
Published online 10 August 2019 Nucleic Acids Research, 2019, Vol. 47, No. 18 e110
doi: 10.1093/nar/gkz654

A deep learning genome-mining strategy for
biosynthetic gene cluster prediction
Geoffrey D. Hannigan1,†, David Prihoda2,3,†, Andrej Palicka4, Jindrich Soukup5,
Ondrej Klempir6, Lena Rampula7, Jindrich Durcak6, Michael Wurst4, Jakub Kotowski4,
Dan Chang8, Rurun Wang1, Grazia Piizzi1, Gergely Temesi6, Daria J. Hazuda1,9, Christopher
H. Woelk1,*,‡ and Danny A. Bitton6,*,‡

1Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA, 2Big Data Solutions, MSD Czech
Republic s.r.o., Prague, Czech Republic, 3Department of Informatics and Chemistry, Faculty of Chemical Technology,
University of Chemistry and Technology, Prague, Czech Republic, 4AI & Big Data Analytics, MSD Czech Republic
s.r.o., Prague, Czech Republic, 5Data Science, MSD Czech Republic s.r.o., Prague, Czech Republic, 6Bioinformatics
& Cheminformatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic, 7NLP, MSD Czech Republic
s.r.o., Prague, Czech Republic, 8Genetics & Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA and 9Infectious
Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA, USA

Received January 11, 2019; Revised July 09, 2019; Editorial Decision July 16, 2019; Accepted August 08, 2019

ABSTRACT

Natural products represent a rich reservoir of small
molecule drug candidates utilized as antimicrobial
drugs, anticancer therapies, and immunomodula-
tory agents. These molecules are microbial sec-
ondary metabolites synthesized by co-localized
genes termed Biosynthetic Gene Clusters (BGCs).
The increase in full microbial genomes and similar
resources has led to development of BGC predic-
tion algorithms, although their precision and ability
to identify novel BGC classes could be improved.
Here we present a deep learning strategy (Deep-
BGC) that offers reduced false positive rates in BGC
identification and an improved ability to extrapolate
and identify novel BGC classes compared to existing
machine-learning tools. We supplemented this with
random forest classifiers that accurately predicted
BGC product classes and potential chemical activity.
Application of DeepBGC to bacterial genomes un-
covered previously undetectable putative BGCs that
may code for natural products with novel biologic
activities. The improved accuracy and classification
ability of DeepBGC represents a major addition to
in-silico BGC identification.

INTRODUCTION

Natural products are chemical compounds that are found
in nature and produced by living organisms. They repre-
sent a rich reservoir of drug candidates that have proven
utility across multiple therapeutic areas. Between 1981 and
2014, one third (32%) of FDA approved small molecule
drugs were either unmodified natural products (6%) or nat-
ural product derivatives (26%) (1). These include multiple
classes of antibacterials, as well as oncology drugs, diabetes
drugs, hypocholesterolemic drugs and immunomodulatory
agents (1,2). The global rise in antibiotic resistance (3,4),
the increased promise of immunomodulatory agents in can-
cer treatment (5), and the continued need for development
of new drugs across novel and complex biology is contin-
gent upon the identification of structurally diverse bioactive
compounds (6–8).

Early genetic work in the field of natural product dis-
covery showed that bioactive molecules are microbial sec-
ondary metabolites whose synthesis is primarily orches-
trated by genomically co-localized genes termed Biosyn-
thetic Gene Clusters (BGCs) (9–11). While these early
insights were born out of forward genetic approaches
(progressing from phenotype to sequence), the advent of
next generation sequencing technologies and genomic ap-
proaches provided opportunities for reverse genetic ap-
proaches (progression from sequence to phenotype) in BGC
discovery, synthesis, and characterization (2). The surge of

*To whom correspondence should be addressed. Tel: +420 277026475; Email: danny.bitton@merck.com
Correspondence may also be addressed to Christopher H. Woelk. Tel: +1 617 995 9010; Email: christopher.woelk@merck.com
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
‡Equal senior author contribution.

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com



e110 Nucleic Acids Research, 2019, Vol. 47, No. 18 PAGE 2 OF 13

microbial genomic resources, including completed genome
sequences of cultured and uncultured organisms, has en-
abled a paradigm shift in how computational methods have
been used in natural product drug candidate discovery.

Numerous bioinformatics tools have leveraged the in-
creasingly abundant genomic data to facilitate natural prod-
uct genome mining (12). Early approaches implemented
simple BGC reference alignment techniques using programs
like BLAST (13), and were often paired with manual cu-
ration. Rule-based algorithms (14,15) improved on their
predecessors by using human-coded (‘hard coded’) rule
sets to define BGCs based on their similarity to reference
genes and protein domain composition. While some re-
cent approaches have continued to employ these ‘reference-
based’ techniques, other algorithmic advances have em-
braced more generalizable machine learning approaches
that provide a greater ability to discover new BGC ge-
nomic elements. One such widely used machine learn-
ing approach named ClusterFinder (16) employs a Hid-
den Markov Model (HMM) instead of the multiple se-
quence alignment based profile-HMM (17) methods seen
in other approaches such as AntiSMASH (ANTIbiotics
& Secondary Metabolite Analysis SHell) (14) and PRISM
(18).

While they have been effective, HMMs like ClusterFinder
do not preserve (i.e. remember) position dependency ef-
fects between distant entities or order information (19–
21). This means HMM-based tools are unable to capture
higher order information among entities (19–21), thus limit-
ing their ability to detect BGCs. We addressed this algorith-
mic limitation by implementing a deep learning approach
using Recurrent Neural Networks (RNNs) and vector rep-
resentations of protein family (Pfam) (22) domains which
together, unlike HMMs, are capable of intrinsically sens-
ing short- and long-term dependency effects between ad-
jacent and distant genomic entities (23). This implementa-
tion yielded performance higher than another leading algo-
rithm (ClusterFinder), including improved BGC detection
accuracy from genome sequences and improved ability to
identify BGCs of novel classes.

Here, we introduce DeepBGC, a novel utilization of deep
learning and natural language processing (NLP) strategy
for improved identification of BGCs in bacterial genomes
(Figure 1). DeepBGC employs a Bidirectional Long Short-
Term Memory (BiLSTM) RNN (24,25) and a word2vec-
like word embedding skip-gram neural network we call
pfam2vec. Compared to Clusterfinder (16), DeepBGC im-
proves detection of BGCs of known classes from bacte-
rial genomes, and harnesses great potential to detect novel
classes of BGCs. We supplement this with generic ran-
dom forest classifiers that enable classifications of BGCs
based on the product class and molecular activity of the
compounds. We applied DeepBGC to bacterial reference
genomes to identify BGC candidates coding for molecules
with putative antibiotic activity that could not be identified
using other existing methods. In addition to bacterial refer-
ence genomes, we expect this approach to be important in
microbiome metagenomic analyses, in which the improved
BGC detection may empower new functional insights. To
facilitate these and other analytical applications, DeepBGC
is available at https://github.com/Merck/deepbgc.

MATERIALS AND METHODS

Open reading frame identification

Open reading frames were predicted in 3376 reference bac-
terial genomes (26) using Prodigal (27) version 2.6.3 with
default parameters. All other sequences were downloaded
with annotations and gene locations.

Protein family identification

Protein family domains were identified using HMMER
(17), hmmscan version 3.1b2, and the Pfam database ver-
sion 31 (22). This Pfam database was used for all applica-
tions except for the original ClusterFinder algorithm, where
it was preserved at legacy version 27. Hmmscan tabular out-
put was filtered using BioPython SearchIO module (version
1.70) to preserve only highest scoring Pfam regions with e-
value <0.01. The resulting list of Pfam domains was sorted
by the gene and the domain start location.

Pfam2vec implementation

Pfam2vec embedding was generated using the original
word2vec implementation (28) wrapped in the word2vec
python package (version 0.9.2). After bootstrap evaluation,
the following hyper-parameters were chosen: 100 dimen-
sions, 8 training iterations and skipgram architecture. The
training corpus consisted of 3376 documents (bacteria) and
23 425 967 words (15 686 unique Pfam identifiers). Each
document contained a space-separated list of Pfam identi-
fiers representing all Pfam domains of a specific bacterial
genome maintained in their genomic order. To evaluate the
pfam2vec embedding, cosine similarity of domain vectors
were used in comparison with domain membership to one
of 604 Pfam superfamilies (clans) from the Pfam database
version 31 (22). First, cosine similarity of all (non-identity)
pairs of domains from all Pfam superfamilies was compared
(using Wilcoxon rank-sum test) to cosine similarity of all
pairs from Pfam superfamilies that were randomly shuffled.
Second, the same calculation was performed with pfam2vec
vectors replaced by random numeric vectors. Third, Lev-
enshtein distance of Pfam domain descriptions was calcu-
lated for each pfam2vec vector and its nearest neighbor by
cosine similarity and compared (using Wilcoxon rank-sum
test) to the description similarity of each pfam2vec vec-
tor and a randomly selected pfam2vec vector. Finally, av-
erage pfam2vec vector representation of each BGC from
the MIBiG set was calculated as an average of its list of
pfam2vec vectors, with averages computed separately for
each dimension. This BGC vector representation was re-
duced to two dimensions for visualization using the scikit-
learn manifold.tSNE package with cosine metric, random
initialization and default perplexity of 30.

DeepBGC training set

DeepBGC was trained on a subset of the original Clus-
terFinder positive training set and on a negative set gener-
ated based on similar principles as the ClusterFinder nega-
tive training set. To collect the original positive training set,
681 accession IDs were obtained from the ClusterFinder

https://github.com/Merck/deepbgc


PAGE 3 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 18 e110

Raw sequence

Gene prediction

Protein domain
prediction

BGC score
assignment

Candidate BGC
selection

Optional
postprocessing

Gene level score
summary

BGC classification

Figure 1. Overview of the deep learning strategy for detection of Biosynthetic Gene Clusters in bacterial genomes. (From top to bottom) raw genomic
sequences (solid line) are used for gene (arrowhead structures) prediction by Prodigal (27). Pfam domains (circles, penta- and hexagons) are assigned to
each ORF using hmmscan (17). The BiLSTM outputs classification score (blue bars) for each domain. Domain scores are summarized across genes, which
are selected accordingly (blue arrowhead structures). Consecutive candidate BGC genes are assembled to putative BGCs (dashed rectangles). An optional
post-processing step allowed merging of neighboring BGCs based on the presence of a known biosynthetic pathway, minimum cluster length, and gaps
between adjacent BGCs (gray rectangles). BGCs were classified using random forest classifiers based on compound class and molecular activity (yellow
rectangles).

supplementary table and searched on NCBI, which re-
turned 617 sequences. To generate the negative set, we col-
lected and preprocessed a public reference set of 3376 bac-
teria from EMBL-EBI. For each reference bacterium, re-
gions similar to known MIBiG BGC (version 1.3) were re-
moved (Blastn (13) with 95% threshold). To generate a sin-
gle negative sample, a random reference bacterium and a
random sample from the positive ClusterFinder set were se-
lected. Each gene in the positive sample was replaced with a
random gene from the reference bacteria, while considering
only 1% of genes that were most similar in number of Pfam
domains. In total, three samples were generated from each
reference bacteria, producing 10 128 negative samples.

DeepBGC implementation

The BiLSTM model was implemented using Keras (version
2.1.6) with TensorFlow backend (version 1.6.0). The archi-
tecture consisted of a single Keras Sequential model with
two layers. First, the model contained a stateful BiLSTM
layer with 128 units and dropout of 0.2. Second, the model
contained a time-distributed dense layer with sigmoid acti-
vation and 1 output unit. The input was a sequence of Pfam
domains represented by 102-dimensional vectors consisting
of the 100-dimensional pfam2vec embedding and two bi-
nary flags marking domains found at the beginning or end
of proteins. The output was a sequence of values between 0
and 1 representing the prediction score of given domain to
be part of a BGC. In each training epoch, all positive and
negative samples were shuffled randomly and concatenated
to create an artificial genome. Training was configured with
256 timesteps and a batch size of 64. Thus, the training se-

quence of each epoch was separated into 64 subsequences,
each trained in parallel in batches of 256 timesteps, process-
ing a single training vector at each timestep. The final model
was trained for 328 epochs using the Adam optimizer with
learning rate of 1e–4 and weighted binary cross-entropy loss
function (weights are inversely proportional to number of
positive and negative samples in our training dataset, there-
fore giving more weight to positive samples).

To obtain BGC regions used for BGC-level analysis, first,
predicted scores were averaged in each gene, BGC genes
were selected using any given threshold and consecutive
BGC genes were merged. Optionally, postprocessed BGC
regions were created by applying filters defined in Cimer-
mancic et al. (16): merging BGC regions at most one gene
apart and filtering out regions with less than 2000 nu-
cleotides and regions with no known biosynthetic domains
from the current list of 133 domains published in the Clus-
terFinder (16) submodule of antiSMASH (14).

DeepBGC validation

The primary evaluation metric published in Cimerman-
cic et al., (16) was a ROC curve based on 10 reference
genomes that are fully annotated with BGC and non-BGC
regions. The associated genomes were retrieved based on
the list of gene loci provided in the supplementary table
(16). By querying the gene loci on NCBI, 9 out of 10 of
the original genomes were obtained. The original Strepto-
myces roseosporus genome could not be retrieved. In three
of the genomes the genes were not found in a single contig,
but in multiple contigs (two for Streptomyces ghanaensis,
two for Streptomyces sp. AA4 and three for Streptomyces



e110 Nucleic Acids Research, 2019, Vol. 47, No. 18 PAGE 4 OF 13

sp. C). The sequences were updated since the release of the
paper, which resulted in a location shift of 7% of genes and
removal of 10 BGC genes from the Streptomyces pristinae-
spiralis genome.

To ensure an accurate comparison between DeepBGC
and ClusterFinder, DeepBGC was trained with the 617 pos-
itive and 10 128 negative samples described above. Since
this dataset is artificially created it lacks some features of
real-world data (potential nonrandom distribution of BGC
across the genome, real distribution and order of the genes
etc.). Therefore, there was no guarantee that model trained
on our artificial training set will perform with the same ac-
curacy on real genomes. To address that we chose to tune
hyperparameters using a subset of real world data. To avoid
the reduction of our validation set and prevent a leakage
from training set to validation set we chose a ‘bootstrap’ ap-
proach. It consists of creating multiple models, where each
model will utilize a small part of validation set for hyperpa-
rameter tuning and the rest for testing. Averaging the accu-
racy of those multiple models is proven to converge to an
unbiased estimation.

During hyperparameter tuning we considered follow-
ing parameters and values: learning rate (0.001, 0.0001),
number of pfam2vec training iterations (4,8,16,32), num-
ber of pfam2vec dimensions (50, 100, 200) and positive
training sample weight (1, 16.415). Keras EarlyStopping
method was used with minimum delta of 0.0005 on val-
idation ROC AUC within 100 epochs. We realized that
majority of the learned models, regardless of the vali-
dation genome selection, preferred following parameters:
0.0001 for learning rate, 8 pfam2vec training iterations, 100
pfam2vec dimensions and positive sample weight based on
the negative/positive ratio of 16.415.

BGC-level coverage evaluation was performed on the test
set of the first bootstrap split. Predictions of each model
were converted into BGC regions (with and without post-
processing) using the method defined above. True BGC cov-
erage of each model was calculated for each annotated true
BGC region as the fraction of the region that was covered by
all its overlapping predicted BGC regions of given model. A
BGC was considered detected when its coverage was above
a given coverage threshold. Coverage distribution was cal-
culated by evaluating all coverage thresholds from 0% up to
100% in steps of 0.1%. Next, each predicted BGC region is
marked as true positive if it overlaps with a true BGC region
and as a false positive if it does not. Finally, BGC-level pre-
cision was calculated as the number of true positive regions
divided by the total number of predicted regions.

The secondary evaluation metric published in Cimer-
mancic et al. (16) was a True Positive Rate (TPR) evaluation
based on 65 BGCs in their genomic context of 6 genomes.
All BGC locations were provided along with names of
source bacteria in the supplementary table in Cimermancic
et al. (16). First, genomes were found on NCBI by manually
querying the organism names. Second, BGC start and end
locations were validated to match with start and end loca-
tions of annotated genes present in the retrieved genomes.
Finally, we obtained BGC predictions using DeepBGC,
original ClusterFinder and retrained ClusterFinder. The
original evaluation metric was based on calculating TPR
in terms of fraction of BGCs detected with median Clus-

terFinder HMM prediction >0.4 threshold. After the in-
spection of ClusterFinder predictions it was found that
>42% of the domains outside the defined BGC regions were
detected above the given threshold, relying on heavy further
postprocessing and manual annotation to filter out false
positives. Therefore, the sequences were evaluated using a
ROC curve, which considers all unannotated regions to be
negative, producing a lower bound of the AUC value which
is unbiased to either of the two models.

To perform cross validation and leave-class-out valida-
tion we obtained all 1406 BGC samples from MIBiG (ver-
sion 1.3) and our negative set of 10128 samples. Each sam-
ple was represented as a list of Pfam domain identifiers. For
cross validation, samples were randomly distributed into 10
splits. In each of the 10 cross-validation folds, models were
trained on nine splits and evaluated on one split. Train-
ing and testing samples were shuffled and concatenated to
create artificial genomes. An average ROC was computed
by concatenating all test split predictions. In leave-class-
out validation, 1003 samples from six non-hybrid classes
(Polyketide, NRP, RiPP, Saccharide, Terpene, Alkaloid)
were selected. For each class, the models were trained on
all other classes and random two thirds of negative sam-
ples. Thereafter, models were tested on the given class (up-
sampled to 500 samples by sampling with replacement) and
the remaining third of negative samples. Again, training and
testing samples were shuffled and concatenated to create ar-
tificial genomes. This was performed three times for each
class with different random splits and random shuffles to
minimize the influence of any random initialization. An av-
erage ROC was computed by concatenating all test predic-
tions.

ClusterFinder implementation

ClusterFinder predictions were produced using anti-
SMASH (version 4.1.0) with ClusterFinder enabled and
with default parameters. Raw prediction scores for each
Pfam domain were parsed from the final Genbank output
files. These scores were used to produce domain-level ROC
curves. Raw and postprocessed BGC regions used for BGC-
level analysis were obtained using gene-level score averaging
as in the DeepBGC implementation described above.

To retrain the model for cross validation and leave-
class-out validation, the ClusterFinder HMM was reimple-
mented using the hmmlearn python module (version 0.2.0).
The transition and starting probability matrices of the orig-
inal model were used. The emission probability matrix was
re-computed using the new positive and negative training
set preprocessed with Pfam database version 31 (same as
the DeepBGC model).

Random forest Multi-Label product classification

Biosynthetic product class and activity training data
were obtained from the MIBiG database (version 1.3) in
JSON format. Product classes were extracted from the
‘biosyn class’ field, producing 1355 labelled training sam-
ples. Product activities were extracted from the ‘chem act’
field of each compound in the ‘compounds’ field, exclud-
ing BGCs with no known product activities, producing



PAGE 5 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 18 e110

370 training samples. A separate random forest classifier
was trained for both domains using the scikit-learn python
module (version 0.19.1). The classes were predicted us-
ing multi-label classification, where each sample is labelled
with a binary vector representing presence of zero or more
classes. Global feature importance was obtained using na-
tive scikit-learn method, class-specific feature importance
was calculated by training a separate temporary random
forest classifier for each class. To evaluate model perfor-
mance, 5-fold cross validation was used, producing 5 sets
of real-valued prediction scores which were merged and
compared with expected output at different thresholds to
produce a ROC curve. A confusion matrix was generated
by treating each occurring combination of biosynthetic
classes as a single separate hybrid class. To produce the an-
tiSMASH ROC curve, all MIBiG BGC genbank files were
processed through antiSMASH (version 4.1.0) with default
parameters. The predicted product types were parsed from
the text output files and mapped to the more high-level
MIBiG classification. In ambiguous cases where the an-
tiSMASH product type could not be mapped to a single
MIBiG class, BGCs of given product type were discarded
from the evaluation of both models. For antiSMASH, the
resulting class predictions were used to generate a ROC
curve with one point, since a classification score is not avail-
able.

RESULTS

Curation yielded diverse training & validation datasets

BGC prediction is a classification task requiring the use
of labelled BGC and non-BGC sequences (a ‘positive’ and
‘negative’ set, respectively) to train and validate the classi-
fier. To ensure adequate comparison between the existing
HMM approach and our deep learning strategy, we trained
and validated our model using a training set similar to that
used in Cimermancic et al. (16). We built our positive train-
ing set by retrieving 617 out of 667 published labeled BGCs
from Cimermancic et al. (16) (Supplementary Figure S1,
Supplementary Table S1). We constructed a negative train-
ing set of 10128 random gene clusters based on similar prin-
ciples to those described in Cimermancic et al. (16). We ad-
ditionally retrieved a second, supplementary dataset con-
sisting of 1406 BGCs found in the Minimum Information
about a Biosynthetic Gene cluster (MIBiG) database (29),
which were used for 10-fold cross-validation, leave-class-out
validation and training random forest classifiers (Supple-
mentary Figure S1, Supplementary Table S2).

In addition to the BGC sequence datasets, we utilized
whole bacterial genomes that had been manually annotated
with BGC and non-BGC regions. We used the set of nine
bacterial genomes that contained 291 manually annotated
BGCs from Cimermancic et al. (16) and used them for vali-
dation, hyperparameter tuning, and testing (Supplementary
Figure S1, Supplementary Table S3). We also used a sec-
ond set of 65 experimentally validated BGCs in six bacterial
genomes (termed the validated Cimermancic et al. (16) set,
Supplementary Figure S1, Supplementary Table S4), which
allowed for a supplemental model testing. Additionally, we
retrieved a corpus of 3376 unannotated bacterial genomes
that we used for generating negative samples, for pfam2vec

corpus curation and for explorative application of Deep-
BGC to detect novel BGCs (Supplementary Figure S1, Sup-
plementary Table S5).

Pfam2Vec captures biological signal for DeepBGC input

One major challenge in BGC identification was defining in-
formative genomic input for the algorithm. Input sequences
of biological entities can be represented at different ge-
nomic levels including nucleotides, amino acids, and genes.
Of these options, sequential protein family (Pfam) domain
representations have been highly informative for BGC iden-
tification (16,30) because they represent functional elements
within genes. We extended this approach by converting se-
quences of Pfam domain identifiers to numeric vector rep-
resentations using the word2vec algorithm (28). The resul-
tant vectors of real numbers encapsulated domain proper-
ties based on their genomic context, allowing us to leverage
contextual (and below we show functional) similarities be-
tween Pfam domains and BGCs.

We validated the ability of pfam2vec to produce func-
tionally meaningful numeric representations of Pfam do-
mains within genomes by calculating the average vector co-
sine similarity between members of superfamilies. The co-
sine similarities within the same Pfam superfamilies (clans)
were significantly higher than the similarities between ran-
dom domain vector pairs (P < 2.2 × 10−16, Supplementary
Figure S2a). The average cosine similarity between super-
family pairs and random pairs was centered around 0 when
random representation vectors were used (P = 0.09, Supple-
mentary Figure S2b). The known domain functional anno-
tations of the nearest domain vector pairs were more sim-
ilar compared to random pairs (P < 2.2 × 10−16, Supple-
mentary Figure S2c) and N- and C-terminal domain pairs
appeared to be more similar in vector space compared to
other domains (Supplementary Table S6). These findings
suggested that pfam2vec produced functionally meaningful
numeric representations of Pfam domain sequences by re-
flecting known superfamily similarities.

We further confirmed the functional relevance of
pfam2vec vectors by evaluating their ability to discriminate
BGCs by their Pfam repertoires. We accomplished this by
condensing the many Pfam domains within each given BGC
into a single representative BGC vector using two alterna-
tive approaches. In the first approach we created represen-
tative BGC vectors by averaging the pfam2vec vector val-
ues, and in the second approach we created a binary vec-
tor indicating the presence of each specific domain (domain
set vector representation). We assessed the biological rele-
vance of these two approaches by means of a t-Distributed
Stochastic Neighbor Embedding (t-SNE) of all BGCs from
the MIBiG database (29), and showed that both approaches
preserved similarity between BGC subclasses (Supplemen-
tary Figure S3a and b). Separation of BGCs was reduced
when assessing their taxonomic discriminative abilities, fur-
ther suggesting that BGCs were largely defined by their
functional domain architecture and less by their bacterial
species (Supplementary Figure S3c and d). We also note
that while this is true at the domain level, it does not re-
flect taxon specificity at the chemical class level, which we
would expect increased taxon specificity (16). While domain



e110 Nucleic Acids Research, 2019, Vol. 47, No. 18 PAGE 6 OF 13

set vectors meaningfully represented BGCs, they could not
be used for individual domain representations that could be
used in sequence as input to a RNN model. On the contrary
pfam2vec vectors provided condensed and meaningful rep-
resentation of individual domains and therefore represented
a functionally relevant input for RNN that could enhance
BGC identification.

Unique model architecture & bootstrapping improves BGC
prediction

The DeepBGC BiLSTM neural network was comprised of
three layers: the input layer, the BiLSTM unit, and the out-
put layer (Figure 2). The input layer encoded a sequence of
numerical vectors representing Pfam domains in their ge-
nomic order. The BiLSTM layer consisted of forward and
backward LSTM network layers, each consisting of a basic
LSTM unit (a memory cell) with a 128-dimensional hidden
state vector. The memory cell was fed with a single input
vector as well as the cell’s state from the previous time step
in the genome. The output from all LSTM memory cells was
processed through a single fully connected output layer with
a sigmoid activation function. This yielded a single value for
each genomic Pfam entity, which represented BGC classifi-
cation score for that Pfam domain. This model was trained
using our positive (labeled BGCs) and negative (random
gene clusters) training samples, which were converted into
their respective sequences of pfam2vec vectors. Positive and
negative samples were repeatedly shuffled and concatenated
to simulate real genomic context in which BGCs were scat-
tered randomly throughout the genome and surrounded by
non-BGC sequences.

To compensate for the lack of a large independent vali-
dation set that could be used for optimizing model archi-
tecture, input features, and hyperparameters, we employed
a bootstrap sampling technique. Because our model was
trained on artificially created genomes, we bootstrapped a
real-world dataset to enable hyperparameter tuning and to
simultaneously prevent data leakage that would bias our es-
timation of accuracy in our algorithm. We performed boot-
strapping using our nine manually BGC-annotated whole-
genome dataset, wherein each of five iterations we randomly
selected two genomes randomly with replacement for hy-
perparameter validation and used the remaining genomes
for testing (Supplementary Figure S1). We obtained an av-
eraged Receiver Operating Characteristic (ROC) curve by
combining the 5 iteration test set predictions, which re-
vealed an improvement in precision and recall compared
to the original ClusterFinder HMM model as well as to
ClusterFinder HMM retrained with up-to-date data (AUC:
0.946, 0.837, 0.912, respectively, average precision: 0.75,
0.28, 0.63, respectively, Figure 3A and B).

DeepBGC accuracy outperforms existing machine learning
model

We formally evaluated the performance of the DeepBGC
model and compared it to the ClusterFinder model by
testing its ability to (i) accurately identify BGC positions
within whole bacterial genomes, (ii) discriminate between
BGCs and artificially created non-BGC sequences and (iii)

identify ‘novel’ BGC classes to which it has not been ex-
posed. First, to address whether DeepBGC could accu-
rately identify BGC positions within whole genomes, we
evaluated the model positional accuracy using our 65 ex-
perimentally validated BGC set from six bacterial genomes
(16). This revealed an improved performance of DeepBGC
(AUC = 0.923) over ClusterFinder (AUC = 0.847, Figure
3C). Second, we used 10-fold cross validation to evaluate
whether our final DeepBGC model could better discrim-
inate between BGC and artificially created non-BGC se-
quences compared to the existing ClusterFinder algorithm.
We used BGCs in the MIBiG database (29) as a positive set
and the random gene cluster negative set. Both sets were
randomly distributed across 10 bins, with 9 bins used for
training the model (with the optimal settings) and 1 used
for testing. DeepBGC (AUC = 0.984) outperformed Clus-
terFinder (AUC = 0.936) in differentiating between positive
and negative samples (Supplementary Figure S4). Third, to
evaluate DeepBGC’s ability to identify ‘novel’ BGCs, we
carried out a ‘Leave-class-out’ validation in which we as-
sessed the models’ abilities to identify a single BGC class
in the test set that was intentionally omitted from the train-
ing set. DeepBGC yielded more accurate identification of
classes it had not encountered (AUC = 0.946) compared
to ClusterFinder (AUC = 0.865; Figure 3D, Supplemen-
tary Figure S5). Overall DeepBGC yielded improved BGC
identification accuracy, and was better able to accurately ex-
trapolate to identify BGCs of classes it had not encountered
previously.

DeepBGC yields improved precision & BGC coverage

The most common use case for BGC identification mod-
els such as DeepBGC is locating BGCs within bacterial
genomes. It was therefore important for us to validate Deep-
BGC as having improved positional predictive accuracy of
BGCs, in addition to an improved precision and recall. We
achieved this by comparing the accuracy of DeepBGC and
ClusterFinder BGC detection in a subset of manually an-
notated bacterial genomes. To account for potential differ-
ential impacts of chosen BGC score thresholds, we applied
two distinct thresholds based on the respective domain-level
ROCs, a stringent domain level of 10% false positive rate
(FPR) as well as a lenient cutoff of 80% true positive rate
(TPR, Supplementary Table S7, Supplementary Figure S6a
and b).

With the stringent cutoff of 10% FPR, the number of
BGCs predicted by DeepBGC was consistently higher than
those predicted by ClusterFinder, regardless of the BGC
coverage threshold (Figure 4A and B). ClusterFinder dis-
played a sharp decline in the number of predicted BGCs
as the coverage threshold increased (Figure 4B), indicat-
ing that BGCs predicted by this approach were typically
short (Supplementary Figure S7, Supplementary Table S8).
The overall precision at the BGC level remained compara-
ble between the two models (precision = 34%, 26%, Figure
4C). Under a more lenient TPR threshold of 80%, Clus-
terFinder predicted more BGCs than DeepBGC when cov-
erage threshold remained <68% (Figure 4D and E). But
we found that ClusterFinder predictions were of low pre-
cision and were composed of many false positives (Fig-



PAGE 7 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 18 e110

Figure 2. Bidirectional Long-Short Term Memory (BiLSTM) neural network architecture (left to right blocks). The network consists of three layers: input,
BiLSTM network, and output layer. (Top to bottom) Each row represents a time step where the BiLSTM model processes a single Pfam domain from the
input sequence that is maintained in genomic order. Each Pfam domain is represented as a vector of precomputed 100-dimensional pfam2vec skip-gram
embedding and two binary flags indicating whether the domain is found at the beginning or at the end of a given protein. Each LSTM memory cell receives
the vector from input layer (full arrows) as well as the cell’s internal state that represents all previously seen Pfam domains (dashed arrows). The backward
LSTM layer processes the vectors in reverse order, hence bi-directional. In each timestep, output from both LSTM memory cells (boxes) is processed
through a single fully-connected node with sigmoid activation function (circle) that outputs a single BGC classification score for the given Pfam domain.

Figure 3. Model validation and testing on Pfam domain level using the (A) Receiver Operating Characteristic (ROC) curves and (B) Precision (Y-axis)
Recall (X-axis) Curve reflecting performance of: (blue) original ClusterFinder HMM model, (dashed blue) ClusterFinder HMM model retrained with
latest training data and latest Pfam database, and (red) DeepBGC. A total of 291 BGCs in nine bacterial genomes were used for testing, none of them
were included in the training set. The DeepBGC ROC represents combination of 5 test set predictions following bootstrap. AUC (Area Under the Curve)
values are as indicated: FPR – False Positive Rate (X-axis); TPR – True positive rate (Y-axis). (C) ROC curves reflecting performance using a total of 65
experimentally validated BGCs that were used for testing, none of them were included in the training set. (D) ROC curves reflecting average performance
in ‘Leave-Class-Out’ analysis. The mean AUC for all classes is given. For individual classes performance see Supplementary Figure S5.



e110 Nucleic Acids Research, 2019, Vol. 47, No. 18 PAGE 8 OF 13

Figure 4. Precision and coverage of DeepBGC and ClusterFinder algorithms. (A) Number of true BGCs detected by DeepBGC (red), ClusterFinder
(blue) and both models (grey), based on three BGC coverage thresholds: any (>0%), majority (>50%), and full (100%). Coverage of each annotated true
BGC is defined as the fraction of its nucleotide sequence overlapping with co-located predicted BGCs. The first bootstrap test split of seven out of nine
genomes was used for comparison. Domains were retrieved based on a fixed False Positive Rate (FPR) of 10%. Genes containing candidate Pfam domains
were summarized to produce putative BGCs that were compared to the actual BGCs in the split data. (B) Cumulative coverage plot of actual BGCs
by predicted BGCs for DeepBGC (red) and ClusterFinder (blue) also following post-processing (dashed). (C) BGC level precision for DeepBGC (red)
and ClusterFinder (blue) also following post-processing (light colors) at FPR 10%. Precision was calculated as follows: the number of true positives (any
overlap between actual and predicted BGCs) divided by total number of predicted BGCs. (D–F) Same as ‘A–C’ but at 80% TPR cutoff (G) A snapshot of
contig view (X-axis genomic coordinates of Micromonospora sp.), manually confirmed BGCs (grey shade and bar), ClusterFinder raw and post-processed
predictions (dark and light blue), DeepBGC raw and post-processed (dark and light red). For simplicity only part of the contig is shown and only at 80%
TPR threshold. For all contigs, thresholds and models, see Supplementary Figures S7 and S8.

ure 4F, BGC level precision = 9%, Supplementary Figure
S8, Supplementary Table S8). On the contrary, DeepBGC
displayed >4-fold increase in precision compared to Clus-
terFinder (precision = 44%, Figure 4F).

To correct for short BGCs predicted by ClusterFinder,
Cimermancic et al. (16) applied a post-processing step
whereby neighboring clusters were merged if they were sep-
arated only by a single gene. Putative clusters that were be-
low 2 kb in length, as well as those not containing a known
biosynthetic domain, were filtered out. We implemented
this approach and found that while this step dramatically
improved precision for both models (Figure 4C and F), it
also inevitably removed a subset of true positive predictions,
most notably for ClusterFinder at 10% FPR (Figure 4B).
We thus concluded that DeepBGC not only reduced the
number of false predictions compared to ClusterFinder, but
it also located BGCs within genomes more accurately.

Random forests provide product & activity classification

To identify the biosynthetic products derived from pre-
dicted BGCs, we classified BGC sequences by training and
testing a random forest classifier using the MIBiG database,
which contains classification of BGCs to one or more com-
pound classes (Table 1). Five-fold cross-validation revealed
that our random forest classifier exhibited an average AUC
of 0.80 (Table 1, Supplementary Figure S9), broadly com-
parable with antiSMASH product type prediction accu-
racy when mapped to common MIBiG classification (Sup-

plementary Table S9) with AUC of 0.78 (Table 1). Our
approach can also reveal the most influential Pfam do-
mains that drive the classifier decisions (Supplementary
Figure S10). Our DeepBGC random forest classifier there-
fore provided a data-driven alternative to the rule-based an-
tiSMASH classification approach. It is also important to
note that the main difference between the DeepBGC and
antiSMASH algorithms was saccharide classification and
this was due to antiSMASH having made the design choice
to refrain from confidently identifying these clusters during
its processing.

In addition to identifying BGC classes, we also evalu-
ated our ability to predict BGC molecular activity infor-
mation using the 370 molecular activity labeled MIBiG
BGC subset. Due to the small sample size, the classifier ac-
counted only for the four most common compound activity
classes: antibacterial, cytotoxic, inhibitor, and antifungal.
Using 5-fold cross-validation, BGCs were classified accord-
ing to their compound activity with modest precision (aver-
age AUC 0.61, Table 1). Larger training sets will be needed
for improved performance in future work.

DeepBGC predicts novel antibacterial BGCs

Above we showed that DeepBGC, together with random
forest classifiers, could effectively identify BGCs and clas-
sify their compound class and molecular activity. We there-
fore applied this model to unearth novel BGCs that could
not be predicted by other approaches. We accomplished this



PAGE 9 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 18 e110

Table 1. Random forest classifiers and antiSMASH performance for classifying BGCs based on their products and their underlying activity

RandomForest antiSMASH

Samples AUC Precision Recall AUC Precision Recall

Polyketide 644 0.903 0.876 0.898 0.870 0.901 0.806
NRP 433 0.907 0.904 0.850 0.915 0.939 0.852
RiPP 199 0.907 0.935 0.823 0.897 0.958 0.799

Saccharide 179 0.811 0.906 0.631 0.607 0.769 0.223
Other 154 0.583 0.876 0.171 0.671 0.594 0.370
Terpene 120 0.824 0.867 0.658 0.744 0.908 0.492
Alkaloid 39 0.607 0.733 0.216 0.785 0.434 0.590
Average 252 0.792 0.871 0.607 0.784 0.786 0.590

Antibacterial 180 0.629 0.615 0.508
Cytotoxic 140 0.706 0.694 0.542
Inhibitor 81 0.545 0.473 0.115
Antifungal 71 0.532 0.360 0.073
Average 118 0.603 0.536 0.310

The classifier was trained using 1355 MIBiG labeled BGCs belonging to one or more compound classes including polyketides (PKS), non-ribosomally syn-
thesized peptides (NRP), ribosomally synthesized and post-translationally modified peptides (RiPP), saccharides, terpenes, alkaloids, and those belonging
to other rarer classes (‘other’). Areas under the curve (AUC) was determined using 5-fold cross-validation. Respective confusion matrix and important do-
main features are provided in Supplementary Figures S9 and S10. For molecular activity classification random forest was used as before on 370 molecular
activity labeled MIBiG BGCs. Only antibacterial, cytotoxic, inhibitor or antifungal classes are accounted for.

by using a bacterial reference set of 3376 RefSeq bacte-
rial genomes (26) and subjected these to DeepBGC, anti-
SMASH and ClusterFinder analyses, followed by a system-
atic comparison of their predictions (Supplementary Ta-
ble S10). To avoid an artificially inflated number of puta-
tive novel predictions, we maximized the ability of Clus-
terFinder and antiSMASH to detect BGCs by accepting
their default (lenient) settings, while conversely applying a
strict cutoff only for DeepBGC (2% FPR at the domain
level). Under these criteria, ClusterFinder predicted >4.5
times more BGCs (62491) than antiSMASH (13 865) and
>5.5 times more than DeepBGC (10926). As expected, the
majority of BGCs that were identified by ClusterFinder
(∼75%) could not be identified by DeepBGC or anti-
SMASH (Figure 5a). ClusterFinder predictions showed
comparable overlap with DeepBGC and antiSMASH (18%
and 15% respectively). On the contrary, DeepBGC com-
parison revealed that the majority of DeepBGC predictions
overlapped with ClusterFinder (∼90%), and ∼39% with an-
tiSMASH of which 35% overlapped with both (Figure 5A).
Approximately 5% (566) of DeepBGC predictions could
not be uncovered by any other method, using our conserva-
tive thresholds against false positive detection. Evaluation
of the rule-based antiSMASH predictions revealed that the
BGCs missed by DeepBGC were overall of diverse classes,
and many of these are expected to be recovered by using
more lenient DeepBGC parameters (Supplementary Table
S11, Supplementary Figure S11). A specific example of S.
coelicolor BGC detection (a well studied organism in the
field) confirmed that looser DeepBGC thresholds allowed
for detection of more BGCs that were otherwise identi-
fied by rule-based antiSMASH, with the number of anti-
SMASH BGCs identified by DeepBGC ranging from 21 to
9 out of 28, across thresholds of 0.1–0.9, respectively (Sup-
plementary Figures S12 and S13).

We further explored these novel signatures by interrogat-
ing the ∼5% novel BGCs that DeepBGC detected. We con-
sidered 227 BGCs that consisted of at least 5 Pfam domains
and classified them based on their compound class and

molecular activity. We found that the result was enriched
for BGCs with no confident class (∼70%) and for those
that originated from the Mycobacterium genus (∼49%, Sup-
plementary Figure S14). When visualized using t-SNE the
novel BGCs that could not be confidently assigned to a sin-
gle compound class straddled the borders between distinct
classes (grey plus signs, Figure 5b), while the remaining were
tightly clustered with known BGCs according to their re-
spective class (Figure 5b).

To further highlight the performance of DeepBGC func-
tional classification on real data, we evaluated the S. coeli-
color reference genome used above. We found that some of
the S. coelicolor BGCs classified as RIPPs did not appear
to contain genetic signatures of RIPPs upon manual inspec-
tion (Table S12). DeepBGC also identified a lycopene-like
carotinoid cluster but mis-identified it as a terpenoid clus-
ter, while antiSMASH considered this a primary metabolite.
These examples further support our benchmarking find-
ings above, which tell us that while DeepBGC performs well
compared to other methods, it is not able to perfectly iden-
tify and classify BGCs.

To begin evaluating the individual BGCs, we ranked our
novel predictions based on their total number of Pfam do-
main counts, their predicted antibacterial activity score and
their similarity to known BGC in the MIBiG database (Sup-
plementary Table S13). We used this list to manually iden-
tify a candidate BGC that could not be assigned to a spe-
cific compound class, displayed a low similarity score to
known BGCs and had a high antibacterial prediction score.
This novel BGC resided in the genome of the pathogenic
bacterium Mycobacterium tuberculosis, in which BGCs are
known to be abundant (31–35). The cluster was distant
from any other neighboring predictions (∼9 kb, Figure 5C)
and rich in a diverse set of regulatory, transport and mod-
ifying enzymes (Figure 5d, Supplementary Table S14) in-
cluding acetyltransferase and glyoxalase/bleomycin resis-
tance protein, which have been known to catalyze diverse
biochemical reactions (36). The cluster also encoded for a
type II toxin-antitoxin system, further supporting its poten-



e110 Nucleic Acids Research, 2019, Vol. 47, No. 18 PAGE 10 OF 13

Figure 5. DeepBGC uncovers novel BGCs with antibacterial activity in bacterial genomes. (A) Comparison of BGC predictions between (left) Clus-
terFinder, (middle) antiSMASH and (right) DeepBGC. Default ClusterFinder settings from antiSMASH suite were used. For antiSMASH, rule-based
predictions under default settings were considered. In DeepBGC, a 2% FPR at the domain level was applied with no further post-processing. CF –
ClusterFinder; aS -antiSMASH. (B) t-Distributed Stochastic Neighbor Embedding (t-SNE) of all 1355 class labelled BGCs from the MIBiG database
(circles) overlaid with the putative novel 227 BGCs that could be predicted solely by DeepBGC (plus signs). BGCs were represented by the mean value of
their pfam2vec domain vectors and are colored by the respective known or predicted class as indicated. (C) A snapshot of contig view (X-axis genomic
coordinates of Mycobacterium tuberculosis) of BGC predictions by (red) DeepBGC, (blue) ClusterFinder, and (orange) antiSMASH combined with Clus-
terFinder. A novel BGC candidate predicted only by DeepBGC is highlighted (light red shade). (D) The novel BGC structure is given, respective genes are
colored based on the underlying domain type. For domain IDs see Supplementary Table S14.

tial cytotoxic activity (37). Such wealth of modifying en-
zymes could potentially grant the final natural product a
novel chemistry. A search for BGCs with similar domain
architecture revealed a similar cluster (80% similarity) in
a different Mycobacterium tuberculosis strain. More diver-
gent clusters with >60% similarity scores were discovered
in other Mycobacterium species, and were also supported
by predictions from antiSMASH and ClusterFinder (Sup-
plementary Figure S15). We also highlighted five additional
putative BGCs that were uniquely identified by DeepBGC
and were from diverse bacterial taxa (Supplementary Fig-
ure S16, Supplementary Table S15). Together with our re-
sults from the leave-class-out validation and other valida-
tion metrics above, these discoveries highlight the value
of DeepBGC and its ability to mine bacterial genomes to
provide previously unrealized insights into bacterial nat-
ural product chemistry. These insights will provide direc-
tion for experimental validation and follow up experiments,
which will also serve as a robust validation of the predicted
BGCs’ biological relevance.

DISCUSSION

Here we present DeepBGC, a comprehensive deep learn-
ing strategy for identifying BGCs from bacterial genomes
and classifying them by their product class and chemical
activity. Our deep learning approach is based on concepts
from the NLP field and builds on existing algorithms that
either suffer from a restricted ability to identify novel BGC
classes or from a limited ability to accurately identify BGCs

within a genome. We demonstrated that our DeepBGC ap-
proach outperformed one commonly used machine learn-
ing algorithm, ClusterFinder, in its ability to identify BGCs
accurately within a genome (Supplementary Table S16).
Our leave-class-out analysis suggested that the DeepBGC
model also possessed a greater potential to extrapolate and
identify BGC classes that it has not encountered before.
The supplemental random forest classification approach al-
lowed us to accurately identify BGC classes by their Pfam
domain composition, and enabled some prediction of the
chemical activity of the resulting secondary metabolites
despite the limited sample size available for training. Fi-
nally, like other machine learning algorithms, DeepBGC is
poised to continue improving over time with the continu-
ous discovery, validation, and labeling of BGCs in microbial
genomes.

Machine learning has had a dramatic impact on NLP
methodologies, giving rise to powerful word embedding
techniques such as word2vec, which allow representation
of words as low-dimensionality vectors of real numbers
through which they enhance learning by context (38). As-
gari et al. (39) recently adopted word embedding and neural
networks to improve classification of protein families using
amino acid sequence vectors and Kim et al. (40) has also
introduced Mut2Vec for representation of cancerous muta-
tions. In our current study, we fortified our DeepBGC BiL-
STM network’s ability to learn complex patterns in genomic
sequences with novel pfam2vec representation vectors that
were generated from a large unlabeled corpus of genomic
sequences. By doing so we enabled an improved machine



PAGE 11 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 18 e110

understanding of the enigmatic genomic context. We believe
that our pfam2vec approach could further assist in annotat-
ing domains of unknown functions based on their genomic
context. To this end, we also provided a set of nearest do-
main pairs of known and unknown functions (Supplemen-
tary Table S17), yet this pursuit was ultimately beyond the
scope of this study and we will continue pursuing this in fu-
ture work.

We applied our model to a real-world dataset (collection
of reference bacterial genomes) to highlight its ability to
provide unique insights into bacterial BGCs. The inflated
number of BGCs predicted by ClusterFinder could be read-
ily explained by its low precision. Our results suggested that
many ClusterFinder predictions were false positives, and
those that were not false positives only represented small
fractions of true BGCs. Throughout the study, parameter
settings were conservatively chosen because we preferred
underprediction over annotation of bacterial genomes with
incorrectly predicted BGCs.

We found that our model identified BGCs of diverse
product classes that ClusterFinder could not identify, al-
though the majority of BGC classes could not be confi-
dently assigned. This suggests a potential for identifying
novel BGCs, warranting significant future validation to ex-
plore those BGC candidates. These unknown BGCs were
largely found within Mycobacteria, a genus known to har-
bor many diverse BGCs (31–35). Therefore, our model not
only identifies potential new BGC signatures, but it does so
in bacteria with a known prominence for BGCs, and thus
the bacteria we might expect a priori to have a significant
reservoir of novel BGCs.

While we illustrated the application of this tool to refer-
ence genomes, we also anticipate DeepBGC applications to
the microbiome through shotgun metagenomic datasets. An
understanding of differential BGC presence or expression
(using metatranscriptomics approaches) could provide new
insights into microbiome functionality, underlying mecha-
nisms of disease, and therapeutic approaches. Although be-
yond the scope of this work, the incorporation of DeepBGC
into microbiome sequence analyses is an exciting avenue for
future studies.

While our deep learning based, DeepBGC approach out-
performed other commonly used models, it is important to
note its limitations. Like other existing models, this model
was trained on existing BGC databases that are heavily bi-
ased towards BGCs from natural product ‘workhorses’ such
as Streptomyces. This bias in the training data is likely to
limit the ability of the model to identify novel BGCs in bac-
terial sources that are poorly characterized in the databases,
including bacteria found in complex microbial communi-
ties (the microbiome). We addressed this extrapolation con-
cern by performing leave-class-out validation to highlight
the generalizability of our approach over other existing ap-
proaches. Despite our improved performance, further work
is needed to curate more diverse BGC databases which can
be used to improve the training and validation, and overall
performance as a result, of our model.

Another important caveat is the comparison of Deep-
BGC to antiSMASH, which represents a rule-based ap-

proach to BGC identification. Methods that implement do-
main expert knowledge through human defined rules lever-
age extensive field information and are therefore clearly
valuable in finding BGC signatures that align with our
current understanding of the field. Machine learning ap-
proaches such as ClusterFinder and DeepBGC excel at
identifying novel signatures and continue to scale as our
databases improve. However, these models are only as good
as the accuracy and depth of the underlying databases used
for training. This was reflected by our observation that some
well studied classes were recovered regardless of thresh-
old, while others were more threshold-dependent (Supple-
mentary Figure S11). This was further highlighted by our
observation that some classes were mis-identified in the
S. coelicolor reference genome example, which agrees with
our other benchmarking results. Overall this highlights that
these machine-learning models should be viewed as compli-
mentary instead of redundant, as they provide unique ad-
vantages in signal identification.

The resulting classification and misclassifications of our
DeepBGC model, as well as other machine learning models,
highlight that machine learning approaches identify com-
monalities in the predictive features of their datasets, and
those may not reflect true biology. As we alluded to above,
because the machine learning models are trained on rel-
atively small reference datasets, they may learn biases in-
stead of true biological signal such as learning to associated
ABC transporter signals with RiPP clusters (an association
which does not reflect their true biology). Together this illus-
trates the importance of incorporating larger datasets, and
we built DeepBGC to allow that easy incorporation of data.
This will be an important area for future study.

Despite this limitation, our model performs well com-
pared to other methods, and represents a useful algorithm
for the field of natural product discovery. Due to our
model’s improved ability to identify novel BGCs, we showed
that we could identify BGC that were missed by other ex-
isting models, and thereby identify previously unknown
sources for natural products in existing bacterial genome
sequences. By reducing the number of fragmented BGCs
being identified in bacterial genomes, our improved predic-
tion accuracy will reduce BGC count inflation. Addition-
ally, by providing more accurate BGC border predictions,
we will reduce the human triage effort of cleaning up pre-
dicted BGCs whose genomic positions were not entirely ac-
curate. Together DeepBGC represents an advancement over
the current “state-of-the-art” by improving BGC identifica-
tion accuracy, BGC genomic location prediction, and iden-
tification of potentially novel BGC signatures that were not
present in the current training knowledgebase. This will be
used to empower follow up genome mining for novel BGCs
and their resulting natural products, and the improved ex-
trapolation capabilities will empower BGC mining of mi-
crobiome datasets, which still represent an under-explored
genomic BGC resource. These microbiome analyses, includ-
ing associations with disease phenotypes and identification
of novel chemical matter in classes such as antibiotics or
immunomodulatory agents, could have important clinical
impacts for translating microbiome data to therapeutic in-
terventions.



e110 Nucleic Acids Research, 2019, Vol. 47, No. 18 PAGE 12 OF 13

DATA AVAILABILITY

All data used in this work was obtained from the pub-
lic domain and is specified in the respective methods sec-
tions. All code for this publication is available at the fol-
lowing GitHub repository: https://github.com/Merck/bgc-
pipeline. DeepBGC is available for installation and use as a
Python package at the following GitHub repository: https:
//github.com/Merck/deepbgc.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Otakar Smrz, Joseph Lehar and Ivo Lasek for
stimulating discussions. We are immensely grateful to David
Dzamba, Matthew Tudor, Jyoti Shah and Petr Mejzlik for
their comments on earlier version of the manuscript. We are
also especially grateful to Mohamed Donia for the stimu-
lating discussions and comments. We also would like to ac-
knowledge and thank Nicole L. Glazer, Jens Christensen
and Carol A. Rohl for supporting this work.
Author contributions: G.H., C.W. and D.B. conceived, de-
signed and supervised the study. J.S. and L.R. guided the im-
plementation of BiLSTM network by A.P. J.D., J.S. and D.P.
explored protein and BGC similarities approaches. J.S. and
D.B. designed the pfam2vec algorithm, J.S. implemented it
and DP evaluated its performance. J.S. designed the boot-
strap approach and DP implemented it. J.K., M.W. and
D.C. advised and assessed the HMM, LSTM and classifi-
cation methods. D.P. developed and implemented the entire
pipeline and performed all data analyses in this study. D.P.,
O.K. and J.S. designed and implemented the random forest
classifier. R.W. evaluated DeepBGC predictions and G.P.,
G.T. and D.H. advised throughout the study. D.P. and D.B.
designed the figures. D.B. drafted the manuscript. G.H.,
C.W., R.W. and D.P. contributed to the final draft, all au-
thors read and approved the final version of the manuscript.

FUNDING

This work supported by Merck Sharp & Dohme Corp., a
subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.
Funding for open access charge: Merck & Co. Inc.
Conflict of interest statement. A subset of manuscript au-
thors are inventors on a patent related to this work (patent
application number: 62/779.697). All of this work/code is
licensed under the MIT permissive free software license.

REFERENCES
1. Newman,D.J. and Cragg,G.M. (2012) Natural products as sources of

new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 75,
311–335.

2. Milshteyn,A., Schneider,J.S. and Brady,S.F. (2014) Mining the
metabiome: identifying novel natural products from microbial
communities. Chem. Biol., 21, 1211–1223.

3. Ventola,C.L. (2015) The antibiotic resistance crisis: part 1: causes and
threats. P T, 40, 277–283.

4. Pendleton,J.N., Gorman,S.P. and Gilmore,B.F. (2013) Clinical
relevance of the ESKAPE pathogens. Expert Rev. Anti. Infect. Ther.,
11, 297–308.

5. Zhang,H. and Chen,J. (2018) Current status and future directions of
cancer immunotherapy. J. Cancer, 9, 1773–1781.

6. Shen,B. (2015) A new golden age of natural products drug discovery.
Cell, 163, 1297–1300.

7. DeCorte,B.L. (2016) Underexplored opportunities for natural
products in drug discovery. J. Med. Chem., 59, 9295–9304.

8. Harvey,A.L., Edrada-Ebel,R. and Quinn,R.J. (2015) The
re-emergence of natural products for drug discovery in the genomics
era. Nat. Rev. Drug Discov., 14, 111–129.

9. Hopwood,D.A. and Merrick,M.J. (1977) Genetics of antibiotic
production. Bacteriol. Rev., 41, 595–635.

10. Martin,J.F. (1992) Clusters of genes for the biosynthesis of
antibiotics: regulatory genes and overproduction of pharmaceuticals.
J. Ind. Microbiol., 9, 73–90.

11. Martı́n,M.F. and Liras,P. (1989) Organization and expression of
genes involved in the biosynthesis of antibiotics and other secondary
metabolites. Annu. Rev. Microbiol., 43, 173–206.

12. Medema,M.H. and Fischbach,M.A. (2015) Computational
approaches to natural product discovery. Nat. Chem. Biol., 11,
639–648.

13. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

14. Medema,M.H., Blin,K., Cimermancic,P., de Jager,V., Zakrzewski,P.,
Fischbach,M.A., Weber,T., Takano,E. and Breitling,R. (2011)
antiSMASH: rapid identification, annotation and analysis of
secondary metabolite biosynthesis gene clusters in bacterial and
fungal genome sequences. Nucleic Acids Res., 39, W339–W346.

15. Weber,T., Rausch,C., Lopez,P., Hoof,I., Gaykova,V., Huson,D.H.
and Wohlleben,W. (2009) CLUSEAN: a computer-based framework
for the automated analysis of bacterial secondary metabolite
biosynthetic gene clusters. J. Biotechnol., 140, 13–17.

16. Cimermancic,P., Medema,M.H., Claesen,J., Kurita,K., Wieland
Brown,L.C., Mavrommatis,K., Pati,A., Godfrey,P.A., Koehrsen,M.,
Clardy,J. et al. (2014) Insights into secondary metabolism from a
global analysis of prokaryotic biosynthetic gene clusters. Cell, 158,
412–421.

17. Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics, 14,
755–763.

18. Skinnider,M.A., Merwin,N.J., Johnston,C.W. and Magarvey,N.A.
(2017) PRISM 3: expanded prediction of natural product chemical
structures from microbial genomes. Nucleic Acids Res., 45,
W49–W54.

19. Yoon,B.-J. (2009) Hidden Markov models and their applications in
biological sequence analysis. Curr. Genomics, 10, 402–415.

20. Choo,K.H., Tong,J.C. and Zhang,L. (2004) Recent applications of
Hidden Markov Models in computational biology. Genomics.
Proteomics Bioinformatics, 2, 84–96.

21. Eddy,S.R. (2004) What is a hidden Markov model? Nat. Biotechnol.,
22, 1315–1316.

22. Finn,R.D., Coggill,P., Eberhardt,R.Y., Eddy,S.R., Mistry,J.,
Mitchell,A.L., Potter,S.C., Punta,M., Qureshi,M.,
Sangrador-Vegas,A. et al. (2016) The Pfam protein families database:
towards a more sustainable future. Nucleic Acids Res., 44,
D279–D285.

23. Hochreiter,S., Heusel,M. and Obermayer,K. (2007) Fast model-based
protein homology detection without alignment. Bioinformatics, 23,
1728–1736.

24. Hochreiter,S. and Schmidhuber,J. (1997) Long Short-Term memory.
Neural Comput., 9, 1735–1780.

25. Schuster,M. and Paliwal,K.K. (1997) Bidirectional recurrent neural
networks. IEEE Trans. Signal Process., 45, 2673–2681.

26. O’Leary,N.A., Wright,M.W., Brister,J.R., Ciufo,S., Haddad,D.,
McVeigh,R., Rajput,B., Robbertse,B., Smith-White,B., Ako-Adjei,D.
et al. (2016) Reference sequence (RefSeq) database at NCBI: current
status, taxonomic expansion, and functional annotation. Nucleic
Acids Res., 44, D733–D745.

27. Hyatt,D., Chen,G.-L., LoCascio,P.F., Land,M.L., Larimer,F.W. and
Hauser,L.J. (2010) Prodigal: prokaryotic gene recognition and
translation initiation site identification. BMC Bioinformatics, 11, 119.

28. Mikolov,T., Chen,K., Corrado,G. and Dean,J. (2013) Efficient
Estimation of Word Representations in Vector Space.

29. Medema,M.H., Kottmann,R., Yilmaz,P., Cummings,M.,
Biggins,J.B., Blin,K., de Bruijn,I., Chooi,Y.H., Claesen,J.,

https://github.com/Merck/bgc-pipeline
https://github.com/Merck/deepbgc
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz654#supplementary-data


PAGE 13 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 18 e110

Coates,R.C. et al. (2015) Minimum information about a biosynthetic
gene cluster. Nat. Chem. Biol., 11, 625–631.

30. Ziemert,N., Alanjary,M. and Weber,T. (2016) The evolution of
genome mining in microbes - a review. Nat. Prod. Rep., 33, 988–1005.

31. Chavadi,S.S., Stirrett,K.L., Edupuganti,U.R., Vergnolle,O.,
Sadhanandan,G., Marchiano,E., Martin,C., Qiu,W.-G., Soll,C.E. and
Quadri,L.E.N. (2011) Mutational and phylogenetic analyses of the
mycobacterial mbt gene cluster. J. Bacteriol., 193, 5905–5913.

32. Quadri,L.E., Sello,J., Keating,T.A., Weinreb,P.H. and Walsh,C.T.
(1998) Identification of a Mycobacterium tuberculosis gene cluster
encoding the biosynthetic enzymes for assembly of the
virulence-conferring siderophore mycobactin. Chem. Biol., 5,
631–645.

33. Li,W., He,J., Xie,L., Chen,T. and Xie,J. (2013) Comparative genomic
insights into the biosynthesis and regulation of mycobacterial
siderophores. Cell Physiol. Biochem., 31, 1–13.

34. Harris,N.C., Sato,M., Herman,N.A., Twigg,F., Cai,W., Liu,J.,
Zhu,X., Downey,J., Khalaf,R., Martin,J. et al. (2017) Biosynthesis of
isonitrile lipopeptides by conserved nonribosomal peptide synthetase

gene clusters in Actinobacteria. Proc. Natl. Acad. Sci. U.S.A., 114,
7025–7030.

35. Tobias,N.J., Doig,K.D., Medema,M.H., Chen,H., Haring,V.,
Moore,R., Seemann,T. and Stinear,T.P. (2013) Complete genome
sequence of the frog pathogen Mycobacterium ulcerans ecovar
Liflandii. J. Bacteriol., 195, 556–564.

36. Armstrong,R.N. (2000) Mechanistic diversity in a metalloenzyme
superfamily. Biochemistry, 39, 13625–13632.

37. Anantharaman,V. and Aravind,L. (2003) New connections in the
prokaryotic toxin-antitoxin network: relationship with the eukaryotic
nonsense-mediated RNA decay system. Genome Biol., 4, R81.

38. LeCun,Y., Bengio,Y. and Hinton,G. (2015) Deep learning. Nature,
521, 436–444.

39. Asgari,E. and Mofrad,M.R.K. (2015) Continuous distributed
representation of biological sequences for deep proteomics and
genomics. PLoS One, 10, e0141287.

40. Kim,S., Lee,H., Kim,K. and Kang,J. (2018) Mut2Vec: distributed
representation of cancerous mutations. BMC Med. Genomics, 11, 33.


