3c, 

Extended Data Fig. S7a), a proteasome inhibitor28. This treatment depleted meningeal 

plasma cells but had limited effects on other meningeal immune cells (Extended Data Fig. 

S7b–g) and distant plasma cells (Extended Data Fig. S8a–e). Following intravenous candida 

challenge, depletion of meningeal plasma cells decreased fungal entrapment adjacent to 

dural sinuses (Fig. 3d), increased fungal load in brain tissue (Fig. 3e–g) and increased 

mortality (Fig. 3h).

CNS barrier structures such as the meninges, choroid plexus, vasculature, and sinuses 

interface with the periphery and must be defended by a network of resident immune 

cells5,6,29. The dural venous sinuses are a vulnerable CNS barrier surface, because the slow 

flow of blood and limited shear forces within them provide an opportunity for blood-borne 

pathogens to adhere to the fenestrated sinus wall2. We demonstrate that IgA-secreting 

plasma cells contribute to an immunological barrier at this interface, providing protection 

against the spread of pathogens into the CNS (Extended Data Fig. S8f). Some of these IgA 

cells are educated in the gut, an organ containing trillions of microorganisms, including 

bacteria, fungi and viruses. While our study focuses on gut-education of meningeal IgA 

cells, our data do not rule out other sites of education (besides the skin). The intestinal 

immune system is orchestrated to permit the existence of the microbiome for its beneficial 

effects, while preventing mucosal barrier breach. IgA plays an important role in this process 

by enchaining microbes and facilitating their entrapment within the mucus layer22,30. Here 

we demonstrate that this paradigm also applies to a distinct internal barrier interface — the 

dural venous sinuses. We propose that evolutionary pressures have led the dural IgA 

antibody repertoire to mirror that of the gut because even a transient intestinal barrier breach 

can cause bacteremia with devastating consequences if there is spread into the CNS. 

Therefore, seeding the meninges with antibody-producing cells that are selected to recognize 

luminal commensals ensures defense against the most likely invaders. In conclusion, 

meningeal IgA cells represent a crucial immunological shield assembled during homeostasis 

and poised to prevent the spread of pathogens into the meninges and underlying CNS 

parenchyma.

Methods:

Human subjects.

Human dura mater tissue for Figure 1j was obtained from a 73-year-old man with combined 

small cell lung cancer/adenocarcinoma who was treated with the following regimens, in 

sequence: carboplatin/pemetrexed, carboplatin/etoposide, combined PD-1/CTLA4 blockade, 

and carboplatin/etoposide. Anti-PD-1/CTLA4 treatment was administered for 2 months and 

stopped 9 months before death. He underwent gamma-knife radiosurgery 19 months after 

diagnosis for a single cerebellar metastasis, followed by bilateral adrenalectomy 3 months 

later for symptomatic Cushing’s disease. He received 2 cycles of investigational agents at 
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the National Cancer Institute but continued to have disease progression, including 

lymphangitic spread to both lungs and new bilateral multiple brain metastases. No metastatic 

involvement of the dura mater was noted on in vivo brain imaging. Tissue was harvested 

under an NIH IRB-approved protocol following consent from the next of kin.

The dura mater sample in Extended Data Figure 1f was obtained by a study approved by the 

Health Research Authority England (HRA) and Health and Care Research Wales (HCRW) 

(protocol (East of England LREC 17/EE/0485). A surgical tract meningeal biopsy was taken 

(with informed consent from the patient) from an otherwise healthy 72-year-old female 

patient undergoing resection of a benign intracranial tumor in the left frontal lobe at the 

Cambridge University NHS Foundation Trust Hospital. The patient did not receive any 

adjuvant chemo or radiotherapy prior to the operation. There was no tumor involvement of 

the resected dura mater on preoperative MRI imaging or post-hoc pathohistological analysis.

Mice.

C57BL/6J, B6.129P2-Tcrbtm1Mom/J (Tcrb−/−), B6.129P2-Cd19tm1(cre/ERT2)Rsky/J 

(CD19CreER/CreER) and B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J (Stopfl/flTdTomato) 

mice were obtained from Jackson Laboratories. Blimp1EYFP/EYFP (Prdm1EYFP/EYFP) mice 

were obtained from M. Nussenzweig (Rockefeller University). CD19CreER/+ 

Stopfl/flTdTomato x Prdm1EYFP/+ reporter mice were generated by first crossing 

CD19CreER/CreER with Stopfl/flTdTomato mice, and offspring were then bred to 

Prdm1EYFP/EYFP mice. For induction of Cre recombinase, CD19CreER/+ Stopfl/flTdTomato x 

Prdm1EYFP/+ mice received tamoxifen formulated in chow (250 mg/kg; Envigo) for 3 to 4 

weeks. IgA−/− mice were generously provided by Y. Belkaid (NIAID). All above mouse 

strains were bred and maintained under specific pathogen-free conditions at the National 

Institutes of Health (NIH). Germ-free C57BL/6 mice were bred and maintained in the 

NIAID Microbiome Program gnotobiotic animal facility or the Wellcome Sanger Institute 

germ free facility. Both male and female mice were used in experiments, and all were 10–18 

weeks of age unless otherwise indicated. Sample size was chosen based on previously 

published animal experiments in the field of meningeal immunity. Experiments were not 

randomized or blinded.

Immunohistochemistry of murine meningeal whole-mounts and brain.

Immunostaining of mouse whole-mount meninges was performed as previously described31 

with the following modifications. Immediately after death, animals were transcardially 

perfused with 20 mL of ice-cold PBS. Skull caps, with intact dura mater, were dissected as 

described above and placed in 2% paraformaldehyde for 16–18 hours at 4°C. The fixed 

tissue was then washed with PBS three times in PBS for 5 minutes per wash. Under a 

dissecting microscope, the dura mater was scored carefully with forceps from the skull cap, 

leaving the meninges intact, in a petri dish containing PBS. Meninges were then stored at 

4°C in PBS within a 24-well plate until use for immunostaining.

For immunostaining of whole-mount meninges, the tissue was immersed in a block-

permeabilization solution containing 2% normal rat serum, 1% bovine serum albumin, 0.1% 

Triton-X-100 and 0.05% Tween in PBS for 1 hour at room temperature. Subsequently, 
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meninges were stained for antigens with anti-mouse antibodies in 1% bovine serum albumin 

and 0.5% Triton-X-100 in PBS at 4°C overnight. A combination of the following primary 

antibodies were used for immunostaining of whole-mount meninges: anti-CD138 (281–2, 

BD Biosciences), anti-CD45.2 (104, BioLegend), anti-IgA (catalog# 1040–09, 

SouthernBiotech), anti-IgG (catalog# 1030–02, SouthernBiotech), anti-B220 (RA3–6B2, 

Thermo Fisher), anti-IgA (RMA-1, BioLegend), anti-Lyve1 (223322, R&D), anti-Ki67 

(SolA15, Thermo Fisher), anti-AICDA (catalog# ab93596, Abcam), anti-J-chain (SP105, 

Thermo Fisher), anti-GFP (catalog# A-21311, Thermo Fisher), and anti-rabbit IgG (catalog# 

A27040, Thermo Fisher). All primary antibodies were used at a concentration of 1:200 and 

secondary antibodies at 1:600. Following staining, tissue was washed 3 times in PBS for 5 

minutes per wash at room temperature. When non-conjugated primary antibodies were used, 

anti-rabbit IgG (A27040, Thermo Fisher) was then applied in PBS for 1 hour at room 

temperature; the tissue was then washed three times in PBS for 5 minutes per wash. Using a 

paintbrush, the dura mater was flattened on a glass slide and mounted with FluorSave 

Reagent (Millipore Sigma). Slides were left in the dark at 4°C for 1 hour before imaging.

Upon perfusion and harvesting, brains were placed in 2% paraformaldehyde for 16–18 hours 

at 4°C, washed, and placed in 25% sucrose solution for 2 days for cryopreservation. Brains 

were then embedded in OCT medium, frozen over dry ice and 60 μm sections were made 

using a cryostat. Brain sections were blocked and stained on slides as above.

Tile scan images of whole-mount meninges or brain slices was carried out either on a Leica 

SP8 confocal microscope (Wetzlar, Germany) or Olympus FV1200 laser-scanning confocal 

microscope equipped with four detectors, six laser lines (405, 458, 488, 515, 559 and 635 

nm) and five objectives (4×/0.16 NA, 10×/0.4 NA, 20×/0.75 NA and 40×/0.95 NA, and 

chromatic aberration-corrected 60×/1.4 NA). All images were analyzed using Imaris version 

9.3 software (Bitplane).

Immunohistochemistry of human whole-mount dura mater.

Human dura mater was obtained post-surgically and fixed in 2% paraformaldehyde for 16–

18 hours at 4°C. The tissue was then washed in PBS for 5 minutes at room temperature three 

times. The superior sagittal sinus and surrounding dura were dissected out using a scalpel 

and forceps, and any residual blood within the sinus was removed. The sinus was then 

segmented into 2 mm pieces and stored at 4°C in PBS within a 6-well plate. The 

immunostaining protocol is the same as above using the following anti-human antibodies at 

a concentration of 1:200: anti-IgA (catalog# ab97000, Abcam) and anti-CD138 (MI15, 

BioLegend). After staining, the sinus was cut open so that the luminal aspect of the vessel 

could be imaged and mounted with FluorSave Reagent (Millipore Sigma). Tile scan images 

were acquired with an Olympus FV1200 laser-scanning confocal microscope and analyzed 

using Imaris version 9.3 software (Bitplane).

Acute colitis model.

C57BL/6J mice were administered 2% weight/volume dextran sulfate sodium (MP 

Biomedicals) in drinking water for 7 days to induce acute colitis and intestinal barrier 

breach. Animals were then left on untainted drinking water for 14 days post DSS 
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administration. Body weight and stool was monitored daily and used as indicators of 

severity of intestinal inflammation. On culling, animals were perfused transcardially with 

ice-cold PBS and appropriate tissues were collected for downstream processing.

Fungal challenge.

C. albicans-GFP (strain SC5314) was a generous gift from M. Lionakis (NIAID). A single 

colony grown 48 hours at 37°C on YPD (yeast extract peptone dextrose) agar plates was 

used to inoculate YPD broth containing penicillin and streptomycin (Mediatech). Yeast was 

grown at 30°C in a shaking incubator and serially passaged three times, with growth periods 

ranging from 18–24 hours at each passage. Upon the final passage, yeast cells were 

harvested by centrifugation at 1400 rpm for 7 minutes and washed twice with PBS. A 

hemocytometer was used to count yeast cells, and a suspension of 50,000 cells per 100 μL of 

sterile PBS was used for infections. To induce systemic candidiasis, 100 μL of C. albicans 
suspension was administered intravenously, and survival following infection was monitored 

daily.

Quantification of C. albicans by qPCR.

Quantitative PCR was used to assess fungal burden in brains after systemic infection with C. 
albicans as previously described32. Brains were harvested from mice transcardially perfused 

with 20 mL of ice-cold PBS and placed directly into lysis buffer from DNeasy Blood and 

Tissue Kit (Qiagen) and homogenized with tissue homogenizer (MP Biomedicals). Total 

DNA from 20 μg of brain homogenate was extracted using DNeasy Blood and Tissue Kit 

(Qiagen). Using a CFX96 Real-Time PCR machine (BioRad Laboratories), real-time PCR 

was performed with 40 ng of DNA per sample using SYBR Green (Applied Biosystems) or 

water (non-template negative control) with the following C. albicans-specific primers: 

forward primer - ACT TCT GTA AGA GTG CTG GTTC and reverse primer - GCA TGC 

CAG GAG AGT GTA AA (Integrated DNA Technologies). The following cycling 

conditions were used: an initial denaturation step of 95°C for 10 minutes followed by 40 

cycles of 95°C for 5 seconds and 60°C for 30 seconds. Reactions were performed in 

duplicates and with generation of melting curves to confirm purity post DNA amplification. 

The number of C. albicans genome copies was quantified by normalizing against a series of 

standards that consisted of DNA isolated from brain homogenates from uninfected mice 

spiked with known CFU quantities of C. albicans.

Meningeal plasma cell depletion.

A stock solution of bortezomib (Santa Cruz Biotechnology) was made by dissolving 2.5 mg 

of bortezomib in 100 μL of sterile DMSO. Bortezomib was then diluted to a concentration 

of 40 μg/mL using sterile PBS and hydrogel was formulated by dissolving 

carboxymethycellulose (10 mg/mL, Sigma-Aldrich) in this solution inside of a beaker under 

agitation. Upon homogenization, bortezomib-containing hydrogel, as well as mock hydrogel 

made without bortezomib, were collected into a syringe. A subcutaneous injection of 300 μL 

of hydrogel under the scalp was administered to adult mice. Four days later, mice received a 

second dose of hydrogel, and the extent of plasma cell depletion was determined two days 

later. When indicated, animals were infected intravenously on the same day that the second 

dose of hydrogel was administered.
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Flow cytometry.

For mononuclear cell isolation, mice were anesthetized and perfused transcardially with 20 

ml of ice-cold PBS. Meningeal tissue was carefully removed from the underside of the scull 

using forceps under a dissecting microscope and subject to enzymatic digestion in 2.5 

mg/mL collagenase D (Roche) and 0.1 mg/mL DNase (Roche) for 30 minutes at 37°C with 

gentle shaking every 10 minutes. Single-cell meningeal suspensions were then washed with 

PBS containing 2% fetal bovine serum before blocking with 5 μg/mL rat anti-mouse 

CD16/32 (BD Biosciences) and 0.5 mg/mL normal rat serum for 10 minutes on ice to reduce 

non-specific antibody binding. Splenocytes and femur bone marrow cells were subject to red 

blood cell lysis buffer, washed twice with PBS containing 2% fetal bovine serum, and 

resuspended in the same solution before blocking. Counting beads (Thermo Fisher) were 

added to each sample once a single cell suspension was made, when indicated. After 

washing, LiveDead fixable Blue Cell Staining Kit (Invitrogen) was used to exclude dead 

cells from the analysis. The cell suspensions were then washed and stained with the 

following cell surface anti-mouse antibodies: CD45.2 Brilliant Violet 785 (104, BioLegend), 

B220 FITC (RA3–6B2, Thermo Fisher), CD19 Pacific Blue (B4, BioLegend), CD79b APC 

(HM79–12, BioLegend), IgM Brilliant Violet 711 (RMM-1, BioLegend), IgD PE/Dazzle 

(11–26c.2a, BioLegend), IgA PE (catalog# 1040–09, SouthernBiotech), CD138 APC (281–

2, BD Biosciences), CD3ε PE-Cy7 or FITC (145–2C11, BioLegend), CD4 APC/Cy7 

(RM4–5, BioLegend), CD8 PECy7 (53–6.7, BioLegend), CD11b Pacific Blue or Brilliant 

Violet 605 (M1/70, BioLegend), Ly6C (HK1.4, BioLegend), I-A/I-E APC (M5/114.15.2, 

BioLegend) and CD11c (N418, BioLegend). Samples were washed and directly acquired on 

a BD FACSymphony A-5, and data were analyzed using FlowJo software version 9.7.2 

(Tree Star).

Intravital two-photon microscopy.

Upon delivery of anesthesia, thinned skull windows were prepared as described 

previously33. To visualize meningeal vasculature, 50 μg of Evans blue in sterile PBS was 

administered intravenously before imaging, when indicated. A Leica SP8 two-photon 

microscope was used to capture three-dimensional time-lapse movies. This microscope is 

equipped with an 8,000 Hz resonant scanner, a x25 color-corrected water-dipping objective 

(1.0 NA), a quad HyD external detector array, a Mai Tai HP DeepSee Laser (Spectra-

Physics) which was tuned to 930 nm (for Evans blue and EYFP) and an Insight DS laser 

(Spectra-Physics) tuned to 1,050 nm (for red fluorescent protein). Videos were captured in z-

stacks of 15–35 planes (2 μm step size) at 1- to 2-minutes intervals. Signal contrast was 

optimized by averaging 8 video frames per plane in resonance scanning mode. Acquired 

videos were analyzed using Imaris version 9.3 software (Bitplane).

Confocal image analysis.

Confocal tile scan images were imported into Imaris version 9.3 (Bitplane). A surface of the 

peri-sinus region, including the superior sagittal and transverse sinuses, was made by manual 

drawing using the surface function, and the area in μm2 was determined by exporting surface 

statistics. A quantification of peri-sinusoidal cell numbers was generated by identifying and 

thresholding on positively stained cells within the three-dimensional surface of each 
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respective channel using the spot-detection function. Quantification of GFP-C. albicans in 

hippocampal images was done by thresholding on and counting GFP+ puncta using the same 

function. Statistics were then exported into Excel (Microsoft) for further analysis.

Histocytometry plots were generated by either creating a surface of the peri-sinus region as 

above or the entire meningeal whole-mount, creating a value-based visual surface for all 

positively stained cells in each channel. This allows for quantification of fluorescent 

intensity and frequency of labeled and unlabeled cells, as well as their position in an x-y 

plane. Channel statistics were then exported into Excel (Microsoft), and position of each cell 

and mean voxel fluorescence, when indicated, was plotted in FlowJo software by utilizing 

the text to FCS conversion function (Tree Star).

Topical association.

Staphylococcus epidermidis strain NIHLM087 and Staphylococcus aureus strain 42F02 

were cultured for 18 hours in tryptic soy broth at 37°C. As described previously34 topical 

association of bacteria was accomplished by placing 5 ml of the bacterial suspension 

(approximately 109 CFU/mL) across the entire skin surface (approximately 36 cm2) using a 

sterile cotton swab. For topical association of bacteria, each mouse was associated by 

placing 5 ml of the bacterial suspension (approximately 109 CFU/mL) across the entire skin 

surface (approximately 36 cm2) using a sterile cotton swab. Application of bacterial 

suspension was repeated every other day a total of four times. Bacteria were enumerated 

prior to topical application by assessing colony-forming units (CFU) using traditional 

bacteriology techniques and by measuring optical density (OD) at 600 nm using a 

spectrophotometer. In experiments involving topical application of various bacterial strains, 

18-hour cultures were normalized using OD600 to achieve similar bacterial density 

(approximately 109 CFU/mL). Skin colonization was confirmed by counting CFUs from a 

skin swab after mono-association, and mice were analyzed 2 weeks after the final topical 

association.

Antibiotic treatment.

Intestinal commensal bacteria were depleted in C57BL/6J mice by provision of broad-

spectrum antibiotics in drinking water for 6 weeks. The following regimen was used: 

ampicillin (1 g/L; Sigma-Aldrich), vancomycin (500 mg/L; Sigma-Aldrich), neomycin 

sulphate (1 g/L; Sigma-Aldrich) and metronidazole (1 g/L; Sigma-Aldrich).

Intestinal colonization.

The following bacteria were grown overnight in Fastidious Anaerobic Broth in anaerobic or 

aerobic conditions: Escherichia coli, Bacteroides finegoldii, Bacteroides fragilis, Bacteroides 
intestinalis, Bacteroides 1_1_30, Bacteroides caccae, Parabacteroides merdae, 
Lachnoclostridium clostridioforme, Hungatella hathewayi, Paraclostridium sp. AS15, and 

Bifidobacterium longum. Each culture was then back-diluted to an OD600 = 1, and 1 mL of 

each back-diluted culture was combined to make a master-mix, which was then used to 

gavage into germ-free mice at birth. Mice received a gavage of this bacterial community 

every other day for a total of three times. Mice were euthanized and studied 8 weeks post 

colonization.
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For SFB-mono-association, frozen feces previously collected from SFB-mono-associated 

germ-free mice were homogenized in sterile PBS and the resulting suspension was filtered 

through a 40 mm cell strainer to obtain a solution cleared of solids. Germ-free C57Bl/6 mice 

were inoculated orally by gavage with 300 ml of this cleared solution inside gnotobiotic 

isolators. Gavage was repeated 48 hours later. The equivalent of the contents of 1–2 fecal 

pellets was inoculated in each mouse for each gavage. SFB colonization was confirmed by 

performing PCR on DNA extracted from feces collected from mice 4 days after the second 

gavage using primers specific for SFB 16S rRNA gene (SFB736F: 5’-

GACGCTGAGGCATGAGAGCAT-3’; SFB844R: 5’-GACGGCACGGATTGTTATTCA-3’). 

Mice were studied 4 weeks after colonization.

Citrobacter infection.

Citrobacter rodentium ICC180 and C. rodentium ΔEspA bacterial inoculums (gifted from 

Gad Frankel, Imperial College London) were prepared by culturing bacteria overnight at 

37°C in 100 mL of Luria Bertani broth (LB) supplemented with nalidixic acid (100 μg/mL), 

with shaking (220 rpm). Cultures were harvested by centrifugation and resuspended in a 

1:10 volume of Dulbecco’s phosphate-buffered saline (D-PBS). Mice were orally inoculated 

under anesthesia by using a gavage needle with 200 μL of the bacterial suspension.

Human gut microbiome donor mouse lines.

Donor A and donor B mouse lines were generated as follows. Fresh donor feces were 

homogenized at 100 mg/mL in D-PBS.Fresh feces were processed within 1 hour of it 

reaching the lab and all preparation was done in an anaerobic cabinet (80% CO2, 10% H2, 

10% N2). 5 male and 5 female germ-free mice were inoculated by oral gavage with 200 μL 

of the donor homogenates once a week for 3 weeks. 1 week after the final gavage mice were 

set up as breeding pairs in a decontaminated positive pressure isolator. All consumables that 

enter the isolator for maintenance of the colony were autoclaved 121°C for 15 mins. Feces 

of mice from the 2 lines were compared to the original donor feces to check engraftment of 

the human flora. Animals used for experiments were removed from the isolators in sealed 

ISOcages and maintained on a positive pressure ISOrack (Tecniplast).

RNA-seq.

Meningeal tissue was stabilized in RNAlater (Thermo Fisher) and then placed into lysis 

buffer and homogenized using a Precellys (Bertin instruments). RNA was subsequently 

extracted using the RNA pure link mini kit (Thermo Fisher) as per manufacturer’s 

instructions. RNA integrity was assessed using an RNA 6000 nano chip on a Bioanalyzer 

(Agilent). Libraries were prepared as per manufactures instructions using the TruSeq 

Stranded Total RNA kit with RiboZero. Libraries were checked for size with a high 

sensitivity DNA chip on a Bioanalyzer (Agilent), quantified using Kappa library 

quantification kit (Kappa biosystems) and pooled at an equimolar ratio. Library pools were 

sequenced on a Hiseq 4000 by Genewiz.

Data were demultiplexed using Casava (Illumina) to generate Fastq files. These were aligned 

to the mm10 genome with Hisat2 and a counts table produced using Featurecounts 

(RSubread). Normalization and differential expression analysis were carried out using 
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DESeq2 and pathways analysis using the GSEA java application (Broad) against pathways 

found within the MSigDB database.

Sequencing data has been made available on GEO under accession number GSE135620 and 

GSE135733.

BCR-seq sample preparation.

RNA from paired whole meningeal and small intestinal tissue generated from 1 cm of 

jejunum sample was extracted as described above. Reverse transcription (RT) was performed 

in two steps: First, 1 μL barcoded reverse primer mix (10 μM per each primer), 1 μL dNTP 

(10 mM) and 14 μL RNA template (up to 500 ng) were mixed and heated to 65°C for 5 

minutes followed by an immediate transfer to ice for at least one minute. Second, mixture 2 

including 4 μL 5X First-Strand Buffer, 1uL DTT (0.1 M), 1 μL RNaseOUT™ (Thermo 

Scientific) and 1 μL SuperScript®III (Life Technologies) was added and incubated at 50°C 

for 60 minutes followed by 15 minutes inactivation at 70°C. cDNA was cleaned-up with 

Agencourt AMPure XP beads and PCR amplified with V-gene multiplex primer mix (10 μM 

each forward primer) and 3′ universal reverse primer (10 μM) using KAPA protocol (KAPA 

Biosystems) and the thermal cycling conditions: 1 cycle (95°C—5 minutes); 5 cycles (98°C

—5 seconds, 72°C—2 minutes); 5 cycles (98°C—5 seconds, 65°C—10 seconds, 72°C—2 

minutes); 30 cycles (98°C—20 seconds, 60°C—1 minute, 72°C—2 minutes) and 1 step 

(72°C—7 minutes). Primers are provided in Key Resource Table.

BCR-sequencing and analysis.

MiSeq libraries were prepared using Illumina protocols and sequenced using 300 bp paired-

ended MiSeq (Illumina). Raw MiSeq reads were filtered for base quality (median Phred 

score > 32) using QUASR (http://sourceforge.net/projects/quasr/)35. MiSeq forward and 

reverse reads were merged together if they contained identical overlapping regions of >50 

bp, or otherwise discarded. Universal barcoded regions were identified in reads and 

orientated to read from V-primer to constant region primer. The barcoded region within each 

primer was identified and checked for conserved bases (i.e. the T’s in 

NNNNTNNNNTNNNNT). Primers and constant regions were trimmed from each sequence, 

and sequences were retained only if there was >80% sequence certainty between all 

sequences obtained with the same barcode, otherwise discarded. The constant region allele 

with highest sequence similarity was identified by 10-mer matching to the reference constant 

region genes from the IMGT database36, and sequences were trimmed to give only the 

region of the sequence corresponding to the variable (V–D–J) regions. Isotype usage 

information for each IgH was retained throughout the analysis hereafter. Sequences without 

complete reading frames and non-immunoglobulin sequences were removed and only reads 

with significant similarity to reference IgH V and J genes from the IMGT database were 

retained using BLAST37. IGHV and IGHJ genes and mutational status were determined for 

each BCR using IMGT/V-QUEST38.

SHM levels (including silent and non-silent mutations) per unique IGHV-D-J region per 

isotype were calculated for each individual sample using observedMutation function within 

SHazaM package39. BCR clones were assigned using the changeo39 package after 
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calculation of length normalized distance of each sequence in the data and its nearest-

neighbor using the single nucleotide Hamming distance model. The network generation 

algorithm and network properties were calculated as previously described40. Briefly, each 

vertex represents a unique sequence. Edges are generated between vertices that differ by 

single-nucleotide, non-indel differences and clusters are collections of related, connected 

vertices. Lineage trees were generated using buildPhylipLineage function within Alakazam 

package39 after merging sequences from paired meningeal and small intestinal samples. The 

tissue assignment (meningeal or small intestinal) for the most recent common ancestor, 

defined as the node/BCR that is the most proximal to the germline node, of each 

reconstructed lineage tree was extracted. Statistical analysis on the difference in proportion 

of MRCA assigned to each tissue was performed in Prism using an unpaired two-tailed 

Student’s t test. VDJtools41 was used to analyze the BCR sequencing data for diversity 

estimation of CDR3 sequences (Chao1); the diversity estimates were adjusted for 

sequencing depth via subsampling with 1000 random iterations. Statistical tests were 

performed in R using Wilcoxon tests for significance (non-parametric test of differences 

between distributions).

Shotgun metagenomic sequencing and analysis.

Whole-genome metagenomic sequencing was performed on the Illumina HiSeq 2500 as 

described previously42. Taxonomic classification from filtered metagenomics reads was 

performed using Kraken v1.0 and a database comprising complete, high-quality reference 

bacterial genomes. Metagenomic samples were compared at the species levels by relative 

abundance. The R package microbiome and R scripts described previously42 were used for 

metagenomic data analysis and results were visualized using R package ggplot2.

Statistical analysis.

Results herein are represented as mean ± standard deviation (s.d.). Statistical significance 

was determined using GraphPad Prism 8.0 by two-tailed Student’s t-test or Mann-Whitney 

rank sum test. Statistical significance was determined by a P < 0.05.

Ethics statement.

For experiments performed in the UK, mice were maintained in specific pathogen-free 

conditions at a Home Office-approved facility in the UK. All procedures were carried out in 

accordance with the United Kingdom Animals (Scientific Procedures) Act of 1986. For 

experiments performed in the US, all work was conducted in strict accordance with 

recommendations within the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health. All protocols were approved by the NINDS Animal Care and 

Use Committee (Protocol Number: 1295–17).

Data Availability.

All data collected in this study are included in the primary figures and supplementary files. 

The sequencing data has been made available on GEO under accession number GSE135620 

and GSE135733. The corresponding authors can be contacted for any additional requests.
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Extended Data

Extended Data Fig. 1: Anatomical localization of dural B cells and IgA+ cells.
a, Representative flow cytometric plot of meningeal CD19+B220+ cells from a naïve B6 

mouse with a histogram depicting CD79b expression on this population of cells relative to 

CD11b+ myeloid cells. The flow cytometric plot depicts the proportion of naïve (IgD+IgM+) 

and class-switched (CS, IgD−IgM−) B cells of total CD19+B220+ CD79b+ cells, which is 

quantified in the bar graph (mean ± s.d., n = 5 mice). b, Representative image of a 

meningeal whole-mount from a Prdm1EYFP/+ mouse stained with IgA (red) and CD138 

(blue) showing co-localization with Blimp1-EYFP+ cells (green) (scale bar, 50 μm). Inset 

represents a higher magnification of the highlighted box (scale bar, 30 μm); the dotted white 

line depicts the lumen of the transverse sinus (TS). c, Image of a meningeal whole-mount 
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from a naive B6 mouse immunolabeled for IgA (red) and B220 (green) displaying the 

localization of tissue-resident B cells and IgA+ cells in the dura mater (scale bar, 1000 μm). 

The arrows depict the TS and superior sagittal sinus (SSS). d, Normalized counts from 

RNASeq of meninges from SPF and GF mice for the indicated genes. Normalized counts 

calculated using DESeq (n=3 mice per group as a boxplot). e, Representative image of the 

peri-SSS region from a naïve B6 mouse stained for CXCR4 (red), B220 (green) and IgA 

(blue) (scale bar, 50 μm). f, Representative image of IgA (red) and CD138 (green) 

immunolabeling of whole-mount human dura mater in the lobe area with DAPI (blue, 4′,6-

diamidino-2-phenylindole) in blue (scale bar, 30 μm).

Extended Data Fig. 2: Bacterial diversity in the gut of DA-GF and DB-GF mouse lines.
a-b, Comparison of microbial richness using Chao1 (a) and diversity using Inverse Simpson 

indexes (b) between two groups (DA-GF: blue, n=6; DB-GF: green, n=6) is shown. Violin 

plots are density plots where the width indicates frequency and the box plot shows median, 

95% CI and IQR (two-sided Wilcoxon signed-rank test). c, Log 2-fold change in the relative 

abundance of taxa between two groups (DA-GF: blue, n=6; DB-GF: green, n=6). Only taxa 

that are significantly different between two groups are shown (Kruskal-Wallis test).
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Extended Data Fig. 3: Clonal relatedness of IgA+ cells in the gut and meninges of SPF, DA GF 
and DB GF mice, and meningeal Ig heavy chain gene expression in DSS colitis mice.
a, Hypergeometric test for enrichment (over-representation) of the shared clones between 

small intestines and meninges. An overlap occurring by random chance would be < 13% or 

< 154 clones (dotted black line). The observed overlap in clones between meninges and 

small intestine = 237/1103 clones (red dotted line) and is non-random (p= 4.2 × 10−21). b, 

Percentage of lineage trees with most ancestral sequences beginning from meninges (M) or 

small intestines (SI) in SPF mice inferred after BCR lineage reconstruction. Statistical 

analysis was performed using an unpaired two-tailed Student’s t test where p<0.05 was 

considered statistically significant. c, Diversity estimation of CDR3 repertoire represented as 

a calculated Chao1 estimate after subsampling with 1000 random iterations (left panel). 

Wilcoxon Rank Sum test was used to determine statistical significance (p < 0.05 considered 
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statistically significant). (Right panel) Relative proportions (frequency of reads) of unique 

CDR3 amino acid sequences present in each SPF sample is shown, and the top ten most 

frequent sequences are colored in decreasing shades of grey. Clones after top 10 are not 

colored (white). d, (Left panels) BCR network of meninges and small intestines from a 

representative SPF mouse. Colors indicate isotype of BCR sequences. (Right panels) BCR 

network of IGA clones only from the same mouse. Shared clones between meninges and 

small intestines are highlighted with the same colors in both networks. Grey nodes and 

edges indicate BCR sequences/clones not shared between the two tissues. e, Relative 

proportions (frequency of reads) of unique CDR3aa sequences present in each DA-GF and 

DB-GF sample is shown, and the top ten most frequent CDR3aa sequences are colored in 

decreasing shades of grey. Clones after top 10 are not colored (white). f, BCR network of 

IGA clones from meninges and small intestines in SPF (left panel), DA-GF (middle panel), 

and DB-GF (right panel) mice. BCR clones shared between meninges and small intestines 

are highlighted with the same colors in both networks. Grey nodes and edges indicate BCR 

sequences/clones not shared between the two tissues. g, Normalized counts for the indicated 

Ig heavy chain genes from bulk RNA-seq of meninges from either DSS-colitic mice or 

control mice (n = 6 mice per group). Note that, with exception to IGHA (Extended Data Fig. 

S4d), heavy chain transcript expression did not significantly differ between DSS and control 

mice.
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Extended Data Fig 4: Accumulation and proliferation of meningeal IgA+ cells after gut-epithelial 
barrier breach.
a, Representative confocal images of IgA (red) and B220 (green) immunolabeling and 

Phalloidin staining (grey) of the SSS from a mouse receiving normal drinking water and 

from a mouse receiving 2% DSS in drinking water for 7 days followed by normal water for 

2 weeks to induce acute colitis. (scale bar, 200 μm); the inset is a higher magnification of the 

highlighted box depicting a cluster of B cells and IgA+ cells associating adjacent to Lyve-1+ 

lymphatic vessels (yellow) (scale bar, 40 μm). b, Quantification of peri-sinus IgA+ cells 

from control vs. 2% DSS mice (mean ± s.d., n = 5 mice per group; **P = 0.0079, two-tailed 

Mann-Whitney test). c, Quantification of B220+ cells along the SSS in control vs. 2% DSS 

mice (mean ± s.d., n = 4 mice in control group and 5 mice in DSS group; *P = 0.0159, two-

tailed Mann-Whitney test). d, Normalized counts of meningeal Igha expression determined 
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by RNA-seq in the denoted groups (n = 6 mice per group). e, A representative image of the 

TS region of whole-mount tissue from a mouse receiving 2% DSS in drinking water for 7 

days followed by normal water for 2 weeks to induce acute colitis. Tissue was stained for 

B220 (green), Ki-67 (red) and DAPI (blue) (scale bar, 50 μm). The inset to the right depicts 

a cluster of proliferating B cells (scale bar, 20 μm).

Extended Data Fig 5: B cell expansion in meninges following systemic candidiasis.
a, Representative flow cytometric plot of CD19+B220+CD79b+ meningeal B cells after 

intravenous administration of C. albicans, with a bar graph to the right depicting an increase 

in the total number of naïve (IgD+IgM+) and class-switched (CS, IgD−IgM−) B cells 3 days 

after infection (mean ± s.d., n = 4 mice per group Total CD19+B220+CD79b+ B cells **P = 
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0.0074, Total IgD+IgM+ B cells *P = 0.0103, Total IgD−IgM− B cells **P = 0.0040, 

unpaired two-tailed Student’s t-test). b, Representative image of peri-sinus immune cell 

clusters from whole-mount tissue stained with IgA (white), B220 (red) and CD45 (green) 

from a mouse 2 days post systemic candida infection showing GFP-C. albicans in purple 

(scale bar, 50 μm). The inset represents a higher magnification image of the highlighted 

region displaying IgA+ cells and diffuse IgA signal in regions with pathogen sequestration 

(scale bar, 20 μm); yellow arrowhead depicts an extracellular GFP-C. albicans cell, whereas 

the turquoise arrowhead shows GFP-C. albicans signal within a CD45+ leukocyte. c, 

Representative image of the superior sagittal sinus (SSS) region from the indicated groups, 

stained for B220 (green) and Ki-67 (red), showing a peri-SSS cluster of Ki-67+B220+ cells 3 

days after infection (scale bar, 50 μm). The inset to the right represents a higher 

magnification of the highlighted box. d, Representative image of the SSS region in a B6 

mouse one week after systemic candida infection immunolabelled for IgA (blue), B220 

(green) and AID (white). The yellow arrowheads depict AID-expressing IgA+ cells and the 

red arrowhead depicts AID-expressing B220+ cells (scale bar, 40 μm).

Extended Data Fig. 6: Distribution of C. albicans in IgA-deficient mice.
a, Quantification of peri-sinus IgA+ cells in wild type (WT) vs. IgA-deficient animals by 

confocal imaging of IgA-stained whole-mount tissue (n = 3 mice per group). b, 

Representative images of the SSS immunolabeled for IgA (green) from a wild type (WT) vs. 
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IgA-deficient mouse 2 days after i.v. administration of GFP-C. albicans shown in purple 

(scale bar, 150 μm). Quantification of GFP-C. albicans+ puncta along the SSS normalized by 

area in each group is shown in the bar graph (mean ± s.d., n = 3 mice per group, **P = 

0.0065, unpaired two-tailed Student’s t-test). c, Representative images captured in the 

hippocampus of a WT vs. IgA-deficient mouse stained for Iba1 (red) 2 days after i.v. 

administration of GFP-C. albicans (shown in green; white arrowheads) (scale bar, 50 μm). 

Quantification of hippocampal GFP-C. albicans+ puncta normalized by area is shown in the 

bar graph. Each data point represents the average of four serial hippocampal images from a 

single animal (mean ± s.d., n = 4 WT mice and 6 IgA−/− mice, *P =0.0428, unpaired two-

tailed Student’s t-test).
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Extended Data Fig. 7: Local effects of bortezomib-mediated meningeal plasma cell depletion.
a, Schematic paradigm of sub-scalp administration of either vehicle control hydrogel (Gel) 

or bortezomib-containing hydrogel (Bz) for meningeal plasma cell depletion. b, 

Representative histo-cytometry dot plots from meningeal whole-mounts immunolabeled for 

IgA (red), B220 (green) and CD3 (blue) from either a mouse injected with Gel or Bz. c, 

Representative confocal images of IgA (red) and Iba1 (green) immunolabeling in whole-

mount meninges of the SSS region, depicting the presence of peri-sinus IgA+ cells and 

macrophages in a mouse administered either Gel or Bz (scale bar, 100 μm). d, Quantification 

of peri-sinus IgA+ cells in mice injected with either Gel or Bz, as assessed by 

immunohistochemical analysis of whole-mount tissue (mean ± s.d., n = 4 mice per group; 

**P = 0.0014, unpaired two-tailed Student’s t-test). e, Quantification of peri-sinus B220+ 

cells (B cells), CD3+ cells (T cells) and Iba1+ cells (macrophages) from immunolabeling of 

meningeal whole-mounts in mice administered either Gel or Bz. Total cell counts were 

normalized by area (mean ± s.d., n = 4 mice per group; B220+ cells *P = 0.0473, CD3+ cells 

P = 0.2897, Iba1+ cells P = 0.3716, unpaired two-tailed Student’s t-test; ns, not significant). 

f, Gating strategy for flow cytometric analysis of meningeal immune cell subsets following 

Bz treatment. g, Bar graph depicting the total cell counts of the indicated immune cell 

populations in Gel- or Bz-treated animals (mean ± s.d., n = 4 mice per group; no statistically 

significant changes were noted in each group).
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Extended Data Figure 8: Effects of bortezomib-mediated meningeal plasma cell depletion on 
bone marrow and spleen compartments.
a, Gating strategy for flow cytometric analysis of spleen and bone marrow plasma cells in 

the protocol depicted in Fig. S5b. b, Representative flow cytometric plots showing CD138+ 

plasma cells in the spleen from either Gel- or Bz-treated mice. c, Quantification of absolute 

numbers of splenic plasma cells by flow cytometry in either Gel- or Bz-treated mice (mean 

± s.d., n = 4 mice per group; P = 0.4693, unpaired two-tailed Student’s t-test; ns, not 

significant). d, Representative FACS plots of bone marrow plasma cells and IgA+ plasma 

cells in either Gel or Bz treated mice. e, Flow cytometric quantification of absolute numbers 

of total bone marrow plasma cells and IgA+ plasma cells in Gel- or Bz-treated mice (mean ± 

s.d., n = 4 mice per group; Total CD138+B220− cells P = 0.1369, Total CD138+B220−IgA+ 

cells P = 0.1556, unpaired two-tailed Student’s t-test; ns, not significant). f, Illustration 
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highlighting the role of gut-educated IgA+ plasma cells along the dural sinuses in entrapping 

blood-borne microbes and protecting the brain from infection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: IgA plasma cells are localized adjacent to the dural sinuses in murine and human 
meninges.
a, Confocal images of plasma cells along the transverse sinus (TS; scale bar, 70 μm) and 

superior sagittal sinus (SSS; scale bar, 100 μm) from murine whole-mount meninges stained 

with CD138 (red) and CD45 (white) with corresponding histo-cytometric plot of Blimp1-

expressing cells (green) from a Prdm1EYFP/+ mouse. b, Representative image of IgA (blue), 

IgG (red) and CD45 (green) immunolabeling on whole-mount meninges (scale bar, 30 μm) 

and quantification of peri-sinus IgA+ and IgG+ cells below. White arrowhead depicts 

abluminal IgA+ cells and yellow arrowhead depicts an abluminal IgG+ cell; the dotted line 

shows the lumen of the TS (mean ± s.d., n = 5 mice; **P = 0.0016, unpaired two-tailed 

Student’s t-test; data are representative of two independent experiments). c, Representative 

histo-cytometric plot of Blimp1+ cells in a meningeal whole-mount immunolabeled for IgA 

from a Prdm1EYFP/+ mouse, with the proportion of Blimp1+ cells that co-express IgA 
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quantified in the bar graph (mean ± s.d., n = 3 mice). d, Histo-cytometric plot from 

meningeal whole-mount stained with B220 (green) and IgA (red), with quantification of 

cells in the lobes (frontal, parietal and occipital lobes) and peri-sinus regions (mean ± s.d., n 
= 5 mice). e, Normalized counts of the denoted class-switched immunoglobulin heavy chain 

transcript expression from the B6 meninges analyzed by RNA-seq (n = 3 mice). f, Confocal 

image of the TS region from Prdm1EYFP/+ mouse whole-mount tissue immunolabeled for 

IgA (red), J-chain (pink) and CD138 (blue), with Blimp1-EYFP+ cells labeled in green 

(scale bar, 50 μm). g, Representative time lapse captured by two-photon microscopy through 

a thinned skull of a Prdm1EYFP/+ mouse, displaying Blimp1-EYFP+ cells (green) and peri-

sinus vasculature (red) (scale bar, 5 μm); arrowheads denote relatively immobile Blimp1-

EYFP+ cells adjacent to dural vasculature. h, Quantification of meningeal IgA+ cells in 10-

week, 22-week and 38-week-old B6 mice (mean ± s.d., n = 5 mice per group; 10 weeks 

(wks) vs. 22 wks *P = 0.0215, 10 wks vs. 38 wks ***P = 0.0003, unpaired two-tailed 

Student’s t-test). i, Quantification of peri-sinus IgA-expressing cells by 

immunohistochemical analysis of meningeal whole-mounts of WT and Tcrb−/− mice (mean 

± s.d., n = 6 mice per group; ****P = <0.0001, unpaired two-tailed Student’s t-test, data are 

representative of two independent experiments). j, Representative image of the luminal 

aspect of human whole-mount SSS tissue stained with IgA (red), CD138 (green) and DAPI 

(blue, 4′,6-diamidino-2-phenylindole) (scale bar, 50 μm). The inset above represents a 

higher magnification of the highlighted box (scale bar, 20 μm).
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Fig. 2: Meningeal IgA cells are clonally related to those in the gut and depend on intestinal 
microbiota.
a, Immunohistochemistry based quantification of peri-sinus meningeal IgA+ and B220+ cells 

in whole-mount meninges from naive control (Ctrl) versus 6-week oral antibiotic (Abx)-

treated B6 mice. Data are compiled from two independent experiments (mean ± s.d., n = 8 

mice in Ctrl group and 7 in Abx group; IgA+ cells ***P = 0.0006, B220+ cells P = 0.8157, 

unpaired two-tailed Student’s t-test; ns, not significant). b, Representative histo-cytometry 

plots of meningeal whole-mounts stained for IgA (red) and B220 (green) from a specific-

pathogen-free (SPF) mouse, a germ-free (GF) mouse and a GF mouse reconstituted with 
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murine gut commensal bacteria by oral gavage (MGC-GF). c, Representative images of IgA 

(red) and B220 (green) immunolabeling of the SSS from whole-mount meninges from SPF, 

GF, and MGC-GF mice (scale bar, 100 μm). d, Quantification of peri-sinus IgA+ cells from 

SPF and GF (left panel); GF mice colonized by oral gavage with a murine gut commensal 

bacteria (MGC-GF), a human gut microbiome from two separate donors (DA-GF and DB-

GF), or segmented filamentous bacteria (SFB-GF); or, GF mice with skin mono-colonized 

by S. epidermidis (S. epidermidis-GF) or S. aureus (S. aureus-GF) (mean ± s.d., n = 8 SPF 

mice; 9 GF mice; 5 MGC-GF, DA-GF, DB-GF and S. epidermidis-GF mice; and 4 SFB-GF 

and S. aureus-GF mice; SPF ****P = <0.0001, MGC-GF ***P = 0.0010, DA-GF ***P = 

0.0010, DB-GF ***P = 0.0010, SFB-GF **P = 0.0028, S. epidermidis-GF P = 0.8731, S. 

aureus-GF P = 0.6350, all statistical comparisons were made with the indicated group 

against GF group, two-tailed Mann-Whitney test; ns, not significant). e, Normalized counts 

of meningeal Igha expression by RNA-seq in the denoted groups (n = 3 mice per group). f, 
Quantification of IgG+ cells along the dural sinuses in the denoted groups (mean ± s.d., n = 

5 mice per group; SPF P = 0.2376, DA-GF **P = 0.0079, DB-GF P = 0.9163, all statistical 

comparisons were made with the indicated group against GF group, two-tailed Mann-

Whitney; ns, not significant). g, Representative images of IgA (red) immunolabeling and 

phalloidin stain (gray) of the SSS region of meningeal whole-mounts from a naive GF 

mouse (GF naive), or a GF mouse infected with Citrobacter rodentium wild type (GF + wt) 

or a ΔEspA mutant (GF + ΔEspA) (scale bar, 100 μm). h, Quantification of peri-sinus IgA+ 

cells from the indicated groups (mean ± s.d., n = 5 mice in naive SPF, naive GF and GF 

ΔEspA groups and n = 4 in GF wt and SPF wt groups; SPF naive vs. SPF wt *P = 0.0206, 

GF naive vs. GF wt *P = 0.0159, GF naive vs. GF ΔEspA **P = 0.0079, two-tailed Mann-

Whitney test). i, Frequency of IGA BCR clones in small intestines and meninges of SPF 

mice presented as proportional Euler diagrams. The intersect of the overlapping diagrams 

represents the frequency of BCR clones shared between the two tissues. The percentage 

values are calculated relative to total clones in meningeal tissues. j, Antibody lineage tree of 

representative IGA clone shared between meninges (red nodes) and small intestines (blue 

nodes) from a SPF mouse. The black node indicates the germline IGA sequences while 

white nodes indicate inferred sequences. The edge number indicates the distance (the 

number of the substitutions) between each connecting node. The CDR3 sequences of the 

shared clone is also shown. Positions of nucleotide bases that are different, resulting in 

synonymous and non-synonymous amino acid changes, are highlighted.
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Fig. 3. Meningeal IgA entraps fungi in the dural sinuses and protects the brain from infection.
a, Representative images of the meningeal SSS from whole-mounts immunolabeled for IgA 

(red) and B220 (green). Mice were examined at day 0 (D0) after injection of sterile PBS or 

at day 7 (D7) and 14 (D14) after i.v. administration of 5 × 104 viable C. albicans cells (scale 

bar, 100 μm). Quantification of peri-sinus B220+ and IgA+ cells at the indicated time points 

post-infection are displayed in bar graphs (mean ± s.d., n = 4 mice in D0, D4 and D7 groups 

and 5 mice in D1 group and 3 mice in D21 group; B220+ cells D0 vs D1 *P = 0.0159, IgA+ 

cells D0 vs. D7 **P = 0.0021, IgA+ cells D0 vs. D21 ****P = <0.0001, unpaired two-tailed 

Student’s t-test). b, Representative image of a meningeal whole-mount from a mouse 2 days 

after i.v. administration of GFP-C. albicans displaying sequestration of the pathogen (purple) 

in the peri-sinus region (scale bar, 1000 μm); the inset is a higher magnification of the 

highlighted box showing B220+ and CD45+ cells (red) surrounding sequestered GFP-C. 
albicans (scale bar, 200 μm). c, Representative histo-cytometry plots of meningeal whole-

mounts stained for B220+ (green) and IgA+ cells (red) from a mouse that received a sub-

scalp injection of control hydrogel (Gel) or bortezomib hydrogel (Bz) to deplete meningeal 

plasma cells. Bar graph depicts quantification of peri-sinus IgA+ cells from each group 

(mean ± s.d., n = 8 mice per group; ***P = 0.0001, unpaired two-tailed Student’s t-test, data 
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are representative of three independent experiments). d, Representative SSS images stained 

for IgA (green) from the indicated groups 2 days following i.v. administration of GFP-C. 
albicans shown in purple (scale bar, 150 μm). Bar graph shows quantification of GFP-C. 
albicans+ puncta along the SSS normalized by area in each group (mean ± s.d., n = 4 mice 

per group; **P = 0.0021, unpaired two-tailed Student’s t-test, data are representative of three 

independent experiments). e, Representative hippocampal images stained for Iba1 (red) from 

the indicated groups 2 days after GFP-C. albicans infection (shown in green; white 

arrowheads) (scale bar, 50 μm). f, Bar graph depicts quantification of hippocampal GFP-C. 
albicans+ puncta (mean ± s.d., n = 5 mice per group, **P =0.0046, unpaired two-tailed 

Student’s t-test). g, Quantification of C. albicans genome copies in the brain by qPCR 3 days 

after i.v. administration of C. albicans in the indicated groups (mean ± s.d., n = 10 mice per 

group **P = 0.0021, two-tailed Mann-Whitney test). h, Survival of mice in the indicated 

groups after i.v. injection of C. albicans (n = 7 mice per group; ***P = 0.0009, Mantel-Cox 

test, data shown as percent survival over time and representative of two independent 

experiments).
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