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Abstract
Objective
To determine whether unsupervised principal component analysis (PCA) of comprehensive
clinico-radiologic data can identify phenotypic subgroups within antibody-negative patients
with overlapping features of multiple sclerosis (MS) and neuromyelitis optica spectrum dis-
orders (NMOSDs), and to validate the phenotypic classifications using high-resolution nuclear
magnetic resonance (NMR) plasma metabolomics with inference to underlying pathologies.

Methods
Forty-one antibody-negative patients were recruited from the Oxford NMO Service. Thirty-six
clinico-radiologic parameters, focusing on features known to distinguish NMOSD and MS,
were collected to build an unbiased PCA model identifying phenotypic subgroups within
antibody-negative patients. Metabolomics data from patients with relapsing-remitting MS
(RRMS) (n = 34) and antibody-positive NMOSD (Ab-NMOSD) (aquaporin-4 antibody n =
54, myelin oligodendrocyte glycoprotein antibody n = 20) were used to identify discriminatory
plasma metabolites separating RRMS and Ab-NMOSD.

Results
PCA of the 36 clinico-radiologic parameters revealed 3 phenotypic subgroups within antibody-
negative patients: an MS-like subgroup, an NMOSD-like subgroup, and a low brain lesion
subgroup. Supervised multivariate analysis of metabolomics data from patients with RRMS and
Ab-NMOSD identified myoinositol and formate as the most discriminatory metabolites (both
higher in RRMS). Within antibody-negative patients, myoinositol and formate were signifi-
cantly higher in the MS-like vs NMOSD-like subgroup; myoinositol (mean [SD], 0.0023
[0.0002] vs 0.0019 [0.0003] arbitrary units [AU]; p = 0.041); formate (0.0027 [0.0006] vs
0.0019 [0.0006] AU; p = 0.010) (AU).

Conclusions
PCA identifies 3 phenotypic subgroups within antibody-negative patients and that the me-
tabolite discriminators of RRMS and Ab-NMOSD suggest that these groupings have some
pathogenic meaning. Thus, the identified clinico-radiologic discriminators may provide useful
diagnostic clues when seeing antibody-negative patients in the clinic.
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In the multiple sclerosis (MS) or neuromyelitis optica spec-
trum disorders (NMOSD) clinic, one of the greatest di-
agnostic challenges is differentiating antibody-negative
patients with NMOSD from those with opticospinal MS. This
conundrum was demonstrated when large diagnostic dis-
agreement was shown even among experts in this field, de-
spite having the 2015 NMOSD diagnostic criteria; in fact, the
criteria were not consistently used.1

It is clear that the use of discriminatory models on plasma
metabolites or conventional MRI can distinguish patients
with relapsing-remitting MS (RRMS) from those with
aquaporin-4 antibody (AQP4-Ab) NMOSD and RRMS
frommyelin oligodendrocyte glycoprotein antibody (MOG-
Ab) disease remarkably accurately.2–4 Thus, we aim to use
these methods to tackle the diagnostic difficulties in
antibody-negative patients who have features overlapping
NMOSD and MS. The primary methodologic barrier to
identifying discriminators of MS and primary antibody-
mediated NMOSD is the lack of a gold standard diagnostic

tool to test accuracy against. Therefore, there is no published
study to date to resolve this clinical dilemma. Given that the
treatment of MS and antibody-mediated NMOSD is mark-
edly different, and many MS-specific therapies can worsen
antibody-mediated NMOSD,5–12 it is paramount that neu-
rologists are able to identify individuals who have antibody-
mediated pathology and those with MS pathology, within
antibody-negative patients presenting with overlapping
clinico-MRI features.

In this study, we aim to classify a group of difficult-to-
diagnose, antibody-negative patients into those whose un-
derlying pathology are antibody-mediated and those who are
likely to have MS. First, we assess whether there are spon-
taneous clusters of these patients based on their clinical and
MRI features using principal component analysis (PCA).
Next, we explore whether these clusters appear to segregate
into plausible disease-specific groups. If these spontaneous
clusters appear to identify “MS-like” and “NMOSD-like”
cohorts, we then apply the metabolomics discriminators of

Glossary
Ab-NMOSD = antibody-positive NMOSD; ANOVA = analysis of variance; AQP4-Ab = aquaporin-4 antibody; AU = arbitrary
units; AUC = area under the curve; CPMG = Carr-Purcell-Meiboom-Gill; LBL = low brain lesion; MOG-Ab = myelin
oligodendrocyte glycoprotein antibody;MRS = magnetic resonance spectroscopy; NMOSD = neuromyelitis optica spectrum
disorders;OPLS-DA = orthogonal partial least square discriminant analysis; PCA = principal component analysis; ppm = parts
per million; RRMS = relapsing-remitting MS; VIP = variable importance in projection.
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MS vs antibody-positive NMOSD (Ab-NMOSD) (obtained
by combining AQP4-Ab and MOG-Ab patients) to further
validate that these spontaneous clusters are likely to be
representing underlying pathologic processes. If the metabolic
differentiators do support the spontaneous clinico-radiologic
clusters, one could use the most important differ-
entiating clinico-MRI features when making diagnostic and
treatment decisions on antibody-negative patients in
the clinic.

Methods
Study participants and clinico-radiologic data
The study workflow is outlined in figure 1.

Antibody-negative cohort for PCAmodel building using
clinico-MRI features
Forty-one antibody-negative patients were recruited from the
Oxford national NMO service at the John Radcliffe Hospital

Figure 1 Outline of the study workflow

Ab-NMOSD = antibody-positive NMOSD; AQP4-Ab = aquaporin-4 antibody; AU = arbitrary units; LBL = low brain lesion; MOG-Ab = myelin oligodendrocyte
glycoprotein antibody; NMOSD = neuromyelitis optica spectrum disorder; PCA = principal component analysis; RRMS = relapsing-remittingMS; VIP = variable
importance in projection.
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from November 2013 to September 2015. All patients were
out of relapses and were referred by their primary neurologists
for possible NMOSD, and none had typical MS. Serum in all
patients was negative on multiple occasions for both AQP4-
Ab and MOG-Ab, tested by cell-based assays as previously
described.13,14

Clinico-radiologic data were obtained frommedical notes and
review of clinical MRIs supplemented by neuroradiologic
reports. Thirty-six predefined clinico-radiologic parameters
were collected, focusing on features that have been described
to distinguish betweenMS andNMOSD (table e-1, links.lww.
com/NXI/A155).3,4,15,16 These parameters were scored as
present if a patient ever had that clinico-MRI feature. This
clinico-radiologic data set was used for unsupervised multi-
variate PCA for unbiased pattern recognition to identify
phenotypic subgroups within the antibody-negative patients
(see Statistical analyses).

Clinical cohort of patients with RRMS and Ab-NMOSD
for visualization of known diagnostic clusters within
the PCA model
The same 36 clinico-MRI parameters were collected from 45
patients with established diagnosis (RRMS n = 15, AQP4-Ab
n = 15, MOG-Ab n = 15), randomly selected from the Oxford
MS/NMO research database. These data were used as a pre-
dictive set and inserted into the PCA model that was built
using the clinico-MRI data from antibody-negative patients,
allowing corroboration of phenotypic subgroups (if any) with
known diagnostic clusters.

Reference cohort of patients with RRMS and Ab-
NMOSD for plasma metabolomics discriminatory
analysis
Plasma metabolomics spectral data from an independent
cohort of 108 patients with established diagnosis (RRMS n =
34, AQP4-Ab n = 54, MOG-Ab n = 20) was used to build
discriminatory models to identify metabolites separating
RRMS from Ab-NMOSD (i.e., AQP4-Ab combined with
MOG-Ab patients) (see Statistical analyses).2 Sample col-
lection protocols were identical, and NMR metabolomics
experiments were performed at the same time for both the
reference cohort and antibody-negative cohort.

Standard protocol approvals, registrations,
and patient consents
This study was approved by the Oxford Research Ethics
Committee C (Ref: 10/H0606/56 and 16/SC/0224A). All
patients gave their written consent to participate in the study.

Plasma collection and NMR sample
preparation for metabolomics analysis
Blood was collected into lithium-heparin tubes (Becton
Dickinson 367375) and left to stand at room temperature for
30 minutes before centrifugation at 2,200g for 10 minutes.
Plasma was immediately aliquoted and stored at −80°C. For
NMR experiments, plasma was thawed at room temperature,
followed by centrifugation at 100,000g for 30 minutes at 4°C.

One hundred fifty microliters of the plasma supernatant was
then diluted with 450 μL of 75 mM sodium phosphate buffer
prepared in D2O (pH 7.4), followed by centrifugation at
16,000g for 30 minutes before transferring to a 5-mm NMR
tube.

NMR spectroscopy and data processing for
metabolomics analysis
All NMR experiments were performed using a 700-MHz
Bruker AVIII spectrometer. Technical specifications of the
NMR experiments and data processing have been previously
published.2 Briefly, 1D 1H NMR spectra were obtained using
a Carr-Purcell-Meiboom-Gill (CPMG) relaxation editing
pulse sequence, which retains resonances from small-
molecular-weight metabolites and mobile side chains of lip-
oproteins. The CPMG spectra were preprocessed in Topspin
2.1 (Bruker, Germany), followed by visual inspection for
errors in baseline correction, referencing, spectral distortion,
or contamination. Processed spectra were exported to ACD/
Labs Spectrus Processor Academic Edition 12.01 (Advanced
Chemistry Development, Inc., Toronto, Canada), whereby
regions of the spectra between 0.80–4.20 parts per million
(ppm) and 5.20–8.50 ppmwere split into 0.02-ppm-wide bins.
Integral values of the spectral bins were computed and used as
quantitative variables expressed in arbitrary units (AU). Me-
tabolite assignment was performed by referencing to literature
values and the Human Metabolome Database.17–21 Further
confirmation was achieved by inspection of the 2D spectra
(presaturation correlation spectroscopy), spiking of known
compounds, and 1D total correlation spectroscopy spectra.

Statistical analyses
To identify potential subgroups within the antibody-negative
cohort using clinico-imaging data, PCA was used. SIMCA
software (MKS Data Analytics Solutions, Umetrics, Sweden)
was used for PCA. PCA is an unsupervised, unbiased
(i.e., without defining disease groups) multivariate analysis
approach to identify a set of variables (in this case, clinico-
MRI parameters) accounting for the greatest variation present
in the data set.22 As the analysis is unsupervised, clustering (if
any) is in no way influenced by the user but rather is wholly
dependent on the clinico-MRI data alone. Furthermore, the
PCA approach allows the inclusion of correlated variables,
which reflects the actual, real-life clinico-MRI (often corre-
lated) data gathered by a neurologist when seeing a patient.
This approach was used to analyze the 36 predefined clinico-
radiologic parameters (binary data) to evaluate the degree of
clustering between the 41 antibody-negative patients based
on clinico-MRI features, enabling clusters (if any) to be
identified. Loading plots were generated to visualize the
clinico-radiologic parameters responsible for clustering.

To identify metabolic differences between RRMS and Ab-
NMOSD using metabolomics spectral data, orthogonal partial
least square discriminant analysis (OPLS-DA) statistical
methods were used.2 R software (R foundation for statistical
computing, Vienna, Austria) was used for OPLS-DA, using
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in-house R scripts and the ropls package.23 OPLS-DA is an
extension of PCA allowing supervised multivariate analysis to
explore variables (in this case, metabolites) accounting for class
discrimination between user-defined classes.22 This approach
was used to investigate metabolic differences of patients with
RRMS vs Ab-NMOSD (i.e., AQP4-Ab combined with MOG-
Ab) from the reference cohort and to identify the key metab-
olites driving the separation between them. In brief, after cor-
rection for unequal class sizes, the metabolomics data were split
into a training set (90% of data) and a test set (10% of data).
The training set was used to build the model on which the test
set was applied to, to determine the predictive accuracy of the
model. Ten-fold cross-validation with 100 iterations was per-
formed, creating an ensemble of 1,000 model accuracies. To
validate the metabolic separation between the disease groups,
the mean accuracy of the ensemble of model accuracies was
compared with the mean accuracy of a separate ensemble
created by random class assignments.

Analysis of other clinicoimaging and metabolomics data was
performed with STATA software (Release 14; StataCorp LP,
College Station, TX) and R software. Chi-square tests or
Fisher exact tests were used for categorical variables as ap-
propriate, whereas 2-sample t test/one-way analysis of vari-
ance (ANOVA) with Tukey Honestly Significant Difference
(HSD) post hoc correction or Mann-Whitney U/Kruskal-
Wallis tests were used for continuous variables as appropriate.
Two-tailed p values of <0.05 were considered statistically
significant.

Data availability
Anonymized data can be shared by request from any qualified
investigator.

Results
PCA of clinico-radiologic data within the
antibody-negative cohort identifies 3 distinct
patient subgroups
To identify potential phenotypic subgroups within antibody-
negative patients, we performed unsupervised PCA of the 36
specified clinico-radiologic parameters and generated a PCA
scores plot (figure 2A). Each point in the plot represents all
36 clinico-radiologic parameters from 1 patient; points
closer to one another are more clinically alike. Spontaneous
separation of the antibody-negative cohort into 3 patient
clusters (dashed blue circles) was observed on the PCA plot
(figure 2A). This observation suggested a distinct clinical
profile for each cluster, and we sought to explore the reason
for clustering.

The variable loadings plot of the PCA was constructed to
identify the variables driving the clustering (figure 2B). The
variables driving the top cluster are features characteristic of
MS,3,24 whereas the ones defining the bottom right cluster are
more typical of NMOSD.15,16,25 The bottom left cluster is

characterized by no or low brain lesion load. This allowed us
to classify these 3 phenotypic clusters into an MS-like sub-
group, an NMOSD-like subgroup, and a low brain lesion
(LBL) subgroup (figure 2A), with the most principal variables
listed in the inset.

To corroborate these phenotypic assignments with patients
with established diagnosis, the 36 clinico-radiologic parame-
ters were collected from patients in the clinical cohort of
known RRMS and Ab-NMOSD. Insertion of this data set
confirmed that most of the patients with RRMS clustered with
the MS-like subgroup, whereas the majority of the patients
with AQP4-Ab NMOSD and MOG-Ab disease clustered to
the NMOSD-like subgroup (figure 2C). It is interesting to
note the clustering of patients with AQP4-Ab and MOG-Ab,
and this is consistent with previous studies that have shown
that AQP4-Ab NMOSD and MOG-Ab disease in adults have
largely identical clinical presentations and cannot be distin-
guished on conventional MRI.4,26 Of note, some patients with
RRMS, AQP4-Ab NMOSD, and MOG-Ab disease clustered
with the LBL subgroup, highlighting that these diseases have
overlapping clinico-radiologic features.

Taking these observations in totality, PCA of clinico-radiologic
data within the antibody-negative cohort identified 3 pheno-
typically distinct subgroups: an MS-like subgroup (n = 6), an
NMOSD-like subgroup (n = 14), and an LBL subgroup (n =
21). Table 1 shows the demographic and clinical data of the
antibody-negative patients grouped by the 3 PCA-defined
subgroups and the proportions of patients having each of the
36 clinico-radiologic parameters.

Plasma myoinositol and formate discriminate
between RRMS and Ab-NMOSD with high
accuracy within the reference cohort
Although unbiased PCA of extensive clinico-radiologic data is
able to identify distinct phenotypes within the antibody-
negative cohort, pathophysiologic relevance at a molecular
level with respect to the reference diseases (i.e., MS pathology
vs antibody-mediated pathology) is lacking. Thus, to in-
vestigate whether plasma metabolomics can identify meta-
bolic biomarkers separating the antibody-negative phenotypic
subgroups with inference to their underlying pathologies, we
obtained discriminatory metabolic markers in the reference
cohort of patients with known RRMS and Ab-NMOSD. First,
OPLS-DA was used to build discriminatory models using
metabolomics spectral data to distinguish between RRMS and
Ab-NMOSD within the reference cohort. A representative
OPLS-DA scores plot was generated (figure 3A). Each point
in the plot represents all metabolomics data from 1 patient;
points closer to one another are more metabolically similar. A
clear separation between RRMS and Ab-NMOSD was ob-
served on the scores plot. This separation was validated as the
mean accuracy (of the ensemble of accuracies) of the disease
groups model was significantly greater than the mean accu-
racy of the random class assignment model (mean [SD],
80.7% [4.2%] vs 52.3% [7.6%]; p < 0.001) (figure 3B). No
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Figure 2 Identification of phenotypic subgroups within the antibody-negative cohort by PCA using clinico-radiologic data

(A) Spontaneous separation of antibody-negative patients into 3 distinct clusters using the 36 predefined clinico-radiologic parameters alone (dashed blue
circles). (B) Variable loadings plot of the clinico-radiologic parameters allows visualization of parameters responsible for patient clustering. Each parameter is
represented by a gray diamond. The number beside eachdiamond corresponds to the number listed in table e-1 (links.lww.com/NXI/A155). This enables the 3
phenotypic clusters to be classified as an MS-like subgroup, an NMOSD-like subgroup, and an LBL subgroup (panel A inset). (C) Insertion of clinico-radiologic
data from the clinical cohort of patients with RRMS, AQP4-Ab NMOSD, and MOG-Ab disease into the PCA scores plot shows corroboration of the phenotypic
subgroups with known diagnostic clusters. AQP4-Ab = aquaporin-4 antibody; EDSS = Expanded Disability Status Scale; IPND = International Panel for NMO
Diagnosis; LBL = low brain lesion; MOG-Ab = myelin oligodendrocyte glycoprotein antibody; NMOSD = neuromyelitis optica spectrum disorders; PCA =
principal component analysis; RRMS = relapsing-remitting MS.
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Table 1 Demographic and clinico-radiologic data within the antibody-negative cohort grouped according to the 3 PCA-
defined subgroups

MS-like (n = 6) NMOSD-like (n = 14) LBL (n = 21)

Age at sampling, median (range), y 54.2 (37.5–71.5) 38.6 (24.4–70.4) 45.7 (23.0–59.7)

Female, no. (%) 3 (50.0) 8 (57.1) 13 (61.9)

Duration of disease (disease onset to sampling), median (range), y 5.4 (1.3–17.4) 3.4 (0.0–17.5) 5.2 (0.2–20.6)

Annualized relapse rate, median (range)a 0.2 (0.1–0.7) 0.7 (0.2–1.7) 0.3 (0.1–1.1)

Interval between last attack to sampling, median (range), y 5.4 (1.0–17.4) 1.8 (0.2–13.8) 3.2 (0.2–15.2)

Interval between disease onset to latest MRI brain, median (range), y 5.3 (0.5–17.4) 3.0 (0.3–17.7) 4.5 (0.003–14.0)

Interval between disease onset to latest MRI spine, median (range), y 2.5 (0.3–17.4) 3.0 (0.6–17.7) 4.5 (0.2–17.3)

On immunosuppressant, no. (%) 0 (0.0) 8 (57.1) 6 (28.6)

Azathioprine — 5 (35.7) 3 (14.3)

Mycophenolate mofetil — 2 (14.3) 2 (9.5)

Methotrexate — 1 (7.1) 1 (4.8)

On prednisolone, no. (%) 1 (16.7) 7 (50.0) 5 (23.8)

On MS disease-modifying therapy, no. (%) 0 (0.0) 0 (0.0) 1 (4.8)b

The 36 clinico-radiologic variables used for PCA multivariate analysis

Any transverse myelitis, no. (%) 4 (66.7) 14 (100.0) 16 (76.2)

LETM, no. (%) 1 (16.7) 12 (85.7) 5 (23.8)

T1 hypointensity with corresponding T2 hyperintensity in acute stage of cord
lesion, no. (%)

0 (0.0) 5 (35.7) 1 (4.8)

Cord lesion spanning cervical medullary junction, no. (%) 0 (0.0) 1 (7.1) 1 (4.8)

Predominant central cord involvement, no. (%) 2 (33.3) 13 (92.9) 4 (19.0)

Conus involvement, no. (%) 2 (33.3) 4 (28.6) 1 (4.8)

EDSS score ≥6 at nadir of any attack, no. (%) 1 (16.7) 12 (85.7) 2 (9.5)

Any optic neuritis, no. (%) 2 (33.3) 11 (78.6) 9 (42.9)

Severe optic neuritis, no. (%) 0 (0.0) 6 (42.9) 6 (28.6)

Simultaneous bilateral optic neuritis, no. (%) 0 (0.0) 5 (35.7) 2 (9.5)

Simultaneous optic neuritis and transverse myelitis, no. (%) 0 (0.0) 5 (35.7) 0 (0.0)

Long segment optic neuritis, no. (%) 0 (0.0) 0 (0.0) 1 (4.8)

Optic chiasm involvement, no. (%) 0 (0.0) 0 (0.0) 0 (0.0)

Area postrema syndrome, no. (%) 0 (0.0) 2 (14.3) 0 (0.0)

No brain lesion, no. (%) 0 (0.0) 0 (0.0) 7 (33.3)

1–3 brain lesions, no. (%) 0 (0.0) 6 (42.9) 12 (57.1)

≥4 brain lesions, no. (%) 6 (100.0) 8 (57.1) 2 (9.5)

Dawson fingers, no. (%) 6 (100.0) 2 (14.3) 0 (0.0)

Lesion touching body of the lateral ventricle, no. (%) 6 (100.0) 3 (21.4) 0 (0.0)

Inferior temporal lesion, no. (%) 2 (33.3) 1 (7.1) 0 (0.0)

Corpus callosum lesion, no. (%) 1 (16.7) 6 (42.9) 3 (14.3)

Diffuse splenial lesion, no. (%) 0 (0.0) 2 (14.3) 0 (0.0)

Fluffy infratentorial lesion, no. (%) 0 (0.0) 3 (21.4) 0 (0.0)

Continued
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potential confounders were identified within this data set after
extensive investigation as reported previously.2

Next, to identify the most important metabolites driving the
separation between RRMS and Ab-NMOSD, variable impor-
tance in projection (VIP) scores were generated. A VIP score is
a measure of a variable’s importance to the OPLS-DA model;
the higher the VIP score, the greater the contribution a variable
makes to the model. Ranking of VIP scores revealed that
myoinositol and formate (both metabolites being higher in
RRMS) were the 2 most important metabolites driving this
separation (figure 3C), with a VIP score of 2.57 and 2.51, re-
spectively. Receiver operating characteristic analysis revealed
high diagnostic accuracies, as measured by the area under the
curve (AUC) ofmyoinositol (AUC0.914, 95%CI 0.862–0.967)
and formate (AUC 0.907, 95% CI 0.849–0.965) (figure 3D).

Myoinositol and formate levels are
significantly higher in the MS-like subgroup
compared with the NMOSD-like subgroup
within the antibody-negative cohort
As myoinositol and formate could accurately discriminate
between RRMS and Ab-NMOSD, we explored whether these
metabolites are different between the MS-like and NMOSD-
like clinico-radiologic subgroups within the antibody-negative
cohort. Myoinositol was significantly higher in the MS-like
subgroup compared with the NMOSD-like subgroup (mean
[SD], 0.0023 [0.0002] vs 0.0019 [0.0003] AU; p = 0.041)

(figure 4A). Formate was also significantly elevated in theMS-
like subgroup vs the NMOSD-like subgroup (0.0027 [0.0006]
vs 0.0019 [0.0006] AU; p = 0.010). On one-way ANOVA,
formate was significantly different across the 3 subgroups
[F(2,38) = 5.02; p = 0.012]; post hoc comparisons using the
Tukey HSD test showed formate to be higher in the MS-like
subgroup compared with the NMOSD-like subgroup (p =
0.013), as indeed compared with the LBL subgroup (0.0027
[0.0006] vs 0.0020 [0.0005] AU; p = 0.017) (figure 4B).
Taking successive discriminatory metabolites with cutoff VIP
scores ≥1.75 (before the second drop-off in VIP scores, see
figure 3C) showed similar trends in separating the MS-like
from NMOSD-like subgroups (figure 5). Next, we explored
whether the MS-like and NMOSD-like patients were meta-
bolically similar to patients with RRMS and Ab-NMOSD,
respectively. Using metabolomics spectral data, we were un-
able to distinguish MS-like patients from patients with RRMS
and NMOSD-like patients from patients with Ab-NMOSD
(figure e-1, links.lww.com/NXI/A154).

In summary, the 2 most discriminatory metabolites obtained
from the OPLS-DAmodel of RRMS vs Ab-NMOSD were also
significantly different between the MS-like and NMOSD-like
subgroups (and in the same direction) within antibody-
negative patients. This suggests that theMS-like and NMOSD-
like subgroups have different underlying pathologies, akin to
their respective reference diseases (i.e., RRMS and antibody-
mediated NMOSD).

Table 1 Demographic and clinico-radiologic data within the antibody-negative cohort grouped according to the 3 PCA-
defined subgroups (continued)

MS-like (n = 6) NMOSD-like (n = 14) LBL (n = 21)

Lesion adjacent to the 4th ventricle, no. (%) 1 (16.7) 5 (35.7) 0 (0.0)

Lesion adjacent to the 3rd ventricle, no. (%) 0 (0.0) 2 (14.3) 0 (0.0)

Periaqueductal lesion, no. (%) 0 (0.0) 2 (14.3) 0 (0.0)

Area postrema lesion, no. (%) 0 (0.0) 2 (14.3) 0 (0.0)

Hypothalamic/thalamic lesion, no. (%) 0 (0.0) 1 (7.1) 0 (0.0)

Tumefactive lesion, no. (%) 0 (0.0) 3 (21.4) 0 (0.0)

Cortical/juxtacortical lesion, no. (%) 1 (16.7) 6 (42.9) 2 (9.5)

Juxtacortical S- or U-shaped lesion, no. (%) 0 (0.0) 2 (14.3) 0 (0.0)

Fulfill 2016 MAGNIMS dissemination in space criteria, no. (%) 4 (66.7) 10 (71.4) 5 (23.8)

Fulfill 2015 IPND seronegative NMOSD criteria, no. (%) 0 (0.0) 12 (85.7) 0 (0.0)

Disability progression independent of relapses, no. (%) 3 (50.0) 1 (7.1) 4 (19.0)

Unmatched CSF oligoclonal bands, no. (%) 4 (66.7) 7/13 (53.8) 9/18 (50.0)

Coexisting autoimmunity and/or autoantibodies, no. (%) 2 (33.3) 3 (21.4) 5 (23.8)

Abbreviations: EDSS = ExpandedDisability Status Scale; IPND = International Panel for NMODiagnosis; LBL = low brain lesion; LETM = longitudinally extensive
transverse myelitis; MAGNIMS = Magnetic resonance Imaging in Multiple Sclerosis; NMOSD = neuromyelitis optica spectrum disorders; PCA = principal
component analysis.
a Calculated with the onset attack included and restricted to patients with at least 1-year interval between the onset attack and sampling.
b Glatiramer acetate.
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Differences in myoinositol and formate levels
are not accounted for by
potential confounders
As a higher proportion of patients in the NMOSD-like and
LBL subgroups were on immunosuppressants and predniso-
lone at the time of plasma sampling compared with the MS-
like subgroup (table 1), it was explored whether these
accounted for the differences in myoinositol and formate
levels. By combining the NMOSD-like and LBL subgroups,
myoinositol and formate levels of patients on immunosup-
pressants were compared with patients not on immunosup-
pressants. Similar analysis was performed for prednisolone
use. There were no statistically significant differences in both
metabolites stratified by immunosuppressant or prednisolone
use; myoinositol by immunosuppressant use (on immuno-
suppressant, 0.0020 [0.0002] vs off immunosuppressant,
0.0021 [0.0004] AU; p = 0.384); myoinositol by prednisolone
use (on prednisolone, 0.0020 [0.0004] vs off prednisolone,
0.0021 [0.0003] AU; p = 0.224); formate by immunosup-
pressant use (on immunosuppressant, 0.0019 [0.0005] vs off
immunosuppressant, 0.0020 [0.0005] AU; p = 0.714); and
formate by prednisolone use (on prednisolone, 0.0017
[0.0005] vs off prednisolone, 0.0020 [0.0005] AU; p = 0.111).

In fact within the NMOSD-like subgroup alone, patients on
immunosuppressants had higher levels of myoinositol (on
immunosuppressant, 0.0020 [0.0002] vs off immunosup-
pressant, 0.0018 [0.0005] AU; p = 0.370) and formate (on
immunosuppressant, 0.0021 [0.0006] vs off immunosup-
pressant, 0.0016 [0.0002] AU; p = 0.143), and this would, if
anything, reduced the discriminatory power of the metabo-
lites. Similar analyses were performed for age, sex, disease
duration, and interval since last attack with no significant
differences/correlations in the levels of both metabolites
based on these parameters (data not shown).

Discussion
Our findings confirmed that distinct phenotypic subgroups
exist within the antibody-negative cohort using advanced
PCA pattern-recognition techniques coupled with extensive
clinico-radiologic data, without a priori assumptions of their
clinical diagnosis. We then applied the 2 metabolites that were
the most discriminatory between RRMS and Ab-NMOSD
and confirmed that these same metabolites distinguished
between the antibody-negative subgroups that were MS-like

Figure 3 OPLS-DA score plot of metabolomics spectral data comparing RRMS with Ab-NMOSD from the reference cohort

(A) OPLS-DA scores plot shows good separation of patients with RRMS from patients with Ab-NMOSD based on metabolomics spectral data. (B) Mean
accuracy of the disease groups model is significantly greater than that of the random class assignment model (mean [SD], 80.7% [4.2%] vs 52.3% [7.6%], p <
0.001). (C) The top 2 discriminatory metabolites, myoinositol and formate, are identified by their high VIP scores. (D) High AUC of both myoinositol and
formate in distinguishing RRMS and Ab-NMOSD. Ab-NMOSD = antibody-positive neuromyelitis optica spectrumdisorders; AUC = area under the curve; OPLS-
DA = orthogonal partial least square discriminant analysis; RRMS = relapsing-remitting MS; VIP = variable importance in projection.
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and NMOSD-like. This suggests that the clinico-radiologic
separation by PCA is pathophysiologically meaningful, and we
suggest that in clinical practice, the features shown in figure
2A (inset) are pathologically relevant for classification. This
has the potential to help guide treatment decisions when
seeing antibody-negative patients in the clinic.

Myoinositol is a component of the cell membrane and myelin
and is involved in intracellular signaling in many CNS cells.27

More importantly, it has been recognized as a marker of as-
trocyte activation and proliferation.28 Low myoinositol levels
have been observed in AQP4-Ab NMOSD compared with
MS after transverse myelitis using 1H magnetic resonance
spectroscopy (MRS) of the spinal cord, reflecting astrocytic
necrosis.29 Conversely, high myoinositol levels have been
noted in RRMS and clinically isolated syndrome compared
with controls using 1H MRS of normal-appearing white
matter, indicating astrocytosis and astrogliosis.30,31 Unlike
AQP4-Ab NMOSD, MOG-Ab disease is not an astrocytop-
athy and glial fibrillary acidic protein is not elevated in the
CSF.32 Although accurate quantification of astrocytes has not
been performed in MOG-Ab disease in view of the small
number of cases with histopathology, it is likely that extent of
gliosis as seen in MS (resulting from ongoing chronic neu-
roinflammation) does not occur in MOG-Ab disease,33 and
this may explain the reduced levels of myoinositol with re-
spect to MS. This needs further pathologic verification. Our
findings of higher myoinositol levels in RRMS and MS-like
patients compared with Ab-NMOSD and NMOSD-like
patients are in agreement with these observations. Formate
causes mitochondrial damage by inhibiting cytochrome c
oxidase resulting in disruption of the electron transport chain
and production of reactive oxygen species.34 Formate-
induced cytotoxicity has been demonstrated in rat

hippocampal cultures and in retinal (human and rat) cell
cultures.35,36 Of interest, methanol poisoning is mediated by
formate, producing optic nerve demyelination and sub-
sequent progressive retinal axonal loss in humans.37,38 As
mitochondrial dysfunction has been implicated in MS path-
ogenesis, it is of interest to note the higher formate levels in
patients with MS.39 How formate is involved in this process, if
at all, as a primary mediator or as part of an injurious cascade
will require further mechanistic studies.

In view of the lack of accuracy of the McDonald criteria to
separate MS from NMOSD,40–42 we have previously
attempted to better delineate MS from Ab-NMOSD using
conventional MRI parameters.3,4 Distinctive MRI brain fea-
tures of MS include Dawson fingers, inferior temporal lobe
lesion, and lesion adjacent to the body of the lateral
ventricle,3,4 which are also the variables driving the MS-like
subgroup in this current study.We have previously shown that
blood-based metabolomics can accurately separate MS from
controls and from AQP4-Ab NMOSD and MOG-Ab
disease.2,43 The current study combines both approaches by
using metabolomics to give pathologic support to the spon-
taneously separating clinico-radiologic phenotypes. Of note,
the clinico-MRI phenotypic classification identified the 2015
seronegative NMOSD criteria as the most important dis-
tinguishing NMOSD-like variable, independently supporting
these criteria.

Our study is limited by the small sample size due to the rarity
of antibody-negative patients; however, we were still able to
show a remarkable similar pattern of discriminatory metab-
olites in the MS-like against the NMOSD-like subgroups, as
seen in patients with RRMS against patients with Ab-
NMOSD. Our methodology is optimized to compare

Figure 4 Boxplots comparing myoinositol and formate levels between MS-like and NMOSD-like subgroups within the
antibody-negative cohort

Both (A) myoinositol and (B) formate are significantly higher in the MS-like subgroup compared with the NMOSD-like subgroup. On one-way ANOVA, (B)
formate was significantly different across the 3 subgroups, and post hoc comparisons using the Tukey HSD test showed formate to be significantly higher in
theMS-like subgroup comparedwith the NMOSD-like subgroup, as well as to the LBL subgroup. p values shown in (B) are fromone-way ANOVAwith post hoc
multiple comparison corrections. Boxplots of myoinositol and formate in patients with RRMS and Ab-NMOSD are constructed from the same data used to
generate the AUC graphs in figure 3D. Ab-NMOSD= antibody-positiveNMOSD; ANOVA = analysis of variance; AU = arbitrary units; AUC = area under the curve;
LBL = low brain lesion; NMOSD = neuromyelitis optica spectrum disorders; ppm = parts per million; RRMS = relapsing-remitting MS.
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2 subsets, and in the antibody-negative group, there will be
multiple disorders; hence, we focused on the 2 phenotypic
subgroups, which appeared to represent MS-like and anti-
body-mediated–like pathology. The third phenotypic sub-
group in our analysis contained patients with lower brain
lesion load without any MS-like or NMOSD-like discrim-
inators, and pathologies among this subgroup will include
antibody-mediated pathologies, MS, other cell-mediated dis-
orders such as CNS sarcoidosis, and monophasic post-
infectious conditions. In view of the mixed conditions within
the LBL subgroup, we have kept it separate for analysis.
Clinicopathologic classification within this LBL subgroup will
be particularly challenging. However, in patients with 1–3

brain lesions who have MS-like or NMOSD-like discrim-
inators, these clinico-radiologic discriminators are still po-
tentially useful, as illustrated by 43% of NMOSD-like patients
having 1–3 brain lesions. Future validation of our findings is
needed in an independent cohort of antibody-negative
patients.

Our study demonstrates the strength of computational
modeling of clinico-MRI features, which cannot be done in
a consistent and unbiased way by clinicians in the clinical
setting, given the huge amount of data available for each pa-
tient. We also demonstrate the use of metabolomics in sup-
porting the results of such analysis. We have selected

Figure 5 Boxplots of other discriminatory metabolites (VIP score ≥1.75)

Other discriminatorymetabolites trend in the samedirectionwhen comparing theMS-likewithNMOSD-like subgroups, aswith RRMS to Ab-NMOSD (A-I). This
trend becomes less clear with lower VIP scores as shown by the last 3 metabolite bins in the panel; (J) citrate (2.68–2.70 ppm, VIP score 1.87), (K) mobile–
N(CH3)3/free choline (3.20–3.22 ppm, VIP score 1.85), and (L) arginine/lysine/leucine (1.68–1.70 ppm, VIP score 1.75). Ab-NMOSD = antibody-positive NMOSD;
AU = arbitrary units; LBL = low brain lesion; NMOSD = neuromyelitis optica spectrumdisorders; ppm= parts permillion; RRMS = relapsing-remittingMS; VIP =
variable importance in projection.
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a diagnostically challenging group of patients and have been
able to identify useful clinical and radiologic characteristics
that support some individuals having likely MS and others
with likely antibody-mediated pathology. As the MRI
parameters are not time restricted, these observations are
more useful to apply in clinical practice. Prospective work to
study treatment responses and long-term outcome, along with
CSF metabolomics analysis and samples taken during relap-
ses, may further improve this classification, especially in
patients within the LBL subgroup.
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