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A simple and economic synthesis of 3,4-dihydropyrimidin-2(1H)-ones using ammonium trifluoroacetate as catalyst and as solid
support is accomplished. Easy workup procedure for the synthesis of title compounds is well arrived at and is well documented.

1. Introduction

Three component coupling reactions are very efficient and
simple methodology for the synthesis of dihydropyridines
[1, 2] and dihydropyrimidine derivatives [3]. Biginelli com-
pounds and their analogues have been reported to possess
a wide variety of pharmaceutical and therapeutic properties
[4–11]. Though the first report on Biginelli reaction came in
the 19th century, the research on dihydropyrimidines is not
fully saturated because of their biological application as
antihypertensive agents and calcium channel blockers [9–
11]. Moreover, monastrol, a dihydropyrimidine derivative, is
much exploited because of its extensive application as a cell
permeable small-molecule inhibitor of the mitotic kinesin,
Eg5 [12].

There are many reports for the synthesis of 3,4-dihy-
dropyrimidin-2(1H)-ones using Lewis acid catalysts such as
InCl3 [13], LaCl3·7H2O [14], Yb(OTf)3 [12], Mn(OAc)3·
2H2O [15], Cu(OTf)2 [16], heteropolyacids [17], and so
forth [18–30]. Phenyl boronic acid [31] was reported to
catalyse the Biginelli reaction in acetonitrile solvent under
refluxing conditions for 18 h. Ammonium chloride [32]
solid-supported solvent-free synthesis of 3,4-dihydropyrim-
idin-2(1H)-ones at 100◦C is also reported. Green approach
via polystyrene sulfonic acid [33] is also reported under
microwave heating at 80◦C and via TaBr5 [34] catalyst at
75◦C.

2. Results and Discussion

In order to overcome the strong acidic conditions, higher
temperature conditions, increased reaction times, unsatisfac-
tory yields, and complicated workup procedures, we opti-
mized and herein we disclose a simple protocol for the syn-
thesis of the title compounds in higher yields employing am-
monium trifluoroacetate as catalyst. The role of the same as
catalyst in organic synthesis is relatively less explored. The
catalyst effectively imparts the acidity that catalyzes the three-
component coupling at 80◦C in 10 to 20 min with good to
excellent yields (Scheme 1).

Further ammonium trifluoroacetate is employed as solid
support for 3,4-dihydropyrimidin-2(1H)-ones synthesis.
The reaction mixture after completion forms the product as
solid which is given water wash to get rid of the solid sup-
port. The solid was again given aqueous ethanol wash to
drive off other organic impurities to obtain pure 3,4-dihy-
dropyrimidin-2(1H)-ones in quantitative yield (Table 1).

The method is worked and optimized not only for aro-
matic aldehydes but also for functional aromatic aldehydes
(Scheme 1). Aldehydes with both the electron withdraw-
ing and electron donating substituents are experimented
under the neat reaction condition. From the results it is
evident that the reaction condition or the catalyst did not
affect the reactivity of electron withdrawing or electron
releasing substituents in the aldehyde moiety. Further, the
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Table 1: General synthesis of ammonium trifluoroacetate-mediated dihydropyrimidines.

Compound Ar R1 X Time (min) Yield (%)a,b Mp (◦C)

4a Phenyl CH3 O 10 98 200–202

4b 3-Methoxy phenyl CH3 O 12 95 224-225

4c 3-Carboxyphenyl CH3 O 15 90 291–293

4d 3-Nitrophenyl CH3 O 10 85 231–233

4e Phenyl H O 10 92 190-191

4f Phenyl CH3 S 20 83 209–211

4g 3-Cyanophenyl CH3 O 25 78 236-237

4h 3-Methyl phenyl CH3 O 20 95 233-234

4i 2-Fluorophenyl CH3 O 18 70 235-236

4j 4-Chlorophenyl H S 15 75 138-139

4k 2-Naphthyl CH3 O 10 90 210–212

4l Benzyl CH3 O 20 85 176–178

4m 2-Hydroxy-5-methoxy phenyl CH3 O 28 73 241-242

4n 2-Hydroxy-5-iodophenyl CH3 O 60 55 170-171

4o 2-Hydroxy-5-t-butyl phenyl CH3 O 8 70 220–222

4p 2-Hydroxy-5-nitrophenyl H S 18 82 181-182

4q
3,5-Bis-trifluoromethyl
phenyl

CH3 O 35 60 209-210

4r 2,3-Dichlorophenyl H S 18 70 182–184

4s 2-Thienyl CH3 O 12 78 206–208

4t 3-Thienyl CH3 O 15 70 234-235

4u 2-Pyridyl CH3 O 25 85 183–185

4v 3-Furyl CH3 O 20 45 206-207

4w 2-Thiazolyl CH3 O 20 60 215-216

4x 4-Thiazolyl H S 15 55 270–273

4y 2-Imidazolyl CH3 O 30 35 258–260

4z 1-Methyl-indol-3-yl CH3 O 40 50 199–201
a
Isolated yield.

bAll the target molecules were characterized with IR, LCMS, 1H NMR, and 13C NMR.

hetero-aromatic systems (Table 1, 4s–4z) are also explored
with the trifluoroacetate ammonium solid-supported pro-
tocol so as to generalize the condition for every system.
Compared to the aromatic systems the heteroaromatic
aldehydes are less yielding in less reactive aldehyde cases.
In order to optimize the reaction condition several attempts
(Table 2) were made to arrive at the successful solid-support-
ed method.

The versatility of ammonium trifluoroacetate is clear
from the table that it affects good to excellent yield of 3,4-
dihydropyrimidin-2(1H)-ones in both ethanol and aceto-
nitrile at higher temperatures. The final solid-support-
ed approach excels all the other methods giving quantita-

tive conversion of the starting materials to 3,4-dihydropy-
rimidin-2(1H)-ones in short time. Further, the procedure
avoids use of solvents for extraction, ensures safety, and
lessens pollution. Decreased reaction times are also realized
due to the increased reactivity of the reactants under neat
condition as compared to the solvent-mediated conditions.

3. Conclusion

Herein we have achieved our ultimatum to obtain the
Biginelli compounds through solvent free approach, in short
reaction time, employing economic, weekly acidic catalyst
cum solid support adopting an easy workup procedure. The
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Table 2: Conditions attempted for the ammonium trifluoroacetate-
mediated synthesisa.

Entry Condition adopted Time Yield (%)

1 Ethanol/catalyst/RT 12 h 65

2 Ethanol/catalyst/80◦C 5 h 80

3 Acetonitrile/catalyst/RT 10 h 83

4 Acetonitrile/catalyst/80◦C 30 min 90

5 Neat/catalyst/RT 20 h 10

6 Neat/catalyst-SiO2/RT 20 h 15

7 Neat/catalyst/80◦C 10 min 98
a
Isolated yield.

synthesis and antihypertensive/calcium channel activity of
novel hetero aryl substituted 3,4-dihydropyrimidin-2(1H)-
ones through this generalized protocol will be our future aim.

4. Experimental Section

4.1. General Procedure for One-Pot Synthesis of 3,4-dihydro-
pyrimidin-2(1H)-ones. A mixture of aldehyde (5 mmol),
β-diketo ester (5 mmol), urea/thiourea (7.5 mmol) and am-
monium trifluoro acetate (50 mmol) was taken in a vial and
heated as neat at 80◦C for 20 to 30 min. After cooling, solid
formed was filtered and washed with cold water (2 × 10 mL)
followed by diethyl ether, if necessary recrystallized from
ethanol or ethyl acetate to afford pure product. Compound-
4b: 1H NMR (300 MHz, DMSO-d6): δ 9.19 (s, 1H), 7.73
(brs, 1H), 7.23 (t, 1H), 6.81–6.76 (m, 3H), 5.10 (s, 1H), 3.99
(q, 2H, J = 7 Hz), 3.70 (s, 3H), 2.22 (s, 3H), 1.11 (t, 3H, J
= 7.08 Hz). 13C NMR (75 MHz, DMSO-d6): δ 165.8, 159.7,
152.6, 148.9, 146.8, 130.0, 118.7, 112.8, 112.6, 99.6, 59.7,
55.4, 54.2, 18.2, 14.6. IR (KBr): 3240, 3104, 2931, 1704, 1649,
1330, 1091 cm−1. LC/MS: m/z 291 (M + H+). Compound-4c:
1H NMR (300 MHz, DMSO-d6): δ 13.2 (brs, 1H), 9.25 (brs,
1H), 7.85–7.79 (m, 3H), 7.46 (m, 2H), 5.19 (s, 1H), 3.97
(q, 2H, J = 7 Hz), 2.24 (s, 3H), 1.10 (t, 3H, J = 7 Hz).
13C NMR (75 MHz, DMSO-d6): 167.6, 165.6, 152.4, 149.1,
145.8, 131.3, 131.2, 129.2, 128.7, 127.7, 99.4, 59.7, 54.3, 18.3,
14.5. IR (KBr): 3216, 3098, 2980, 2930, 2530, 1694, 1655,
1607, 1455, 1290, 1092, 764, 616, 515 cm−1. LC/MS: m/z
303 (M − H+). Compound-4d: 1H NMR (300 MHz, DMSO-
d6): δ 9.36 (brs,1H), 8.13 (m, 1H), 8.06 (s, 1H), 7.89 (s,
1H), 7.70–7.61 (m, 2H), 5.29-5.28 (d, 1H, J = 3.18 Hz),
4.02–3.94 (m, 2H), 2.25 (s, 3H), 1.08 (t, 3H, J = 7 Hz).
13C NMR (75 MHz, DMSO-d6): 165.5, 152.2, 149.8, 148.2,
147.5, 133.4, 130.7, 122.8, 121.5, 98.7, 59.8, 54.0, 18.3, 14.5.
IR (KBr): 3330, 3218, 3110, 2964, 1709, 1630, 1526, 1456,
1419, 1346, 1311, 1223, 1088, 1004, 813, 688 cm−1LC/MS:
m/z 306 (M + H+). Compound-4e: 1H NMR (300 MHz,
DMSO-d6): δ 9.20 (s, 1H), 7.74 (brs, 1H), 7.31–7.20 (m,
5H), 5.13 (d, 1H, J = 3.42 Hz), 3.51 (s, 3H), 2.23 (s, 3H). 13C
NMR (75 MHz, DMSO-d6): 166.3, 152.6, 149.1, 145.1, 128.9,
127.7, 126.6, 99.5, 54.2, 51.2, 18.3. IR (KBr): 3446, 3333,
3222, 2950, 1696, 1667, 1437, 1349, 1239, 1094, 792, 698,
520, 458 cm−1 LC/MS:m/z 247 (M + H+). Compound-4f: 1H
NMR (300 MHz, DMSO-d6): δ 10.33 (s, 1H), 9.65 (brs, 1H),

7.36–7.19 (m, 5H), 5.16 (d, 1H, J = 3.6 Hz), 4.03 (q, 2H),
2.28 (s, 3H), 1.10 (t, 3H). 13C NMR (75 MHz, DMSO-d6):
174.7, 165.6, 145.5, 143.9, 129.0, 128.1, 126.8, 101.2, 60.0,
54.5, 17.6, 14.5. IR (KBr): 3328, 3174, 3106, 2982, 1671, 1573,
1467, 1422, 1327, 1197, 1117, 1026, 722 cm−1 LC/MS: m/z
277 (M + H+). Compound-4g: 1H NMR (300 MHz, DMSO-
d6): δ 9.31 (s, 1H), 7.81–7.55 (m, 5H), 5.19 (s, 1H), 3.99–
3.95 (q, 2H, J = 7 Hz), 2.25 (s, 3H), 1.08–1.04 (t, 3H, J =
7 Hz). 13C NMR (75 MHz, DMSO-d6): δ 165.5, 158.1, 152.2,
149.8, 146.8, 131.8, 131.2, 130.5, 119.2, 111.7, 98.6, 59.8,
54.1, 18.3, 14.5. IR (KBr): 3345, 2967, 2228, 1677, 1426, 1097,
793 cm−1 LC/MS: m/z 286 (M + H+). Compound-4h: 1H
NMR (300 MHz, DMSO-d6): δ 9.15 (s, 1H), 7.68 (s, 1H),
7.22–7.17 (m, 1H), 7.05–7.00 (m, 3H), 5.09 (brs, 1H), 4.00–
3.93 (q, 2H, J = 7 Hz), 2.27 (s, 3H), 2.23 (s, 3H), 1.11–
1.06 (t, 3H, J = 7 Hz). 13C NMR (75 MHz, DMSO-d6): δ
165.8, 152.6, 148.7, 145.3, 137.8, 128.8, 128.3, 127.3, 123.8,
99.7, 59.6, 54.4, 21.6, 18.2, 14.5. IR(KBr): 3220, 3100, 2980,
1699, 1646, 1220, 1085, 793 cm−1 LC/MS: m/z 275 (M + H+).
Compound-4i: 1H NMR (300 MHz, DMSO-d6): δ 9.25 (s,
1H), 7.69 (s, 1H), 7.28–7.13 (m, 4H), 5.44 (brs, 1H), 3.91–
3.89 (q, 2H, J = 7 Hz), 2.25 (s, 3H), 1.06–0.99 (t, 3H, J =
7 Hz). 13C NMR (75 MHz, DMSO-d6): δ 165.6, 161.4, 158.2,
152.0, 149.4, 132.2, 129.9, 125.0, 116.0, 97.9, 59.5, 49.1, 18.2,
14.3. IR (KBr): 3345, 3212, 3099, 2969, 1685, 1220, 1097,
749, 639 cm−1. LC/MS: m/z 277 (M − H+). Compound-4j:
1H NMR (300 MHz, DMSO-d6): δ 10.40 (s, 1H), 9.68 (s,
1H), 7.43–7.40 (d, 2H, J = 9 Hz) 7.23–7.20 (d, 2H, J = 9 Hz),
5.16 (s, 1H), 3.54 (s, 3H), 2.28 (s, 3H). 13C NMR (75 MHz,
DMSO-d6): δ 174.7, 166.0, 146.1, 142.6, 132.8, 129.1, 128.7,
100.5, 53.8, 51.6, 17.7. IR (KBr): 3313, 3169, 2995, 2947,
1715, 1570, 1190, 1113, 827 cm−1 LC/MS: m/z 297 (M + H+).
Compound-4k: 1H NMR (300 MHz, DMSO-d6): δ 9.25 (s,
1H), 7.89–7.86 (m, 4H), 7.66 (s, 1H),7.49–7.41 (m, 3H), 5.31
(s, 1H), 3.96 (q, 2H, J = 7 Hz), 2.27 (s, 3H), 1.06 (t, 3H,
J = 7 Hz). 13C NMR (75 MHz, DMSO-d6): δ 165.8, 152.5,
149.0, 142.6, 133.1, 132.8, 128.7, 128.3, 127.9, 126.7, 126.4,
125.3, 125.0, 99.5, 59.6, 54.7, 18.3, 14.5. IR (KBr): 3223, 3102,
2932, 1705, 1648, 1428, 1321, 1284, 1228, 1086, 1020, 801,
755, 601 cm−1. LC/MS: m/z 311 (M + H+). Compound-4l:
1H NMR (300 MHz, DMSO-d6): δ 8.7 (brs, 1H), 7.23–7.20
(m, 4H), 7.04–7.02 (m, 2H), 4.30 (brs, 1H), 3.99 (m, 2H),
2.66 (d, 2H, J = 4.41 Hz), 2.04 (s, 3H), 1.17 (t, 3H, J =
7 Hz). 13C NMR (75 MHz, DMSO-d6): δ 165.8, 160.0, 152.9,
149.4, 137.5, 130.2, 128.2, 126.6, 98.5, 59.5, 52.1, 42.9, 17.9,
14.6. IR (KBr): 3441, 3334, 3248, 2982, 1701, 1646, 1460,
1312, 1230, 1098, 1026, 786 cm−1. LC/MS: m/z 275 (M +
H+). Compound-4m: 1H NMR (400 MHz, DMSO-d6): δ
7.56 (brs, 1H), 7.21 (brd, 1H), 6.87–6.81 (m, 2H), 6.76–6.74
(dd, J = 2.08, 6.96 Hz), 4.43–4.41 (m, 1H), 4.19 (m, 2H), 3.71
(s, 3H), 3.2 (brs, 1H), 1.7 (s, 3H), 1.22 (t, 3H, J = 7.12 Hz).
13C NMR (100 MHz, DMSO-d6): 168.9, 154.9, 148.5, 140.3,
126.4, 120.8, 120.5, 119.2, 112.0, 83.5, 61.0, 55.8, 48.1, 24.4,
14.5. IR (KBr): 3359, 3215, 3086, 2942, 2249, 1743, 1687,
1589, 1489, 1372, 1265, 1076, 766, 597 cm−1. LC/MS: m/z
307 (M + H+). Compound-4n: 1H NMR (300 MHz, DMSO-
d6): δ 7.69 (brs, 1H), 7.50–7.45 (m, 2H), 7.21 (bd, 1H, J =
3.66 Hz), 6.64 (d, 1H, J = 8.46 Hz), 4.49 (t, 1H, J = 4.14 Hz),
4.20–4.09 (m, 2H), 3.25 (s, 1H), 1.71 (s, 3H), 1.23 (t, 3H). 13C
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NMR (75 MHz, DMSO-d6): 168.6, 160.0, 154.8, 151.1, 138.1,
137.3, 128.7, 119.8, 84.0, 83.2, 78.8, 61.1, 47.6, 24.3, 14.5.
IR (KBr): 3447, 3353, 3214, 3079, 2932, 1744, 1687, 1626,
1463, 1249, 1087, 1025, 909, 815, 555 cm−1LC/MS: m/z 403
(M + H+). Compound-4o: 1H NMR (300 MHz, DMSO-d6):
δ 9.33 (s, 1H), 9.07 (s, 1H), 7.04–7.00 (m, 3H), 6.70–6.67
(d, 1H, J = 8.34 Hz), 5.37 (brs, 1H), 3.93–3.89 (q, 2H, J =
7 Hz), 2.23 (s, 1H), 1.17 (s, 9H), 1.05–1.00 (t, 3H, J = 7 Hz).
13C NMR (75 MHz, DMSO-d6): δ 166.0, 152.9, 152.7, 148.7,
140.9, 129.4, 125.3, 124.5, 115.5, 98.2, 59.3, 50.8, 33.9, 31.8,
18.1, 14.6. IR (KBr): 3382, 3283, 2958, 1678, 1629, 1219,
1003, 876, 605 cm−1 LC/MS: m/z 331 (M−H+). Compound-
4p: 1H NMR (300 MHz, DMSO-d6): δ 11.36 (s, 1H), 9.24 (s,
1H), 8.01 (m, 1H), 7.87–7.86 (m, 1H), 7.43 (brs, 1H), 6.97–
6.94 (d, 1H, J = 8.84 Hz), 5.45 (s, 1H), 3.92–3.89 (q, 2H, J =
7 Hz), 2.27 (s, 3H), 1.05–0.99 (t, 3H, J = 7 Hz). 13C NMR
(75 MHz, DMSO-d6): δ 165.6, 162.1, 152.3, 149.8, 139.6,
131.5, 125.4, 124.5, 116.4, 97.1, 59.6, 50.4, 18.2, 14.4. IR
(KBr): 3428, 3100, 2983, 1693, 1640, 1488, 1333, 1238, 1073,
820, 747, 639 cm−1 LC/MS: m/z 320 (M − H+). Compound-
4q: 1H NMR (300 MHz, DMSO-d6): δ 9.41 (s, 1H), 80.5
(s, 1H), 7.91–7.84 (m, 3H), 5.37 (brs, 1H), 3.99–3.96 (q,
2H), 2.26 (s, 3H), 1.07–1.02 (t, 3H). 13C NMR (75 MHz,
DMSO-d6): δ 165.4, 152.0, 150.3, 148.7, 131.0, 130.7, 127.5,
125.1, 98.3, 59.9, 54.0, 18.3, 14.3. IR (KBr): 3441, 3321, 1654,
1543, 1275, 1118, 896, 676 cm−1. LC/MS: m/z 395 (M−H+).
Compound-4r: 1H NMR (300 MHz, DMSO-d6): δ 10.45 (s,
1H), 9.65 (s, 1H), 7.58–7.55 (dd, 1H, J = 1.5, 7.8 Hz), 7.39–
7.33 (t, 1H, J = 7.8 Hz), 7.27–7.24 (dd, 1H, J = 1.5, 7.8 Hz),
5.67 (brs, 1H), 3.46 (s, 3H), 2.23 (s, 3H). 13C NMR (75 MHz,
DMSO-d6): δ 174.44, 165.68, 146.50, 143.52, 132.47, 130.44,
129.20, 128.29, 127.0, 99.80, 52.81, 51.54, 17.59. IR (KBr):
3153, 2987, 1715, 1560, 1467, 1193, 1099, 723 cm−1. LC/MS:
m/z 332 (M + H+). Compound-4s: 1H NMR (300 MHz,
DMSO-d6): δ 9.33 (brs, 1H), 7.91 (brs, 1H), 7.35 (d, 1H, J =
4.98 Hz), 6.94–6.88 (m, 2H), 5.26 (s, 1H), 4.08 (q, 2H,
J = 7.08 Hz), 2.20 (s, 3H), 1.17 (t, 3H, J = 7.11 Hz).
13C NMR (75 MHz, DMSO-d6): 165.5, 160.0, 152.7, 149.2,
127.1, 125.1, 123.9, 100.3, 59.8, 49.8, 18.1, 14.6. IR (KBr):
3446, 3336, 2983, 1628, 1457, 1315, 1231, 1157, 1025, 710,
556 cm−1 LC/MS: m/z 267.1 (M + H+). Compound-4t: 1H
NMR (300 MHz, DMSO-d6): δ 9.19 (brs, 1H), 7.76 (brs,
1H), 7.46–7.43 (m, 1H), 7.13 (brs, 1H), 6.98 (d, 1H, J =
4.92 Hz), 5.20 (bd, 1H, J = 3.21 Hz), 4.04 (q, 2H, J = 7.1 Hz),
2.20(s, 3H), 1.16 (t, 3H, J = 7.05 Hz). 13C NMR (75 MHz,
DMSO-d6): 165.7, 153.0, 148.9, 148.9, 146.2, 127.1, 127.0,
126.6, 121.2, 99.9, 59.7, 49.8, 18.2, 14.6. IR (KBr): 3241,
3108, 2980, 1702, 1649, 1461, 1425, 1369, 1291, 1093, 687,
513 cm−1 LC/MS: m/z 267 (M + H+). Compound-4u: 1H
NMR (300 MHz, DMSO-d6): δ 9.25 (s, 1H), 8.59–8.57 (d,
1H, J = 4.5 Hz), 7.96–7.91 (t, 1H, J = 7.6 Hz), 7.70 (s, 1H),
7.44–7.40 (m, 2H), 5.28 (brs, 1H), 3.97–3.91 (q, 2H, J =
7 Hz), 2.22 (s, 3H), 1.09–1.01 (t, 3H, J = 7 Hz). 13C NMR
(75 MHz, DMSO-d6): δ 165.6, 161.7, 152.3, 149.9, 147.8,
139.5, 123.9, 122.4, 97.6, 59.6, 55.6, 18.4, 14.5. IR (KBr):
3209, 3081, 2947, 1698, 1650, 1068, 814 cm−1LC/MS: m/z
262 (M + H+). Compound-4v: 1H NMR (300 MHz, DMSO-
d6): δ 9.16 (s, 1H), 7.64–7.54 (m, 2H), 7.36 (s, 1H), 6.32 (s,
1H), 5.08 (brs, 1H), 4.06–4.02 (q, 2H, J = 7 Hz), 2.19 (s, 3H),

1.18–1.13 (t, 3H, J = 7 Hz). 13C NMR (75 MHz, DMSO-d6):
δ 165.7, 153.2, 149.1, 144.0, 139.0, 129.5, 109.6, 99.5, 59.7,
46.3, 18.1, 14.7. IR (KBr): cm−13236, 3110, 2984, 1697, 1646,
1210, 1092, 773. LC/MS: m/z 251 (M + H+). Compound-4w:
1H NMR (300 MHz, DMSO-d6): δ 9.39 (brs, 1H), 7.99 (brs,
1H), 7.72-7.71 (d, 1H, J = 3.21 Hz), 7.62-7.61 (d, 1H, J =
3.21 Hz), 5.47 (brs, 1H), 4.08–4.01 (q, 2H, J = 7 Hz), 2.22
(s, 3H), 1.15–1.09 (t, 3H, J = 7 Hz). 13C NMR (75 MHz,
DMSO-d6): δ 173.3, 165.3, 152.5, 150.4, 142.9, 120.7, 98.5,
59.9, 52.0, 18.2, 14.6. IR (KBr): 3204, 3074, 2855, 1692,
1632, 1214, 1088, 944, 752 cm−1 LC/MS: m/z 268 (M + H+).
Compound-4x: 1H NMR (300 MHz, DMSO-d6): δ 10.34 (s,
1H), 9.62 (brs, 1H), 9.02-9.01 (d, 1H, J = 2.0 Hz), 7.39 (d, 1H,
J = 2.0 Hz), 5.34 (brs, 1H), 3.56 (s, 3H), 2.24 (s, 3H). 13C
NMR (75 MHz, DMSO-d6): δ 175.3, 165.9, 158.0, 155.4,
146.2, 116.0, 100.0, 51.5, 50.7, 17.7. IR (KBr): 3338, 3213,
2947, 1655, 1567, 1443, 736 cm−1 LC/MS: m/z 270 (M + H+).
Compound-4y: 1H NMR (300 MHz, DMSO-d6): δ 11.2 (brs,
1H), 8.96 (s, 1H), 6.72 (s, 2H), 4.93 (s, 1H), 4.05–3.98 (q,
2H, J = 7 Hz), 2.19 (s, 3H), 1.14–1.09 (t, 3H, J = 7 Hz). IR
(KBr): 3358, 3165, 3039, 2980, 2900, 2810, 1654, 1511, 1207,
1016, 818, 657 cm−1 LC/MS: m/z 251 (M + H+). Compound-
4z: 1H NMR (300 MHz, DMSO-d6): δ 9.13 (s, 1H), 7.62–
7.59 (m, 2H), 7.37 (d, 1H, J = 8.04 Hz), 7.12 (t, 1H, J =
8.04 Hz), 7.05–7.00 (m, 2H), 5.42 (s, 1H), 3.97–3.92 (q, 2H, J
= 7 Hz), 3.70 (s, 3H), 2.25 (s, 3H), 1.10 (t, 3H, J = 7 Hz). 13C
NMR (75 MHz, DMSO-d6): 165.9, 160.0, 152.9, 147.9, 137.3,
127.5, 125.8, 121.5, 119.7, 117.9, 110.0, 99.7, 59.5, 47.3, 32.7,
18.2, 14.6. IR (KBr): 3443, 3349, 3251, 2935, 2815, 1696,
1640, 1465, 1375, 1218, 1086, 786, 555 cm−1 LC/MS: m/z 314
(M + H+).
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