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Clustered regularly interspaced short palindromic repeat (CRISPR) systems and prokaryotic 
Argonaute proteins (Agos) have been shown to defend bacterial and archaeal cells against 
invading nucleic acids. Indeed, they are important elements for inhibiting horizontal gene 
transfer between bacterial and archaeal cells. The CRISPR system employs an RNA-guide 
complex to target invading DNA or RNA, while Agos target DNA using single stranded 
DNA or RNA as guides. Thus, the CRISPR and Agos systems defend against exogenous 
nucleic acids by different mechanisms. It is not fully understood how antagonization of 
these systems occurs during natural transformation, wherein exogenous DNA enters a 
host cell as single stranded DNA and is then integrated into the host genome. In this 
review, we discuss the functions and mechanisms of the CRISPR system and Agos in 
cellular defense against natural transformation.

Keywords: Clustered regularly interspaced short palindromic repeat-Cas, Argonaute proteins, bacterial immunity 
system, natural transformation, ssDNA

INTRODUCTION

Horizontal exchange of DNA between bacteria is an important mechanism to generate genome 
diversity and drive evolution (Gogarten and Townsend, 2005). For example, the emergence of 
super resistant, virulent bacterial strains has largely been inferred to be  caused by the transfer 
of antimicrobial resistance and virulence genes among different species (Maeusli et  al., 2020). 
The acquisition of genetic material can occur through natural transformation, direct DNA 
uptake from the environment, conjugation, plasmid transfer from other cells, and transduction, 
the latter of which incorporates heterologous DNA from bacteriophage infection (Arber, 2014; 
Darmon and Leach, 2014). Among these, only natural transformation is exclusively facilitated 
by genes from the bacterial chromosome (Ambur et  al., 2016).
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Traditionally, the active acquisition of genetic material has 
been thought to benefit the recipient bacterium. For example, 
Streptococcus pneumoniae required exogenous DNA to become 
antibiotic resistant and inhibit vaccination treatments (Croucher 
et  al., 2011). However, it was recently suggested that this 
conclusion was biased because only bacterial genomes that 
survived selection were ultimately observed as recipients (Ambur 
et  al., 2016). Further, bacteria have been observed to uptake 
fragmented and damaged DNA by natural transformation when 
the DNA contains abasic sites or miscoding lesions (Thomas 
and Nielsen, 2005; Overballe-Petersen et al., 2013). Thus, bacteria 
indiscriminately take up both “beneficial” and “harmful” DNA. 
Moreover, these newly integrated gene elements can also alter 
the structure of the recipient genome and introduce additional 
physiological burdens (Johnston et  al., 2014; Blokesch, 2017).

To control the entry of new genetic material, bacteria have 
developed immune defenses to limit inter-specific or inter-strain 
horizontal transfer of chromosomal DNA. Bacterial immune 
systems, including restriction-modification (R-M) systems, 
CRISPR systems, and Argonaute proteins (Agos), have recently 
been observed to play key roles in defending bacterial cells 
from intrusion of foreign DNA including via bacteriophages 
and plasmid DNA (Bikard et al., 2012; Zhang and Blaser, 2012; 
Swarts et al., 2014a). However, natural transformation internalizes 
exogenous ssDNA and integrates it into the host chromosome 
by homologous recombination. This implies that these immune 
system mechanisms antagonize natural transformation by unique 
mechanisms or functions at different stages of natural 
transformation. For example, R-M systems have been proposed 
to target natural transformation after the replication of integrated 
ssDNA into a host chromosome (Johnston et  al., 2013).

CRISPR systems were recently shown to inhibit natural 
transformation in S. pneumoniae and Neisseria meningitidis 
(Bikard et  al., 2012; Zhang et  al., 2013), while the Agos of 
Thermus thermophilus have been shown to prevent the uptake 
and propagation of naturally transformed plasmid DNA (Swarts 
et  al., 2014a). However, the mechanisms by which CRISPRs 
and Agos prevent natural transformation has not been fully 
described in these studies.

AN OVERVIEW OF THE NATURAL 
TRANSFORMATION PROCESS

Bacterial natural transformation is a complex process involving 
uptake of extracellular DNA to the cytoplasm and integration 
into the chromosome. Based on Helicobacter pylori (Stingl et al., 
2010), Neisseria (Maier et  al., 2002; Gangel et  al., 2014), and 
Vibrio cholerae (Seitz and Blokesch, 2013; Seitz et  al., 2014; 
Ellison et  al., 2018) models, Gram-negative bacterial DNA 
uptake requires its transport across the outer membrane and 
the translocation of DNA across the inner membrane (Figure 1A).

In natural transformation by V. cholerae, the type IV family 
of pili (T4P) on the surface of most Gram-negative bacteria 
retracts DNA into the periplasm through direct binding of 
the extracellular double-stranded DNA (dsDNA) on their ends 
(Chen and Dubnau, 2004; Claverys et  al., 2009; Burton and 

Dubnau, 2010; Ellison et  al., 2018; Figure  1A). Nevertheless, 
the method by which pili specifically bind DNA remains unclear. 
It was recently shown that ComE(A), a periplasmic DNA-binding 
protein, is essential for the uptake and transport of DNA from 
the outer membrane to the periplasm (Gangel et  al., 2014; 
Hepp and Maier, 2016; Figure 1A). Further, T4P and ComE(A) 
mediate uptake via a Brownian ratchet mechanism (Hepp and 
Maier, 2016; Dubnau and Blokesch, 2019). An exception to 
this mechanism has been observed in H. pylori, which employs 
a ComB type-IV secretion system (T4SS), rather than the  
T4P system, for initial DNA uptake during transformation 
(Karnholz et  al., 2006). ComH is a periplasmic DNA-binding 
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FIGURE 1 | Natural transformation in the Gram-negative bacterium Vibrio 
cholerae (Seitz and Blokesch, 2013; Seitz et al., 2014; Ellison et al., 2018) 
and the Gram-positive bacterium Streptococcus pneumoniae (Laurenceau 
et al., 2013, 2015; Balaban et al., 2014; Muschiol et al., 2015). (A) Natural 
transformation of V. cholerae. Extracellular DNA is bound to the pilus and 
transported across the OM with the participation of the periplasmic protein 
ComEA. The pilus is composed of PilA (the main fiber subunit), the PilB and 
PilT ATPases, PilQ (a secretin pore), PliC (the motor), and other proteins 
(Matthey and Blokesch, 2016; McCallum et al., 2019). (B) Natural 
transformation of S. pneumoniae. DNA is bound to a pseudopilus and is 
transported across the cell wall with the participation of the membrane protein 
ComEA. The pseudopilus is mostly composed of ComGC (the major pilin), 
ComGB (a membrane protein), and ComGA (an ATPase; Muschiol et al., 
2015). One strand is degraded by the EndA nuclease, while the other  
strand is transported into the cytoplasm by ComEC, which also occurs  
in V. cholerae. (C) ssDNA integration into the genome. DprA binds internalized 
ssDNA and recruits the recombinase RecA that integrates ssDNA into the 
host genome with the help of ComM. (D) The replication and expression of 
the integrated DNA in the cell. After replication of the genome, the host cell 
contains two genome types. The integrated DNA is immediately expressed in 
the host cell and the expression product is propagated by both non-genetic 
and genetic inheritance mechanisms after cell division. tDNA, transforming 
DNA; M, membrane; OM, outer membrane; IM, inner membrane; PG, 
peptidoglycan.
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protein that is involved in the transport of DNA into the 
periplasm, although the interaction between ComB and ComH 
remains unknown (Damke et  al., 2019).

Gram-positive bacteria like S. pneumonia use pseudopili to 
transport extracellular DNA through a thick layer of 
peptidoglycan (Laurenceau et  al., 2013, 2015; Balaban et  al., 
2014; Muschiol et al., 2015; Figure 1B). In contrast, the Gram-
positive bacterium Bacillus subtilis initiates DNA binding 
independent of a pseudopilus (Hahn et  al., 2005; Kidane and 
Graumann, 2005; Mirouze et  al., 2018). Rather, it was recently 
shown that wall teichoic acids (WTAs) are responsible for the 
initial step in transformation (Mirouze et  al., 2018). After the 
DNA is in the periplasm of Gram-negative cells or in the 
compartments between the cell wall and the membrane of 
Gram-positive bacterial cells, one strand is degraded to 
nucleotides at the membrane surface and the other is internalized 
into the cytoplasm in single-stranded form through the ComEC 
transmembrane channel (Draskovic and Dubnau, 2005; Mell 
and Redfield, 2014; Figures  1A,B). However, the protein that 
degrades the non-transforming DNA and the mechanism that 
is used for degradation remains unknown. The internalized 
single-stranded DNA (ssDNA) is then bound by DNA processing 
protein A (DprA) that recruits the recombinase RecA to the 
ssDNA (Mortier-Barriere et  al., 2007) and the translocated 
strand can then be  used to replace a chromosomal strand via 
recombination (Figure  1C). During recombination, RecA is 
responsible for identifying homologous DNA regions and initiates 
strand invasion to form a displacement loop (D-loop) in the 
chromosome (Figure  1C). ComM subsequently promotes 
expansion of the D-loop using a bidirectional helicase and 
branch migration activities that enhance the integration efficiency 
of ssDNA into the genome (Nero et  al., 2018; Figure  1C). 
The biological functions and mechanisms of action for ComE(A), 
ComEC, DprA, RecA, and ComM are all evolutionarily conserved 
in most competent bacteria (Provvedi and Dubnau, 1999; Berge 
et  al., 2002; Draskovic and Dubnau, 2005; Berge et  al., 2013; 
Johnston et  al., 2013; Johnston et  al., 2014; Seitz et  al., 2014; 
Hepp and Maier, 2016; Salzer et  al., 2016; Nero et  al., 2018; 
Pimentel and Zhang, 2018; Huang et  al., 2019).

Following these activities, the integrated DNA is immediately 
expressed after chromosomal replication, which has been 
demonstrated to occur before cell division in V. cholera (Dalia 
and Dalia, 2019), H. pylori (Corbinais et  al., 2016), and  
B. subtilis (Boonstra et al., 2018; Figure 1D). Thus, the expressed 
products of integrated DNA can be used by the untransformed 
relatives of transformed cells, which are termed the non-genetic 
inheritance of traits (Dalia and Dalia, 2019; Figure  1D).

THE CRISPR SYSTEM AND NATURAL 
TRANSFORMATION

An Overview of CRISPR Systems
Jansen et al. (2002) first discovered clustered regularly interspaced 
short palindromic repeats (CRISPR) loci and the CRISPR-
associated Cas genes. The genomes of ∼50% of bacteria and 
∼90% of archaea have a CRISPR-Cas system that plays a role 

in defense against the inclusion of foreign (e.g., phage or 
plasmid) DNA (Makarova and Koonin, 2015; Makarova et  al., 
2015; Samson et  al., 2015). CRISPR loci are composed of 
~24–48  bp short repetitive sequence arrays that are separated 
by equally short “spacer” sequences that are derived from 
mobile genetic elements like bacteriophages and plasmid 
sequences (Mojica et al., 2005). CRISPR-Cas systems have been 
divided into two distinct classes: class 1 and class 2. Class 1 
systems have multi-subunit effector complexes, whereas class 
2 systems have individual single-protein effector modules (Koonin 
et  al., 2017; Koonin and Makarova, 2019). Furthermore, class 
1 systems contain three different sub-types (types I, III, and 
IV), while class 2 systems contain types II, V, and VI. Each 
sub-type is characterized by distinct effector module architectures 
that contain unique signature proteins, like Cas3 for the type 
I  systems, Cas9 for type II systems, and Cas10 for type III 
systems (Makarova and Koonin, 2015; Koonin et  al., 2017; 
Koonin and Makarova, 2019).

CRISPR-Cas systems operate through three steps. In the 
first (the adaptation phase), the acquisition of spacers is often 
derived from phage or foreign plasmid DNA (Mojica et  al., 
2005). Importantly, the 2–5 nt protospacer adjacent motif (PAM) 
in the invading DNA is required for spacer acquisition (Marraffini 
and Sontheimer, 2010a). During adaptation, the Cas1-Cas2 
complex is also required to process foreign DNA and subsequent 
integration into a CRISPR array (Hille et  al., 2018). In the 
second step, short CRISPR RNAs (crRNAs) undergo biogenesis 
and maturation. In most bacteria, the repeat/spacer arrays are 
transcribed as long CRISPR RNA precursors (pre-crRNA) that 
are then cleaved within the repeat sequences and transformed 
into small crRNAs by Cas endoribonucleases (Hatoum-Aslan 
et  al., 2011), which then base pair with foreign DNA via 
spacer-encoded sequences (Brouns et  al., 2008). In class 1 
systems, Cas-6-family enzymes are involved in processing RNA 
into mature crRNAs, while Cas9 is involved in the maturation 
of crRNAs in class 2, type II systems (Hille et  al., 2018). The 
third step is the interference phase, wherein crRNAs are used 
as antisense guides that combine with sets of Cas proteins to 
form the core CRISPR-Cas ribonucleoprotein complexes. After 
complementary “protospacer” sequences from foreign invading 
DNA or RNA are recognized by these complexes, they are 
cleaved via sequence-specific mechanisms (Garneau et al., 2010). 
The PAM of invading DNA is also required for efficient CRISPR 
interference (Fischer et al., 2012). Further, crRNA-Cas complexes 
are base-paired with PAM sequences to avoid autoimmunity 
(Marraffini and Sontheimer, 2010b). Thus, type I  and type II 
CRISPR-Cas systems cleave DNA, while type III systems can 
cleave DNA or RNA molecules (Barrangou and Marraffini, 
2014). Specifically, cas9 of type II CRISPR-Cas systems encodes 
a multidomain protein that contains all the functions of effector 
complexes and targets DNA cleavage sites (Jinek et  al., 2012). 
Based on the above observations, the CRISPR system has been 
described as an RNA-guided “adaptive immune system” of 
bacteria. In addition, CRISPR-Cas systems also exhibit off-target 
activities on sequences that are similar to target sequences 
(Nivala et  al., 2018), which may represent a potential “escape” 
mechanism for foreign DNA.
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The CRISPR System Antagonizes Natural 
Transformation
Numerous studies have demonstrated that CRISPR systems function 
in defense against bacteriophage infection and plasmid 
transformation (Garneau et  al., 2010; Amitai and Sorek, 2016). 
Accordingly, most archaeal spacers correspond to plasmids or 
bacteriophages (Brodt et al., 2011). Further, some of these sequences 
can be  mapped to the chromosomal genes of other archaea, 
suggesting that CRISPR/Cas systems may also be  involved in 
reducing the intrusion of foreign chromosomal DNA via natural 
transformation (Brodt et al., 2011). Bikard et al. (2012) introduced 
the CRISPR01 locus of Streptococcus pyogenes SF370 into the 
non-encapsulated strain, S. pneumoniae R6. The chromosomal 
DNA of the S. pneumoniae strain carrying the engineered spacer 
1 (spc1) target was used as the donor for transformation with 
S. pneumoniae R6 and the S. pneumoniae crR6 strains. The  
S. pneumoniae crR6 strain prevented DNA transformation, while 
the control S. pneumoniae R6 strain could not prevent 
transformation (Bikard et  al., 2012). Furthermore, a spacer  
for the cap gene was introduced into the CRISPR locus of  
S. pneumoniae crR6, and CRISPR interference was able to prevent 
capsule-switching of pneumococci both in vitro and in vivo 
(Bikard et  al., 2012). Thus, CRISPR/Cas systems can prevent 
natural transformation, at least in S. pneumoniae. Nevertheless, 
it is unclear if native CRISPR/Cas systems can limit natural 
transformation, since all known published pneumococcal genomes 
do not encode CRISPR loci (Makarova et  al., 2011).

Zhang et  al. (2013) subsequently cloned protospacers with 
flanking Neisseria sequences that conform to the PAM consensus 
sequence into the pGCC2 plasmid. It was then shown that the 
plasmid pGCC2 can be  integrated into the genome of  
N. meningitidis through natural transformation. However, a plasmid 
containing protospacers failed to integrate into N. meningitidis 
through natural transformation, in contrast to the empty plasmid 
(Zhang et  al., 2013). Mutation of two consecutive nucleotides 
within the PAM or seed sequence of the protospacer in the 
plasmid abolished CRISPR interference, thereby reestablishing 
the natural transformation potential. In contrast, nucleotide 
substitutions in a non-PAM flanking region or substitutions in 
non-seed protospacer positions did not affect CRISPR interference 
(Zhang et al., 2013). Similarly, natural transformation was inhibited 
when using genomic DNA containing protospacers. The 
CRISPR-Cas systems in both of the above studies were type II 
systems that use Cas9 proteins as effector proteins to cleave 
invading nucleic acids (Makarova et  al., 2015).

Evolutionary Analysis of Natural 
Transformation and CRISPR Systems
The evolutionary association between natural transformation and 
CRISPR systems has been investigated through comparative 
genomics. The loss of competence in Aggregatibacter 
actinomycetemcomitans was strongly and positively correlated 
with the loss of a CRISPR system (Jorth and Whiteley, 2012). 
Moreover, the genomes of competent bacteria were larger and 
contained multiple rearrangements in contrast to the 
non-competent strain genomes. Rather, non-competent bacterial 

genomes were extremely stable, but susceptible to infective DNA 
element integration (Jorth and Whiteley, 2012), suggesting that 
CRISPRs play a role in defense against exogenous DNA invasion.

Using the length of a CRISPR array as a proxy for CRISPR 
activity, Gophna et al. (2015) analyzed the connection between 
CRISPR activity and gene acquisition via horizontal gene transfer 
(HGT). CRISPR-negative bacterial genomes encoded fewer 
prophage-encoded proteins on average compared to CRISPR-
positive genomes, suggesting that CRISPR systems do not 
inhibit HGT on evolutionary timescales (Gophna et  al., 2015). 
It was instead hypothesized that the resistance of CRISPR-Cas 
systems to mobile elements occurs at the population scale 
rather than over evolutionary timescales (Gophna et al., 2015).

The Csx27 protein of subtype VI-B1 CRISPR-Cas systems 
was recently shown to be encoded in the same predicted operons 
as the components of natural transformation systems (Makarova 
et al., 2019). The Csx27 protein has four predicted transmembrane 
regions, and it was thus predicted that Csx27 proteins form 
membrane channels for the transport or degradation of ssDNA 
(Makarova et al., 2019). Taken together, the interactive relationships 
between natural transformation and CRISPR systems cannot 
be  adequately established through evolutionary analysis. 
Nevertheless, the connection between CRISPRs and natural 
transformation requires further experimental investigation.

The Unstated Conundrum and a Proposed 
Model for CRISPR System Limiting of 
Natural Transformation
Although the above two studies suggested that CRISPR systems 
can limit natural transformation, several associated conundrums 
have not been resolved. First, it is unclear whether and how 
new spacers are acquired from internalized ssDNA. Second, it 
is unknown if CRISPR systems target internalized ssDNA or 
dsDNA after exogenous genes are integrated and replicated into 
the host genome. To our knowledge, no reports indicate that 
CRISPR systems can acquire spacers from ssDNA. The RNA 
guided Cas9 proteins from N. meningitidis and S. pyogenes were 
recently shown to cleave ssDNA in a PAM- and tracrRNA-
independent manner (Ma et al., 2015; Zhang et al., 2015), suggesting 
that the CRISPR systems of N. meningitidis and S. pyogenes target 
ssDNA. In addition, Cas12a of Lachnospiraceae and the Cas1 
protein of Escherichia coli (Babu et al., 2011) have been observed 
to target ssDNA and degrade it (Chen et  al., 2018). A model 
was proposed for the antagonization of heterologous transformation 
by CRISPR systems in combination with the proposed post-
replication targeting model for CRISPR systems (Johnston et  al., 
2013) using the Neisseria CRISPR system as an example (Figure 2). 
In the model, (I) spacers are pre-acquired from internalized 
ssDNA through an unidentified pattern and (II) heterologous 
dsDNA enters the cytoplasm as ssDNA through natural 
transformation. About 50% of ssDNA is targeted and cleaved by 
the crRNA and Cas9 endonuclease complexes in this stage, since 
each strand of the dsDNA randomly enters the cell. Thus, a 
portion of ssDNA escapes this immune response, and (III) after 
integration and replication, the double-stranded DNA associated 
with a PAM is produced in the transformant chromosome.  
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At this stage, the CRISPR system in the host genome can target 
and cleave the genomic PAM site, but the CRISPR system cannot 
target itself, as these regions lack a PAM site (Johnston et  al., 
2013; Figure  2). In support of this hypothetical model, the 
transfer of active CRISPR/Cas systems into a recipient cell 
containing a target sequence has been shown to result in cell 
death (Bikard et al., 2012). This model is based on the requirement 
of a spacer to pre-exist in the host genome and coincide with 
the protospacers of invading DNA. Nevertheless, the fundamental 
question as to whether native CRISPR/Cas systems acquire new 
spacers from internalized ssDNA remains unaddressed. Another 
important question that remains to be  answered is whether 
other types of CRISPR/Cas systems are involved in antagonizing 
natural transformation.

ARGONAUTES INHIBIT NATURAL 
TRANSFORMATION

Argonaute proteins (Agos) were initially discovered in eukaryotes 
and were later observed as conserved across all domains of 
life (Bohmert et  al., 1998; Hock and Meister, 2008). Agos bind 
small noncoding RNAs in eukaryotes and target complementary 
RNA to regulate gene expression and repress invasive genomic 
elements (Peters and Meister, 2007). The homologues of 
Argonautes are present in some bacterial (~9%) and archaeal 
(~32%) genomes (Makarova et  al., 2009; Swarts et  al., 2014b). 
However, bacterial and archaeal Agos do not encode Dicer 
homologs and the TAR RNA-binding protein (TRBP) that is 
important for the silencing pathway.

Argonaute Interference With the 
Replication of Exogenous Plasmids 
Internalized by Natural Transformation
The domain organization of some prokaryotic Argonautes was 
observed to be  similar to eukaryotic orthologs (Song et  al., 
2004; Yuan et  al., 2005; Wang et  al., 2008). However, archaeal 
and bacterial Argonautes have a higher affinity for ssDNA 
and dsDNA compared to eukaryotic homologs (Ma et al., 2005; 
Yuan et  al., 2005). Nevertheless, experimental evidence to 
understand the functions of prokaryotic Argonautes in host 
defenses have not appeared until recently. ago mutation in  
T. thermophilus leads to increased natural transformation efficiency 
of plasmids by 10-fold compared to wild-type cells (Swarts 
et  al., 2014a). Moreover, plasmid yields from wild-type cells 
are lower than those of ago knockout strain (Swarts et  al., 
2014a). Analysis of co-purified nucleic acids revealed that the 
Ago from T. thermophilus (TtAgo) binds 13–25  bp ssDNAs 
that are mostly derived from plasmids and have a strong bias 
for the 5′-end deoxycytidine (Swarts et  al., 2014a). Plasmid 
cleavage assays also showed that guide DNA-loaded TtAgo 
was able to cleave both single- and double-stranded targets 
(Swarts et  al., 2014a). Thus, the authors speculated that TtAgo 
uses siDNA guides to specifically cleave ssDNA targets that 
are produced during natural transformation (Swarts et  al., 
2014a; Figure  3). Recent studies have suggested that most 
characterized Argonautes from bacteria and archaea function 
to target complementary dsDNA or ssDNA against invasive 
genetic elements, in contrast to their functions in eukaryotes 
(Makarova et  al., 2009; Olovnikov et  al., 2013; Swarts et  al., 
2014a). Agos bind small RNAs (15–19  nt) in Rhodobacter 
sphaeroides that are derived from mRNAs or are the products 
of their degradation (Olovnikov et  al., 2013). In addition, 
Olovnikov et al. (2013) observed strong degradation of a plasmid 
upon the expression of RsAgo in E. coli cells, although Argonaute-
dependent cleavage activity was not detected. Thus, it was 
proposed that RsAgo use RNA guides to recruit an associated 
nuclease for subsequent target cleavage (Olovnikov et al., 2013).

The DNA Cleavage Mechanism of Bacterial 
and Archaeal Argonautes
A remaining question was how guiding DNAs were generated 
and loaded onto Agos in bacterial cells. Guide-free TtAgo, 
SeAgo, and MjAgo were shown to degrade double-stranded 
plasmid and genomic DNA to 8–26  nt oligonucleotides, an 
activity that was termed “DNA chopping,” with the subsequent 
small dsDNA fragments loaded onto Agos (Swarts et  al., 2017; 
Zander et  al., 2017; Olina et  al., 2020). Moreover, the cleavage 
efficiency of pre-loaded MjAgo for a plasmid was higher when 
compared to apo-MjAgo (Zander et  al., 2017). Similarly, the 
use of cleavage products as functional guides was also 
demonstrated for TtAgo (Swarts et  al., 2017). In addition to 
TtAgo, several bacterial and archaeal Argonautes have been 
shown in vitro to cleave target DNA using ssDNA as a guide, 
including the Argonaute from Pyrococcus furiosus (PfAgo; Swarts 
et  al., 2015), the Argonaute of Clostridium butyricum (CbAgo; 
Hegge et  al., 2019; Kuzmenko et  al., 2019), the Argonaute of 

FIGURE 2 | A proposed model of type II clustered regularly interspaced 
short palindromic repeat (CRISPR) system inhibition of natural transformation. 
CRISPRs consist of short repeats separated by non-repetitive spacers that 
are obtained from previous invading sequences. (I) CRISPR loci are 
transcribed as long CRISPR RNA (crRNA) precursors and then cleaved into 
small mature crRNAs, (II) during natural transformation, heterologous DNA 
enters the cell as ssDNA that is then targeted by the CRISPR system, (III) after 
replication in the transformant chromosome, a dsDNA that contains a 
“protospacer” and PAM sequence is produced, and (IV) the complex of 
crRNAs and Cas proteins recognize and cleave the complementary 
“protospacer” in the transformed chromosomes.
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Limnothrix rosea (LrAgo; Kuzmenko et al., 2019), the Argonaute 
of Methanocaldococcus jannaschii (MjAgo; Zander et  al., 2017) 
and the Argonaute of Synechococcus elongatus (SeAgo; Olina 
et  al., 2020). Additionally, the Argonautes in some bacteria, 
such as Marinitoga piezophile, Thermotoga profunda, and 
Rhodobacter sphaeroides, use RNA as a guide to target DNA 
(Kaya et  al., 2016; Miyoshi et  al., 2016).

A Proposed Model and Remaining 
Conundrums of the Inhibition of Natural 
Transformation by Argonautes
In summary, a scenario can be envisioned wherein pAgo, using 
TtAgo as an example, limits natural transformation when a 
plasmid is the substrate DNA, as shown in Figure  3. In this 
generalized mechanism, (I) a plasmid enters a cell by natural 
transformation as ssDNA that is resistant to the “chopping 
activity” of TtAgo since the guide-free TtAgo cannot degrade 
ssDNA (Swarts et al., 2017), (II) after propagation, the plasmid 
DNA is chopped by apo-TtAgo and the small DNA fragments 
are loaded into TtAgo (Figure  3), and (III) the target strand 
is then dissociated from TtAgo through unknown mechanisms 
and TtAgo-siDNA attacks complementary ssDNA and dsDNA 
(Figure  3). However, unanswered questions remain regarding 
these mechanisms. First, if TtAgo has both “DNA chopping” 
and ssDNA guided cleavage activities, then all transformed 
plasmids should be  cleaved. However, un-cleaved plasmids 
remain within T. thermophilus (Swarts et  al., 2014a). Second, 
it is unknown how endogenous plasmids coexist with TtAgo 
and also how small DNA-loaded Ago complexes distinguish 
target foreign DNA from normal genomic substrates. Even 
over-expressed Ago in S. elongatus did not affect cell growth 
(Olina et  al., 2020), suggesting that Ago does not disrupt the 
genome of S. elongatus. Further, it has been proposed that 

M. jannaschii histones, but not methylation, protects genomic 
DNA from Ago chopping activities (Zander et  al., 2017). 
However, the T. thermophilus genome does not encode histones 
(Willkomm et  al., 2018). An additional question is how one 
of the DNA strands released from Ago binds to dsDNAs. 
Lastly, it is unknown if Ago limits natural transformation when 
using exogenous DNA fragments as the substrate. It was recently 
shown that most SeAgo-associated small DNAs were derived 
from the proposed genomic replication initiation and termination 
sites (Olina et  al., 2020). Therefore, it is possible that Agos 
target exogenous DNA when forming DNA intermediates during 
host cell replication.

CONCLUSIONS AND PERSPECTIVES

The nucleic acid-guided binding and cleavage activities of pAgos 
are reminiscent of CRISPR-Cas systems. Like CRISPR-Cas 
systems, pAgos degrade invading DNA into short dsDNA 
fragments. However, unlike CRISPR-Cas systems, pAgo-mediated 
defenses do not integrate degraded fragments into host genomes 
and, thus, no memory of the invading DNA is generated. 
Therefore, pAgos can be  described as the “innate” immune 
systems of bacteria and archaea (Hegge et al., 2018; Kuzmenko 
et  al., 2019), while the CRISPR-Cas systems can be  described 
as “adaptive” immune systems. The innate and adaptive immune 
systems interact in mammals, although it is unknown if such 
interactivity occurs between CRISPR-Cas systems and pAgos. 
The ago genes of M. piezophila, M. kandleri, and T. profunda 
are present in the same operon as the cas gene of the CRISPR-Cas 
locus (Kaya et  al., 2016), although most bacterial and archaeal 
genomes that encode CRISPR-Cas loci lack Argonaute genes 
(Makarova et  al., 2006). Thus, the potential interrelationships 
of Ago and CRISPR-Cas systems require further experimental  
demonstration.
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FIGURE 3 | A model of TtAgo-mediated DNA-guided plasmid inhibition. (I) a 
plasmid enters the cell as ssDNA through natural transformation. At this 
stage, the ssDNA is resistant to apo-TtAgo, (II) after replication, the dsDNA 
plasmid is chopped by apo-TtAgo, (III) the fragmented dsDNA is then bound 
by TtAgo and one strand of the DNA is released from TtAgo through an 
unknown mechanism, and (IV) the siDNA-loaded TtAgo targets 
complementary DNA (ssDNA and dsDNA) and cleaves it.
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