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ABSTRACT

This work is dedicated to the development of a
technology for unbiased, high-throughput DNA
methylation profiling of large genomic regions. In
this method, unmethylated and methylated DNA
fractions are enriched using a series of treatments
with methylation sensitive restriction enzymes, and
interrogated on microarrays. We have investigated
various aspects of the technology including its rep-
licability, informativeness, sensitivity and optimal
PCR conditions using microarrays containing oligo-
nucleotides representing 100 kb of genomic DNA
derived from the chromosome 22 COMT region in
addition to 12 192 element CpG island microarrays.
Several new aspects of methylation profiling are
provided, including the parallel identification of
confounding effects of DNA sequence variation,
the description of the principles of microarray
design for epigenomic studies and the optimal
choice of methylation sensitive restriction enzymes.
We also demonstrate the advantages of using the
unmethylated DNA fraction versus the methylated
one, which substantially improve the chances of
detecting DNA methylation differences. We applied
this methodology for fine-mapping of methylation
patterns of chromosomes 21 and 22 in eight indi-
viduals using tiling microarrays consisting of over
340 000 oligonucleotide probe pairs. The principles
developed in this work will help to make epigenetic
profiling of the entire human genome a routine
procedure.

INTRODUCTION

Over the last decade the field of DNA methylation has grown
dramatically and become one of the most dynamic and rapidly
developing branches of molecular biology. The methyl group
at the fifth position of the cytosine pyrimidine ring, that is
present in about 80% of CpG-dinucleotides in the human
genome, can be of major functional significance and is
regarded as the ‘fifth base’ of the genome (1). DNA methyla-
tion, along with histone modifications (acetylation, methyla-
tion, phosphorylation and the like), are referred to as
epigenetic phenomena that control various genomic functions
without a change in nucleotide sequence (2). Such functions
include meiotic and mitotic recombination, replication, control
of ‘parasitic’ DNA elements, establishing and maintenance of
gene expression profiles, X chromosome inactivation as well as
regulation of developmental programming and cell differenti-
ation (3–6). Aberrations in epigenetic regulation, or ‘epimuta-
tions’, cause several paediatric syndromes (Prader–Willi
[OMIM #176270], Angelman [OMIM #105830], Beckwith–
Wiedemann [OMIM #130650] and Rett [OMIM #312750])
(7) and may also predispose to cancer (8).

Our understanding of the peculiarities of DNA methylation
in the human genome is still very superficial. Based on the
review of available publications, our estimate is that <0.1% of
the genome has been subjected to a detailed DNAmodification
analysis. The recently completed Human Genome sequencing
project did not attempt to differentiate betweenmethylated and
unmethylated cytosines. To some extent our understanding of
the dynamic state of genome-wide DNA methylation has been
hampered by the lack of high-throughput technologies that
would interrogate DNA methylation profiles over large
genomic regions. A gold standard technique in DNA methyla-
tion studies, the bisulfite modification-based fine mapping of
metC (9), although precise, is very labour intensive and in
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most cases limited to short DNA fragments, often less than a
kilobase.

The advent ofmicroarray technologies that enabled the inter-
rogation of a large number of DNA/RNA fragments in a highly
parallel fashion has opened new opportunities for epigenetic
studies (10). A number of microarray-based technologies used
for epigenetic analyses are already available (11–23).However,
all of these methods have some limitations, which renders them
unsuitable for some experimental setups. Additionally, many
technological parameters, such as the influence of DNA
sequence variations, amplification conditions and sensitivity
of the methods have not been investigated before. Here we
present a detailed analysis of various parameters of epigenetic
profiling and provide a substantially improved microarray-
based high-throughput technology for DNA methylation
profiling of DNA regions that span from hundreds of kilobases
to megabases. Eventually, this technology will be applied to
the entire human genome, as exemplified by the methylation
mapping of chromosomes 21 and 22 as reported here.

MATERIALS AND METHODS

Microarray fabrication and data processing

COMT and CpG island microarrays were printed on Corning
CMT-GAPSII slides (Corning Life Sciences, Acton, MA)
using a VersArray ChipWriter Pro System (Bio-Rad Labor-
atories, Hercules, CA). For the COMT array, we designed 384
oligonucleotides (Operon/Qiagen, US), each 50 bases long,
representing every restriction fragment flanked by HpaII,
Hin6I and AciI restriction sites. In addition, control DNA
fragments containing l phage, pBR322, FX174 and pUC57
sequences were spotted on the slide. Each oligonucleotide was
diluted to a 25 mM solution and spotted four times to give a
total of 1536 elements. In addition, 192 blank spots consisted
of SSC buffer and 48 spots contained Arabidopsis clones. The
human CpG island array contains 12 192 sequenced CpG
island clones derived from a CpG island library that was ori-
ginally created with MeCP2 DNA binding columns (24,25).

Hybridized arrays were scanned on a GenePix 4000A scan-
ner (Axon Instruments, Union City/CA) and analysed using
the GenePix 6.0 software. The GenePix PMT voltage for Cy3
and Cy5 channels were balanced with the histogram feature of
the scanner software to ensure a similar dynamic range for the
two channels. Final scans were taken at 10 mm resolution, and
images for each channel were saved as separate 16-bit TIFF
files. The emission signals for each channel were determined
by subtracting the local background from its corresponding
median average intensity. These raw data were either exported
into a custom Excel spreadsheet for subsequent data analysis
or directly imported into the Acuity 4.0 software (Axon
Instruments). The resulting datasets were normalized for the
normalization features (spike-DNAs) and for signal intensity
(Lowess normalization).

Profiling of unmethylated sites in the brain tissue of eight
adults was carried out using a tiling array spanning�12 Mb of
non-repetitive sequence of chromosome 21 and 22 (q arms),
with probes spaced on average every 35 bp center-to-center
(26). The genomic DNA from these individuals was cut with
HpaII and Hin6I, amplified and hybridized to the microarray
as described previously (26,27). Unprocessed total genomic

DNA from the same brain region (prefrontal cortex) was used
as a control. Unmethylated sites were defined using a two-step
analysis approach similar to the one used to determine tran-
scription factor binding sites in the chromatin immunoprecip-
itation (ChIP)-chip assay (27). First, a smoothing-window
Wilcoxon approach was applied to generate a P-value
graph for each individual where probe signal from the enriched
fraction was compared with the total genomic DNA in a one-
sided upper paired test. The window used in this report was
501 bp. Second, three thresholds were applied to determine the
boundaries of the unmethylated site: (i) an individual probe
threshold of P < 10�4 to determine if a probe is significantly
enriched in the unmethylated fraction compared with the
control total genomic DNA; (ii) the maximum distance
between the two positive probes set to 250 bp and (iii)
the minimal size of a site set to 1 bp. The graphs can be
downloaded from the internet (see Web resources). All
coordinates and annotation analysis were done on the April
2003 version of the genome.

Methylation -sensitive digestion of genomic
DNA (gDNA)

Prior to treatment with restriction enzymes, gDNA was sup-
plemented with ‘spike’-DNAs (different concentrations of l
and Arabidopsis fragments), which were used as controls for
signal normalization. For enrichment of the unmethylated
fraction, depending on the number of CpG dinucleotides to
be interrogated, several combinations of methylation-sensitive
enzymes, HpaII, Hin6I, AciI and HpyCH4IV, were used.
gDNA was cleaved with a cocktail of these enzymes (10 U/
ml in 2xY+/Tango buffer, Fermentas Life Sciences/Lithuania)
for 8 h at 37�C. For enrichment of the methylated fraction,
gDNA was cleaved by TasI or Csp6I (10 U/ml in G+-buffer,
Fermentas) for 8 h at 65�C (TasI) or at 37�C (Csp6I). After the
restriction reaction, TasI was inactivated by 0.5 M EDTA.

Adaptor–ligation

For the ligation step, gDNA was supplemented with 8 GE
MspI-cleaved pBR322 plasmid (1 GE ¼ 1.45 pg/ 1 mg
gDNA), which was used as control for a potential ligation
bias. The ends of the cleaved DNA fragments were ligated
to the unphosphorylated adaptors. Our adaptors contained a
sequence-specific protruding end, a non-target homologous
core sequence, a specific antisense-overhang that prevents
tandem repeat formation and blunt-end ligation, a ‘disruptor’
sequence that interrupts the original restriction sites after liga-
tion, a new non-palindromic Alw26I (BsmAI) restriction site
that enables the blunt-end cleavage of the adaptor from the
target sequences (e.g. for library enrichment) and a non-50-
complementary end. The CpG-overhang specific universal
adaptor ‘U-CG1’ for the unmethylated DNA fraction ligates
to DNA fragments generated by 11 CpG-methylation-
sensitive restriction enzymes HpaII, Hin6I (Hinp1I), Hpy-
CH4IV, Bsu15I (ClaI, BspDI), AciI (SsiI), Psp1406I (AclI),
Bsp119I (AsuII), Hin1I (AcyI, BsaHI), XmiI (AccI), NarI,
BstBI (FspII) and also TaqI and MspI, which are not affected
by methylation of the internal cytosine. The adaptor represents
the annealing product of the two primers U-CG1a,
50-CGTGGAGACTGACTACCAGAT-30, and U-CG1b,
50-AGTTACATCTGGTAGTCAGTCTCCA-30.
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The AATT-overhang specific adaptor ‘AATT-1’ for the
methylated DNA fraction fits to DNA ends produced by the
restriction enzyme TasI (TspEI), whereas the ‘TA-1’ adaptor
fits to ends produced by Csp6I, BfaI or MseI, respectively:

AATT-1a, 50-AATTGAGACTGACTACCAGAT-30; AAT-
T-1b, 50-AGTTACATCTGGTAGTCAGTCTC-30; TA-1a,
50-TATGAGACTGACTACCAGAT-30; and TA-1b: 50-AGT-
TACATCTGGTAGTCAGTCTCA-30.

All adapters were prepared by mixing equimolar amounts of
the primer pairs, incubating the mixture at 80�C for 5 min, and
then cooling it down to 4�C with 1�C/min. The double-
stranded adaptors [200 pmol/ml] were added at 0.1 pmol
per enzyme for each ng of the cleaved DNA (e.g. 0.3 pmol/
ng in a triple-digest HpaII/Hin6I/AciI). The ligation-mixture
with 400 ng template DNA was supplemented with 2 ml of 10·
ligation buffer (Fermentas), 1 ml ATP [10 mM] and water to
18 ml. The reaction was started in a thermal-cycler at 45�C for
10 min, chilled on ice and 2 ml T4 ligase (Fermentas) was
added. The ligation reaction was carried out at 22�C for 18 h,
followed by a heat-inactivation step at 65�C for 5 min. The
mixture was then cooled down to room temperature with 1�C/
min and stored at 4�C for subsequent procedures.

PCR

To control for a potential PCR bias, the DNA mixture was
supplemented with 2 GE FX174 plasmid (1 GE ¼ 1.8 pg of
FX174 corresponding to 1 mg gDNA) that was cut with -
HpyCH4IV and ligated to the adaptor. PCR amplifications
were conducted for up to 25 cycles. A standard aminoallyl-
PCR mixture included 400 ng of the ligate, 40 ml of 10·
reaction-buffer (Sigma), 42 ml MgCl2 [25 mM], 3 ml
aminoallyl-dNTP Mix [containing 15 mM aminoallyl-
dUTP, 10 mM dTTP and 25 mM each dCTP, dGTP and
dATP], 200 pmol primer (U-CG1a, AATT-1b or TA-1b,
respectively), 3 ml Taq enzyme (5 U/ml, NEB) and water to
a final volume of 400 ml. For PCR conditions and generation of
dye-coupled adaptor products see Supplementary Data.

Array hybridizations

Each microarray slide was prehybridized with a mixture con-
sisting of DIG Easy Hyb (Roche Diagnostics), 25 mg/ml tRNA
and 200 mg/ml BSA. The printed area was covered with the
prehybridization mixture under a coverslip for 1 h at 45�C. The
microarray slides were then washed in two changes of water
for 2 min at 45�C, followed by two wash-steps at room tem-
perature and a final wash-step in isopropanol for 1 min. The
slides were immediately blown dry with pressurized air and
stored for hybridization. The hybridization mixtures were then
pipetted onto the arrays and covered with Sigma Hybri-slips.
The microarrays were placed in hybridization chambers
(Corning Microarray Technologies, NY) and incubated on a
level surface for 16 h at 42�C for the COMT-arrays and
44–52�C for the CpG island microarrays in a covered water
bath. The coverslips were removed by immersion of the arrays
in a wash solution containing 2· SSC and 0.5% SDS (washing
buffer I). The array was washed twice for 15 min at 42–52�C in
washing buffer I (low stringency), followed by two wash-steps
in washing buffer II (0.5· SSC, 0.5% SDS), followed by 2 min
of incubation in water. The slides were then rinsed quickly
in isopropanol and finally dried with pressurized air.

The hybridization method used for the chromosome 21 and
22 tiling arrays was described before (26,27).

Whole genome amplification

Genomic DNA was amplified using the GenomiPhi Kit
(Amersham Biosciences) according to the manufacturer’s pro-
tocol. Briefly, 10 ng of gDNA (1 ml) was mixed with 9 ml of
sample buffer, denatured at 95�C for 3 min, cooled on ice and
then added to 9 ml of reaction buffer and 1 ml of Phi29 DNA
polymerase. The reaction was incubated at 30�C for 16 h and
then inactivated at 65�C for 10 min.

Bisulfite sequencing

The methylation status of a number of CpG islands were
analysed by direct sequencing of sodium bisulphite modified
gDNA (9). gDNA samples were subjected to bisulfite modi-
fication using a standard protocol (28). The primer sequences,
PCR conditions and cloning methods are provided in the
Supplementary Data.

Genomic DNA

Genomic DNA from all tissues was purified using standard
laboratory methods (Phenol–Chloroform or Qiagen Blood and
Cell DNA Midi columns). To avoid cross reactivity of amine
groups with the aminoallyl-labeling procedure, DNA samples
were stored in 0.5 M POPSO buffer (pH 8.0) instead of
Tris–EDTA. Male placental DNA was purchased from
Sigma and the post mortem brain samples were provided
by the Stanley Medical Research Institute. All parts of the
study were approved by the CAMH review/ethics board.

Web resources

All chromosome 21/22 tiling array data can be viewed in the
UCSC genome browser available via the methylation database
at www.epigenomics.ca. Additionally, the complete tiling
array source data plus graphs that can be viewed in the Integ-
rated Genome Browser (Affymetrix; www.affymetrix.
com/support/developer/downloads/TilingArrayTools/index.affx)
and can be downloaded at http://transcriptome.affymetrix.com/
download/DataMethPaper (case sensitive). All coordinates and
annotation analysis was done on the April 2003 version of the
genome.SNPdatawerederived fromtheSNPconsortium,www.
ncbi.nlm.nih.gov/SNP.

OMIMnumbersarederivedfromOnlineMendelianInheritance
in Man (OMIM), http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db¼OMIM. Genome annotations were derived from the
ReSeq database, http://www.ncbi.nlm.nih.gov/RefSeq/ and the
UCSC database, http://genome.ucsc.edu/cgi-bin/hgGateway.

RESULTS

Enrichment of the unmethylated fraction of gDNA

The strategy for enrichment of unmethylated portions of the
genome is presented in Figure 1. gDNA is digested with
methylation-sensitive restriction enzymes (Figure 1, middle
panel). Whereas methylated restriction sites remain
unaltered, the sites containing unmethylated CpGs are
cleaved by the enzymes, and DNA fragments with 50-CpG
protruding ends are generated. The proportion of interrogated
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CpG sites depends on the methylation-sensitive restriction
enzymes used for the restriction of DNA. Based on our
analysis of the CpG dinucleotides within the sites of
methylation-sensitive restriction enzymes across several
megabases of human gDNA, the combination of three
enzymes, HpaII, Hin6I and AciI, should interrogate �32%
of all CpG dinucleotides in mammalian DNA (Table 1). The
addition of two other relatively inexpensive methylation-
sensitive CpG-overhang generating enzymes, HpyCH4IV
and Hin1I, would theoretically increase the proportion of
interrogated CpGs to �41%. Depending on the
microarray-type, in our experiments we usually use either
a single enzyme or a ‘cocktail’ of up to three restriction
enzymes. The application of a set of enzymes might be
disadvantageous for the analysis of GC-rich regions as
such a strategy would produce restriction fragments too
short for an efficient hybridization. In the latter case, it is
advisable to use a smaller number of restriction enzymes.
Based on our experimental results and computer-based
analysis of 100 randomly selected CpG islands, the most
suitable restriction enzymes are Hin6I and HpaII, followed
by AciI and Hin1I (Table 1). In contrast, for regular DNA

sequences, double- or triple-digest combinations of AciI,
HpaII, HpyCH4IV and Hin6I are recommended.

After the digestion of gDNA, the double-stranded adaptor
U-CG1 is ligated to the CpG-overhangs. At this point, it is
expected that most of the relatively short (<1.5 kb) and amp-
lifiable DNA fragments derive from the unmethylated DNA
regions. To some extent, the length of the amplified fragments
depends on the primer annealing temperature of the PCR
reaction (Figure 2A). Some ligation fragments, however,
may still contain methylated cytosines. A proportion of
such fragments can be eliminated by treatment with
McrBC, which cleaves DNA containing metC and will not
act upon unmethylated DNA. McrBC restriction sites consist
of two half-sites of the form (G/A)metC, which can be separ-
ated by up to 3 kb (29,30). Hence, as can be seen in Figure 2B,
a proportion of DNA fragments with two or more (G/A)metC
within the restriction fragment are cleaved and therefore
deleted from the subsequent enrichment steps. The remaining
pool of unmethylated DNA fragments is then enriched by
aminoallyl-PCR amplification that uses primers complement-
ary to the adaptor U-CG1. One important advantage of using
protruding ends in the adaptor–ligation step is that degraded

Figure 1. Schematic outline of the microarray-based method for identification of DNA methylation differences and DNA polymorphisms in genomic DNA. Left
panel: analysis ofDNAsequence variation.Middle panel: themain strategy of themethod is based on enrichment of unmethylatedDNA fragments. DNAsamples are
cleaved by methylation-sensitive restriction endonucleases, and the resulting DNA fragments are then selectively enriched by adaptor-specific aminoallyl-PCR’s,
labelled and hybridized to microarrays. Right panel: alternative procedure to enrich the hypermethylated DNA fraction.
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gDNA fragments (which are common in human post mortem
tissues) will not be ligated and amplified, and therefore will not
interfere with DNA methylation analysis.

Most previous microarray-based epigenetic studies target
hypermethylated DNA sequences (15,17,31,32); however,
interrogation of the unmethylated fraction is significantly
more informative. For example, the 100 kb region of chromo-
some 22 interrogated by our COMT oligonucleotide
array (TXNRD2-COMT-ARVCF region; Microarray Design),
contains 2193 methylatable cytosines. Enrichment of the
unmethylated fraction can generate up to 401 amplicons of
sufficient size (50–1.5 kb), each representing the methylation
status of at least one cytosine. In contrast, the combination of
MseI (+BsuI, to remove unmethylated fragments), the most
frequently used enzymes for enrichment of the hypermethyl-
ated fraction (15,17,31,32), would produce 227 amplicons.
Seventy-seven amplicons would either contain no CpG dinuc-
leotides or would be too short to stringently hybridize to a
microarray. Of the remaining 150 fragments, 144 contain
multiple CpGs; hence, they are not fully informative since a
single unmethylated BsuI restriction site would eliminate the
entire fragment from the eventual amplification. Overall, only
6 of the 2193 methylatable cytosines are truly informative,
and none of these CpG dinucleotides are targeted by BsuI.
Computer-based analysis of 50 randomly selected CpG island
sequences revealed that the unmethylated fraction derived
from HpaII cleavage results in �22 times more fragments
(19.9 fragments/kb) of the suitable size range (50 bp to
1.5 kb) than the hypermethylated fraction (0.9 fragments/kb)
using MseI.

Nevertheless, analysis of the hypermethylated DNA frac-
tion may also add some new information to the methylation

profiles, especially in the case of hypermethylated CpG islands
or when the overall level of methylation in the genome is low
(e.g. in insects). Thus, we developed an additional, modified
method to previously published methods of enrichment of
methylated sequences to complement our data from the
unmethylated fraction (Figure 1, right panel). This enrichment
method relies on cleavage with the 4 bp frequent cutters TasI
(AATT#) and/or Csp6I (G#TAC). Alternatively, BfaI or MseI
can be used in combination with the Csp6I-specific adaptor.
All four enzymes produce DNA fragments in mammalian
genomes of an average length 400–750 bp. The recognition
sequences of TasI and Csp6I are infrequent within GC-rich
regions, leaving most CpG-islands intact. The analysis of 50
randomly selected CpG islands and several megabases of dif-
ferent chromosomes revealed that Csp6I would produce more
informative fragments in CpG islands than a digest with MseI,
whereas TasI and MseI produce informative fragments pref-
erentially in DNA regions outside of CpG islands
(Table 1). After ligation to the AATT- and TA-overhang spe-
cific adaptors ‘AATT-1’ and ‘TA-1’, the un- and hypo-
methylated ligation products are eliminated from the reaction
by cleavage with a cocktail of methylation-sensitive restriction
enzymes such as HpaII, HhaI (Hin6I), HpyCH4IV, Hin1I and
AciI. Compared with a single digestion with BstUI (17), a
cocktail of restriction enzymes will delete a higher percentage
of unmethylated sequences from the DNA fraction. The
remaining pool of mostly hypermethylated DNA fragments
is subsequently enriched by the aminoallyl-PCR amplification
as described for the unmethylated fraction, and then hybrid-
ized to a microarray (Figure 2C).

Microarray design

Various aspects of the microarray-based DNA modification
profiling were investigated on the oligonucleotide microarray
that interrogates�100 kb fragment on 22q11.2 (Figure 3A). In
addition to the catechol-O-methyltransferase (COMT, [MIM
116790]), this chromosomal region contains also the gene
encoding the thioredoxin reductase 3 gene (TXNRD2, [MIM
606448]) and the armadillo repeat gene deleted in velocardi-
ofacial syndrome (ARVCF, [MIM 602269]). For maximal
informativeness, it is necessary to design oligonucleotides
according to the restriction sites of the methylation sensitive
endonucleases used for the treatment of gDNA (Figure 3B).
For the COMT array, 384 oligonucleotides were designed,
each 50 nucleotides long, representing every restriction frag-
ment flanked by HpaII, Hin6I and AciI restriction sites. In
addition, control DNA fragments containing l phage,
pBR322, FX174, pUC57 and Arabidopsis sequences were
spotted on the array (Materials and Methods). Additionally,
we used 12 192 element containing CpG island- and
high-density chromosome 21/22-microarrays (Materials and
Methods).

Detection of confounding effects of DNA sequence
variation

Since restriction enzymes are used in the enrichment of dif-
ferentially modified DNA fractions, DNA sequence variation
may simulate epigenetic differences. However, until now,
microarray methods used in epigenetic studies have not been

Table 1. Enzymes that generate protruding ends in the restriction fragments,

which are complementary to the adaptors U-CG1, TA-1 and AATT-1

Enzymes Recognition
sequence

Percentage
coverage
of CpGs in
human
gDNA (%)

Number of
fragments
(per kb) in
CpG islands*

Number of
fragments
(per kb) in
non-CpG
islands*

HpaII (BsiSI) CCGG 8.6 3.98 1.18
Hin6I (HinP1I) GCGC 6.4 3.98 0.61
AciI (SsiI) CCGC 17.4 3.23 1.79

Hin1I
(AcyI, BsaHI)

GPuCGPyC 2.0 1.92 0.11

HpyCH4IV ACGT 6.6 1.31 1.08
Bsu15I
(ClaI, BspDI)

ATCGAT 0.2 <0.01 0.02

NarI (MlyI) GGCGCC 0.6 1.08 <0.01
Bsp119I
(BstBI, AsuII)

TTCGAA 0.1 0.11 <0.01

Psp1406I
(AclI, PspI)

AACGTT 0.3 <0.01 0.05

XmiI (AccI) GTMKAC 0.1 0.19 0.34
TasI AATT na 0.80 2.88

Csp6I GTAC na 2.23 1.41
MseI TTAA na 0.80 2.88

BfaI CTAG na 1.56 1.55

Asterisk (*) indicates the number of 50 bp to 1.5 kb long (‘informative’) frag-
ments, derived from severalMb of randomly selected CpG island and non-CpG
island sequences on chromosomes 1, 2, 4, 5, 6, 9, 17, 19 and 20; bold numbers
represent themost informative enzymes; na ¼ not applicable;M ¼ Adenineor
Cytosine; K ¼ Guanine or Thymine.
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differentiating between real DNA methylation differences
and single nucleotide polymorphisms (SNPs) within the
restriction sites of the applied restriction enzymes. This prob-
lem applies to some extent also to the metC antibody-based
strategy (22), which does not differentiate unmethylated CpG
and TpG dinucleotides. In order to exclude the impact of DNA
sequence variation, two approaches are suggested. One is to
check the available SNP databases in order to identify the
DNA sequence variation within the restriction sites of the
enzymes used. For example, our 100 kb COMT array contains
a total of 273 SNPs (SNPper, http://snpper.chip.org/bio/
snpper-enter), of which 101 (37%) reside within CpG dinuc-
leotides and 55 (20%) are located within the restriction site of
the four main enzymes used to interrogate methylation

patterns, HpaII, Hin6I, AciI and HpyCH4IV. The majority
of these CpG-SNPs were located in AciI and HpaII restriction
sites, with Hin6I and HpyCh4IV sites containing fewer
polymorphisms (data not shown). Another approach to test
for DNA polymorphisms is the use of restriction endonuclease
isoschizomers with different sensitivity to CpG methylation.
However, this approach is currently only possible for HpaII/
MspI as there are no isoschizomers for most other methylation
sensitive restriction enzymes.

The third approach to differentiate the DNA sequence
effects from the genuine epigenetic differences consists of
performing an identical microarray experiment on the
same DNA sample that has been stripped of all methylated
cytosines. Our protocol utilizes the Phi29 DNA polymerase

Figure 2. Selective enrichment of restriction fragments with the universal adaptor U-CG1. (A) Scatter plot that shows a comparison of ligation products treated with
McrBC versus the untreated sample on the COMT array. McrBC treated fragments that contained at least two methylated cytosines were cleaved and could not be
amplified in the following adaptor-PCR, resulting in reduced signal intensities in the Cy5 channel. (B) Co-hybridization of enriched unmethylated (Figure 1, middle
panel) and hypermethylated (Figure 1, right panel) fragments derived from the sameDNA source to a CpG islandmicroarray. A large portion of amplicons is present
only in one of the enriched fractions (marked black for log >0.3 black, green for log <�0.3). Although the hypermethylated fraction hybridized to �75% of the
microarray spots, based on our DNA sequence analysis, only a small fraction of them provide epigenetic information in comparison with the unmethylated fraction.
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to amplify whole genomic DNA, which creates a copy of
the genome with all methylated cytosines replaced by
unmethylated cytosines. Amplified DNA samples are
then subjected to the same steps as depicted in Figure 1
and hybridized on the microarrays. In this experiment all
of the outliers must be a result of DNA sequence variations
within the restriction sites of the enzymes used. These data
can then be plotted against the DNA methylation data,
which are assayed in parallel (Figure 4). In six experiments
that used amplified genomic DNA, the number of SNP-
based outliers (threshold log-ratio <�0.3, >0.3) ranged
from 272 to 741 (432 ± 165, mean ± SD), or 2.2–6.1%
of 12 192 CpG islands. Out of these, 72–234 (120 ± 66,
mean ± SD) were initially identified as DNA methylation
differences in microarray experiments using the unmethyl-
ated fraction derived from the triple-digest with HpaII,
AciI and Hin6I. From the CpG island array studies, our
estimate is that 10–30% of the outliers detected in DNA
methylation experiment could be due to DNA sequence
variation.

Reproducibility

To test the reproducibility of the method, a genomic DNA
sample was split and subjected to the procedure of enrichment
of the unmethylated fraction. The resulting amplification pro-
ducts were labelled with Cy5 and Cy3 and then co-hybridized
on the COMT array, which contains probes that flank the
HpaII, Hin6I and AciI restriction fragments around the
COMT gene. The Cy3 and Cy5 hybridization intensities exhib-
ited very similar values (R2 ¼ 0.997; Figure 5A). Analogous
experiments, including switch dye hybridizations, were
repeated several times also with the CpG island arrays and
in all cases were highly reproducible (R2 > 0.97).

Another critical factor in the amplification of unmethylated
or hypermethylated DNA fragments is to ensure that no
sequence specific bias is introduced. The rate of amplification
of repetitive sequences generally declines faster than that of

Figure 3. (A) Structure and GC-content of the chromosomal region on human chromosome 22q11.2 that spans the catechol-o-methyltransferase gene (COMT), the
thioredoxin reductase 2 gene (TXNRD2) and the armadillo repeat gene deleted in VCFS (ARVCF). Vertical black bars represent exons. (B) To determine the
methylation profile of the 100 kb TXNRD2-COMT-ARVCF region, 384 oligonucleotides (50mers, black horizontal bars) were designed based on the restriction sites
for themethylation-sensitive endonucleases,HpaII,Hin6I andAciI (additional alternative enzymes areHpyCH4IVorHin1I).Dependingon themethylation status of
the CpG-dinucleotides several combinations of amplicons (grey horizontal bars) can potentially hybridize to the oligonucleotides. (C) Typical hybridization patterns
of the hypomethylated fraction of human gDNA on the COMT oligonucleotide-microarray. As discussed in Results, the complexity and informativeness of the
hybridization signals increases with increasing number of methylation-sensitive restriction enzymes.

Figure 4. Combined methylation- and SNP-analysis on a CpG island micro-
array. The data of two separate hybridizations of DNA samples derived from
post mortem brain of two individuals are plotted against each other. The Y-axis
contains the data derived from a methylation analysis (triple-cleavage with
HpaII, Hin6I and AciI), whereas the X-axis contains the SNP data derived from
the hybridization of the same DNA samples, which were subjected to the entire
genome amplification prior to cleavage by themethylation-sensitive restriction
enzymes (Materials and Methods). Scale: log (Cy5/Cy3); an increased log-
value on the Y-axis is indicated by red versus a decreased log-value represented
by green. Significant outliers (log-ratio <�0.3, >0.3, 2-fold difference) can be
classified into four clusters (S ¼ SNPs, M ¼ DNA methylation differences),
enabling the differentiation of epigenetic differences and nucleotide
polymorphisms between the test-samples. Amp ¼ Whole-genome amplified
sample.
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less abundant fragments in the later cycles of PCR (33). With
increasing amplification cycles, repetitive DNA strands reach
relatively high concentration and begin re-annealing to each
other during the steps below the DNAmelting temperature. To
avoid this, a two-temperature PCR that uses a combined high-
temperature elongation–annealing step was applied. A series
of experiments were performed investigating how the number
of PCR cycles would affect the hybridization patterns. As can
be seen in Figure 5B, the relative intensities of the hybridiza-
tion signals of both single copy sequences and repetitive DNA
fragments, were similar in the range of 20–30 amplification
cycles (R2 ¼ 0.991). Only when increasing the cycle numbers
beyond 40 cycles was a biased amplification of some DNA
sequences observed (data not shown).

Sensitivity

To test if differentially represented DNA fragments in two
different DNA samples can be detected by this method,
prior to methylation-sensitive cleavage, human gDNA was
‘spiked’ with unmethylated heterologous DNA, l phage
and pBR322 plasmid (Figure 5C). Each sample was supple-
mented with a different amount of spike-DNA, therefore
mimicking differentially methylated sequences. The exact
amount of l and pBR322 corresponded to increasing numbers
of human genomic equivalents (1 GE of ‘spike’ DNA equals
16.28 pg l/mg gDNA and 1.45 pg/mg gDNA of pBR322,
respectively). Hence, each of the experiments compared the
intensities generated by 1 GE of l plus 128 GE of pBR322
(Y-axis) versus 16 GE of l plus 8 GE of pBR322 (X-axis).
While the plotted signal intensities of the human gDNA
sequences are positioned on or close to the regression line
(indicating no methylation difference), the l and pBR322
fragments were identified as outliers. The average signal

Figure 5. Reproducibility and sensitivity of themethod. (A)ACOMTmicroarray
scatter plot representing two sets of amplification products derived from the same
DNA source but produced at different time points by different researchers. The
high-correlation coefficient of signal intensities demonstrates a high reproduci-
bility of the method. (B) Influence of the PCR cycle number. Scatter plot
diagrams show hybridization signal intensities of the unmethylated fraction that
was amplified using 20 PCR cycles (Cy3 channel) and 30 cycles (Cy5 channel).
Amplification products of eachPCRwere co-hybridized to theCOMTmicroarray
that contained oligonucleotides representing single copy sequences (closed
circles), partially repetitive sequences (grey squares; 15–99 copies/genome)
and highly repetitive DNA fragments (open squares; >100 copies/genome), such
asALUandLINE repeats. (C) Scatter plot representing the unmethylated fraction
ofhumangDNA‘spiked’withdifferent amountsofcontrolDNA.Thetest samples
were hybridized to the COMT array and contained either a 16-fold excess of
l DNA (16 genome equivalents [GE] versus 1 GE; 10 fragments) or a 16-fold
excess of pBR322 (128 GE versus 8 GE; 2 fragments), respectively. The ampli-
cons of the spiked DNA (representing unmethylated DNA) can be easily
distinguished asoutliers;whereas the signals representinggDNAare locatedclose
to the regression line. Median signal intensities of different length oligonucleo-
tides (40–50 bases) that target a specific HpaII restriction fragment in l DNA
reveal that the lengthof spottedsequencesdirectly influences thespot intensityand
therefore the sensitivity of the microarray. (D) Sensitivity of the CpG-island
microarray hybridization. Control amplicon (2mg) (postmortem brain, unmethy-
lated fraction)was labelledwithCy5andco-hybridizedwith2mg (0%difference),
1.9mg (5%difference), 1.8mg (10%difference), 1.5mg (25%difference) or 1.0mg
(50% difference) of Cy3-labelled amplicon. For each hybridization to a COMT
array, the regression lines represent the overall intensity that mimics methylation
differences over the entire sample. The decrease of amount ofDNA is reflected in
the angle of the regression lines, which deviated by 5–7% from the expected
values.
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intensity ratio of l oligonucleotides was 15.4, which is very
close to the ratio of spiked-DNA (16:1). The intensity values
for pBR322 were not as linear and exhibited a 6.5- to 10-fold
difference (expected the same ratio of 1:16), most likely due to
saturation effects of the hybridization.

In order to determine the sensitivity of the hybridization per
se, a control amplicon DNA was compared with itself but by
decreasing the amounts of DNA by 5, 10, 25 and 50%. On the
global level, the regression lines [y ¼ f(x)] reflected reprodu-
cible differences of the amount of amplicon DNA used in the
hybridization and varied by 5–7% from the expected values
(Figure 5D). Individual sites exhibited a lower accuracy,
which depended on the signal intensity, i.e. the stronger the
signal, the closer the observed spot intensity was to the expec-
ted one. The rate of false outliers (log-ratio <�0.3; >0.3; 2-fold
difference) was on average 3%. Usually, replication of
microarray experiments reduced the degree of aberration
(log-ratio <�0.3; >0.3) below 2% for all types of microarrays.

Examples of DNA methylation profiles

Identification of DNAmodification differences is provided in a
series of examples below. The COMT oligonucleotide array
was used to identify DNA methylation changes in a brain
tumour (Figure 6A). In contrast to the pair of control brain
DNA samples, where hybridization signals are close to the
regression line (indicating similar DNA methylation patterns),
a visible proportion of the hybridization signals originating
from the unmethylated DNA fraction of the brain tumour
deviates from the regression line. More subtle changes in
DNA methylation patterns have been identified when post
mortem brain tissues of healthy individuals were compared
with the same tissues from schizophrenia patients (A. Schu-
macher, A. Petronis, manuscript in preparation; representative
example is shown in Figure 6B). The differences of the cancer
and psychosis studies show that diseases other than cancer
may reveal more subtle epigenetic differences, and therefore,
the informativeness and sensitivity of the epigenetic profiling
method is of critical importance.

Another application of the technology includes epigenetic
profiling of different tissues. One example of tissue specific
effects is shown using the CpG island microarrays that contain
12 192 CpG island clones of whom 8025 represent unique
sequences. CpG islands tend to be found in many promoter
sequences and their methylation has profound effects on gene

silencing in mammalian genomes. The scatter plot shows two
distinct spot areas, which represent predominantly unmethyl-
ated fragments in placenta (yellow spots) and brain (orange
spots), respectively (Figure 7A). About 11% of the CpG island
fragments exhibited 2-fold or more signal intensity difference
between the two tissues. Some of the strongest brain-specific
signals could be identified for CpG islands associated
with neuronal genes such as DPYSL5, FABP7, DIRAS2,
GRIN3A, SLC24A3 and DSCAML1, whereas strong placenta-
specific outliers were associated with genes expressed in
placenta, such as PCM1, CCND1, HA-1 and ADAMTSL1.
Overall, analysis revealed that brain DNA harboured notably
more unmethylated CpG islands than placenta DNA.

Verification of detected methylation differences

Several loci that displayed methylation differences in our
experiments were selected for verification by the sodium bisul-
fite modification mapping of methylated cytosines (Materials
andMethods). The technique is based on the reaction of gDNA
with sodium bisulfite under conditions such that cytosine is
deaminated to uracil but 5-methylcytosine remains unaltered.
In the sequencing of amplified products, all uracil and thymine
residues are detected as thymine and only metC residues remain
as cytosine. The sites for the methylation-sensitive restriction
enzymes used in our experiments showed the expected
methylation difference across the DNA samples, as exempli-
fied for CpG island clones located in the promoter region
of galectin-1 and in the promoter region of a brain-specific
transcript CR606704 (Figure 7B and C).

Chromosome-wide mapping of DNA methylation
differences

Analysis of the unmethylated fraction from brain specific
DNA of eight adults using a chromosome 21/22 tiling array
detected 488–747 unmethylated sites per sample (Table 2).
This number increased to 977 in a merged map, showing that
many sites were common between different individuals. The
vast majority of the sites (�90%) were positioned outside of
the 50 ends and 50 flanking regions of the genes consistent with
abundant transcriptional activity and a significant fraction of
transcription factor binding sites found outside of known
annotations (26,27,34). The unmethylated sites outside of
the 50 ends of known genes were about equally distributed

Figure 6.Applications of the epigenetic profiling technology. (A) Changes of methylation profiles at TXNRD2-COMT-ARVCF in a brain tumour. The data from two
different microarrays experiments are superimposed over each other. The analysis of two post mortem brain samples (closed dots) reveals no major difference in
methylation levels, whereas the signal intensities vary significantly in the brain tumour (grey dots) when compared with the normal brain. (B) The comparison of
DNA methylation profiles using the COMT microarray in brain tissue of a healthy control and a schizophrenia patient displays subtle epigenetic differences.
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between sites residing within introns of known genes and
outside of the gene boundaries. Interestingly, while some
genes, like BCR, showed a large number of sites inside
the gene boundaries, some loci, like C21ORF55 spanning
�150 kb, were essentially devoid of internal unmethylated
sites and in some cases, such as the SIM2 locus, the unmethyl-
ated sites were limited to the first intron (Figure 8A–C). Such
intragenic methylation may inhibit inappropriate transcrip-
tional initiation at cryptic sites (35) or may serve as regulators
of alternate transcripts as can be seen for SIM2. Overall,

unmethylated sites detected in this study cover �0.47 Mb
or �4% of the 12 Mb of non-repetitive sequences of chromo-
somes 21 and 22 interrogated in the combined map of all eight
individuals with an average of 0.28 Mb (2.3%) in any given
individual. Maps of the methylation patterns (average value
of the eight tested individuals) of the q-arms of chromosome
21 and 22 are shown in Figure 9A–B. Detailed maps of all
individuals for chromosome 21 and 22, linked to the UCSC
Genome Browser (http://genome.ucsc.edu) are also available
on our web-based methylation database (Web Recourses).

Figure 7. Examples of applications using aCpG islandmicroarray. (A) Hybridization of the unmethylated fraction of placentaDNAand postmortembrainDNA to a
CpG island array. Two pools of CpG island elements could be identified, which display extensively different methylation levels between these tissues (Note: some of
the identified differences could be due to DNA sequence variation). (B) To validate the identified methylation differences, several CpG islands were subjected to
bisulfitemodification basedmappingofmethylated cytosines as exemplified forCpG island clones 22_B_12 (promoter regionofGalectin-1) and52_C_03 (promoter
region of a brain-specific transcript, CR606704). The top sequence shows the reverse strand (�) of the original restriction sites, the bottom sequence displays the
bisulfite-modified DNA. For each bisulfite-modified CpG-island, 8–10 clones were sequenced per tissue. Sequence 52_C_03 revealed several fully methylated
CpG’s in placenta, which were unmethylated in brain. In contrast, clone 22_B_12 showed subtler methylation differences (15–100%), depending on the position of
CpG-dinucleotide. (C)Methylation patterns of clones 22B_12 and 52_C_03 derived from bisulfite sequencing of 10–12 clones per tissue. The yellow boxes indicate
CpG dinucleotides that are shown in the sequenced graph (Figure 7B).

Table 2. Interindividual differences and distribution of the detected unmethylated sites with respect to the known genes as defined by the combined set of RefSeq and

UCSC known genes for each brain DNA sample (M17–M25) and the merged map

Individual 30-flanking 30ter 50-flanking 50flanking–30flanking 50ter Distal Internal Total Site coverage (bp)

#M17 chr21/22 13/12 2/16 8/20 2/4 10/20 64/122 98/97 488 64943/134730
%Total 5.1 3.7 5.7 1.2 6.1 38.1 40.0
#M18 chr21/22 17/22 9/15 13/29 3/3 16/28 95/191 134/152 727 98456/236797
%Total 5.4 3.3 5.8 0.8 6.1 39.3 39.3
#M19 chr21/22 15/24 11/14 12/27 2/5 14/21 86/173 119/130 653 88290/221721
%Total 6.0 3.8 6.0 1.1 5.4 39.7 38.1
#M21 chr21/22 20/24 12/18 15/29 2/5 14/22 102/184 143/157 747 109595/252347
%Total 5.9 4.0 5.9 0.9 4.8 38.3 40.2
#M22 chr21/22 18/20 8/17 9/29 3/6 15/24 86/169 127/143 674 87604/213453
%Total 5.6 3.7 5.6 1.3 5.8 37.8 40.1
#M23 chr21/22 12/15 4/13 10/25 2/3 10/21 68/150 101/111 545 70912/163322
%Total 5.0 3.1 6.4 0.9 5.7 40.0 38.9
#M24 chr21/22 14/18 5/12 7/20 4/3 10/20 61/158 88/107 527 65639/187229
%Total 6.1 3.2 5.1 1.3 5.7 41.6 37.0
#M25 chr21/22 17/15 7/13 10/18 3/3 9/22 65/171 102/97 552 69937/171073
%Total 5.8 3.6 5.1 1.1 5.6 42.8 36.1
Merged chr21/22 26/28 13/22 19/36 4/9 19/34 142/237 187/201 977 152148/314374
%Total 5.5 3.6 5.6 1.3 5.4 38.8 39.7

‘50ter’ or ‘30ter’ refers to a 50 or 30 terminal site internal andwithin 1 kb of a gene boundary ‘50flanking’ or ‘30flanking’ refers to a site outside andwithin 5 kb of a gene
boundary; ‘internal’ refers to an intronic site and ‘distal’ refers to an intergenic site outside of the�5 kb/+1 kb boundaries. A site can also be both 50 and 30 flanking in
a gene rich region and referred as ‘50flanking–30flanking’.
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A comparison of the hypomethylation tracks with data from
the Affymetrix transcriptome project (26,36) indicates that
many of the unmethylated chromosomal regions overlap
with mapped transcriptional active regions (Figure 9A–C, bot-
tom tracks). These DNA methylation data complement exist-
ing studies on transcriptional activity and histone
modifications on human chromosomes 21 and 22 (37). We
found that in the majority of cases, specific histone modifica-
tion patterns reported by Bernstein et al. (37) for the human
hepatoma cell line HepG2 overlapped notably with the
observed DNA methylation patterns. An example is shown
in Figure 9C for the PEX26 gene that is ubiquitously tran-
scribed in most tissues. The gene harbours an extensively
unmethylated CpG rich region in its promoter. The compar-
ison of the different epigenetic profiles of both studies shows
that the same genomic region was also highly acetylated at
Lysine 9 and 14 of histone 3 (H3), accompanied with H3
di- and trimethylation of Lysine 4. A comparison of histone
modification tracks and our hypomethylation patterns for the
q-arms of chromosome 21 and 22 revealed that H3 acetylation
and Lys4 methylation usually correlated with unmethylated
CpGs.

DISCUSSION

Microarray based technology for DNA modification analysis
enables the highly parallel screening of numerous restriction

fragments representing DNA methylation profiles over large
segments of gDNA. Building on the principles described in
earlier publications (11–23) our method addresses a series of
critical issues and exhibits several advantages. An earlier
method (18) used a sucrose gradient to enrich the unmethyl-
ated DNA fraction. This method, however, requires a large
amount of DNA template and is rather imprecise in terms
of the upper limit of the fragments that are subjected to
hybridization. Other microarray methods for DNA methyla-
tion analysis can be categorized into three main classes which
are based on: (i) identification of bisulfite induced C!T trans-
itions (11–13,38,39), (ii) cleavage of gDNA by methylation-
sensitive restriction enzymes and (iii) immunocapturing with
antibodies against methylated cytosines. In the bisulfite arrays,
each tested CpG is represented by a pair of either C(G) or T(A)
nucleotides. The arrays contain oligonucleotides that measure
the C(G)/T(A) ratio in the bisulfite treated DNA (correspond-
ing to metC/C in the native DNA). Although informative and
precise, these microarrays can contain only a limited number
of oligonucleotides because treatment with bisulfite degener-
ates the 4 nt code, resulting in a loss of specificity for a large
portion of the genome. For example, after bisulfite treatment
all of the possible 16 permutations of a four base sequence
containing unmethylated C and T (CCCC, CTCT, CCCT,
CCTT, TCTC, TTTC, TTTT and so on) will become identical
TTTT. The bisulfite method is also laborious and cannot be
easily applied to profile a large set of samples. Furthermore, it
is difficult to design suitable oligonucleotides that would

Figure 8. Profiles of unmethylated sites in three loci on human chromosomes 21 and 22 (501bpwindow,Materials andMethods):BCR (A),C21ORF55 (B) andSIM2
(C) for human brain DNA (average of eight individuals, M17-M25). The graphs are based on P-values for each individual interrogation that show the significance of
the enrichment in the unmethylated fraction versus total gDNA. The P-values were converted to the (�10 log10) scale, such that, for example, P-value of 10�4

becomes 40. The vertical axes are adjusted to represent probes in the 40–120 range (P-values of 10�4–10�12), thus only probes that pass P < 10�4 threshold are
shown. Enlarged is a part of the chr 22q11.21 region (181 bp window), spanning breakpoints found in the generation of the two alternative forms of the Philadelphia
chromosome translocation. C ¼ gDNA control.
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exhibit similar melting temperatures since the specificity of
base discrimination varies considerably (12). Using our
approach, arrays can contain an almost unlimited number of
oligonucleotides: coverage can range from individual genes to
entire chromosomes represented by millions of oligonuc-
leotides on glass chips. Whole genome tiling arrays are already
available for Arabidopsis thaliana and Escherichia coli, and
will soon be available for the entire human genome.

Restriction enzyme based methods are used to enrich either
the hypermethylated or unmethylated fraction of gDNA.

Methods relying on the enrichment and detection of hyper-
methylated DNA have predominantly been used to identify
abnormally methylated CpG islands in malignant cells (15–
17,31). Although this strategy seems to be useful for detecting
major epigenetic changes in some regions of the genome, the
overall proportion of interrogated CpG sites is substantially
lower compared with that achieved using approaches based
on the analysis of the unmethylated fraction. As shown in
Results, we have estimated that interrogation of the unmethyl-
ated fraction of gDNA could be up to several hundred

Figure 9.Genomic views showing unmethylated regions on chromosomes 21 and 22. (A andB): The top tracks (dark red) in the two chromosomal graphs shows the
average amount of hypomethylation in the brain cortex of eight adult individuals. Also displayed are known genes (dark blue) and CpG islands (green). The bottom
tracks display transcriptome data derived from 11 different tissues from the Affymetrix transcriptome phase 2 study (36). The track is coloured blue in areas that are
thought to be transcribed at a statistically significant level. Regions that have a significant homology to other chromosomal regions or that overlap putative
pseudogenes are coloured in lighter shades of blue. All other regions of the track are colored brown. (C) Enlarged is a part of chromosome 22q11.21, containing the
peroxisomebiogenesis factor 26 (PEX26,MIM608666) that shows correlation between histonemodifications and unmethylatedDNA in its promoter region. The top
three tracks represent histone modification data for H3 Lys4 dimethylation (orange bar), H3 Lys4 trimethylation (blue bar) and H3 Lys9/14 acetylation (yellow bar)
(37). Underneath are the tracks for the average methylation patterns (unmethylated sites) observed in brain and the individual methylation patterns of all tested
individuals (dark red). It is noteworthy that methylation patterns exhibit some interindividual differences (indicated by arrows).
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folds more efficient than analysing the hypermethylated frac-
tion. Furthermore, since unmethylated cytosines are less
abundant in the genome than methylated cytosines (depending
on the tissue, 70–90% of cytosines are methylated), analysis of
the smaller unmethylated fraction of gDNA is more sensitive
to detect subtle changes. For example, an increase of 10%
from the normal density of metC would result in a 100%
(from 20 to 10%) difference in the unmethylated fraction,
but only a 12% (from 80 to 90%) difference in the hyper-
methylated fraction of gDNA. The unmethylated fraction has
been used in some approaches employing class II microarray
methods, for instance by using the methylation-specific
McrBC enzyme (23) to deplete the hypermethylated fraction.
However, the remaining unmethylated DNA fragments
(>1 kb) have to be gel-purified, requiring large amounts of
starting material. Additionally, the McrBC method may not be
able to differentiate between dense and sparse methylation
within relatively short DNA fragments. For example, the
2 kb human COMT promoter region, which contains 27
McrBC target sites, can be cut to shorter than 1 kb fragments
in cases where there are 2 (7%) or 27 (100%) methylated
McrBC sites. Furthermore, the McrBC method cannot differ-
entiate between unmethylated and polymorphic cytosines.
Another method to enrich the unmethylated fraction uses
the rare cutter NotI (50-GCGGCCGC-30) (19–21). However,
NotI sites are not well represented in the genome and will only
provide a very superficial overview of genomic methylation
patterns. An alternative to these methods is the use of anti-
bodies specific for methylated cytosines [MeDIP (22)]. In this
method, antibodies are used to immunocapture methylated
genomic fragments. However, this approach requires large
amounts of gDNA (>8 mg) and also relies on the enrichment
of the less informative hypermethylated fraction of the
genome.

In our analyses, we have addressed another important
issue: the interference of DNA polymorphisms that may
simulate DNA modification differences across individuals.
Data from the SNP consortium indicate that roughly every
360th nucleotide in the human genome represents an SNP. In
humans, �2.16 million SNPs are detected in CpG dinuc-
leotides, and such CpG SNPs are 6.7-fold more abundant
than expected (40). Depending on the restriction enzyme
combination, our CpG island array-based studies demon-
strated that 10–30% of all outliers initially detected as
methylation differences contained SNPs (Figure 4). Informa-
tion on the SNPs and other polymorphisms such as deletions,
inversions or duplications within the restriction sites of the
enzymes used for the enrichment of the unmethylated or
hypermethylated fractions is helpful in differentiating the
epigenetic variations from the DNA sequence ones. To min-
imize the effects of DNA polymorphisms, it may be also
beneficial to compare affected tissue and healthy cells
from the same individual.

Another advantage of PCR-based methylation profiling
methods is the ability to work with limited DNA resources.
Although our basic protocol requires about 500 ng of gDNA,
the amount of template DNA can be significantly lower. In
our recent experiments, methylation patterns at the COMT
region generated from a relatively small number of Jurkat
tissue culture cells (up to 500 cells, or 3 ng of DNA) did
not reveal any significant differences when compared with

the methylation patterns generated from a substantially larger
number of cells from the same tissue.

There are, however, also some of limitations to the techno-
logy described in this article. The methylation sensitive
restriction enzymes do not interrogate every cytosine, and
with our current design, more than half of CpG sites remain
uninterrogated. This may be critical when the phenotypic out-
comes are determined by a methylation change at an isolated
cytosine that is not within the restriction site of a methylation
sensitive restriction enzyme. This problem may be partially
overcome by the application of the same arrays to the CpG
specific immunoprecipitation technique (MeDIP) (22) in addi-
tion to histone modification analysis through ChIP technology,
which identifies DNA sequences associated with modified
histones (10). DNA and histone modifications seem to be
inter-dependent, and consequently the possibility of a com-
bined approach that interrogates both DNA methylation and
chromatin modification in parallel might be a productive
approach to the fine mapping of epigenetic changes. Also,
asymmetrical mC sites (CpNpN) that are found in plants
and some fungi such as Neurospora crassa are difficult to
detect, although some methylation-sensitive type IIs restric-
tion enzymes are available (e.g. Esp3I or BveI). However,
methylation of asymmetrical sites in animal organisms is
not common. Additionally, this array method can also be
modified for analysis of methylated adenines in plants and
bacteria.

In summary, the use of microarrays targeted at unmethyl-
ated cytosines is a high-throughput approach to profile DNA
methylation patterns across the genome. The ability to analyse
minute amounts of DNA may enable the epigenetic screening
of DNA in plasma, serum or other body fluids, as well as in
prenatal diagnostics. Although all the examples provided in
this work investigated human DNA, the same strategies can be
used for the epigenetic analyses of numerous other species. It
is evident that epigenetic profiling should be performed in a
systematic, unbiased fashion and not limited to the tradition-
ally preferable regions such as CpG islands. Outside of CpG
islands, numerous other genomic loci exist that may be sites
for important epigenetic modification, including enhancers,
imprinting control elements (41) or the regions that encode
regulatory RNA elements.

The above described technology, in combination with
existing epigenetic profiling methods, may help to identify
inter-individual variation in genome-wide methylation pat-
terns as well as epigenetic changes that arise during tissue
differentiation and the understanding of the epigenetic effects
of various environmental factors. Of particular interest is the
application of high-throughput DNA methylation analyses to
address the molecular basis of various non-Mendelian irregu-
larities of complex diseases, such as discordance of mono-
zygotic twins, remissions and relapses of a disease, parent of
origin- and sex-effects, and tissue- and site-specificity (42).
Further technological developments may include building
high-resolution oligonucleotide-based microarrays spanning
the entire human genome, improving the enrichment strate-
gies through the application of more specialized methylation
sensitive restriction enzymes, and substantial reduction in
the amount of initial template DNA down to the amount
of a haploid or diploid genome. All these developments
will provide the basis for identifying the methylation profile
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of the entire genome in a single cell, one of the ‘quantum
leaps’ in post-genomic biology (43).
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