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Abstract: Two large randomized controlled trials of low-dose CT (LDCT)-based lung cancer screening
(LCS) in high-risk smoker populations have shown a reduction in the number of lung cancer deaths in
the screening group compared to a control group. Even if various countries are currently considering
the implementation of LCS programs, recurring doubts and fears persist about the potentially high
false positive rates, cost-effectiveness, and the availability of radiologists for scan interpretation.
Artificial intelligence (AI) can potentially increase the efficiency of LCS. The objective of this article
is to review the performances of AI algorithms developed for different tasks that make up the
interpretation of LCS CT scans, and to estimate how these AI algorithms may be used as a second
reader. Despite the reduction in lung cancer mortality due to LCS with LDCT, many smokers
die of comorbid smoking-related diseases. The identification of CT features associated with these
comorbidities could increase the value of screening with minimal impact on LCS programs. Because
these smoking-related conditions are not systematically assessed in current LCS programs, AI can
identify individuals with evidence of previously undiagnosed cardiovascular disease, emphysema or
osteoporosis and offer an opportunity for treatment and prevention.

Keywords: artificial intelligence (AI); lung cancer screening (LCS); low-dose CT (LDCT); pulmonary
nodule; nodule detection; nodule characterization; coronary artery calcifications (CAC); emphysema;
quantitative CT; osteoporosis

1. Introduction

Lung cancer screening (LCS) using low-dose computed tomography (LDCT) has been
shown to reduce lung cancer-specific mortality. In 2011, the National Lung Screening
Trial (NLST) was the first multicenter randomized controlled trial (over 53,000 current
or former smoker participants) to show a 20% decrease in lung cancer deaths after three
rounds of annual screening using LDCT and seven years of follow-up, compared to annual
screening with chest radiographs [1]. In 2013, the United States Preventive Services Task
Force (USPSTF) recommended annual lung cancer screening with LDCT for smokers aged
between 55 and 80 years, with at least 30 pack-years of smoking exposure that currently
smoke or who have quit smoking within 15 years. Since then, many LDCT-based screening
programs have already been implemented in the USA, with the knowledge that the new
USPSTF recommendations extended screening to smokers aged 50 to 80 years who have
a 20 pack-year smoking history [2,3]. Furthermore, given the success of the UK Lung
Cancer Screening trial, implementation programs are currently underway in the UK [4].
In 2020, the results of the Dutch-Belgian NELSON trial, the second largest randomized
controlled trial with 15,789 participants, showed a 24% reduction in mortality from lung
cancer in a high-risk population of men compared to no screening [5]. The growth-rate
assessment for indeterminate nodules was an effective way to reduce the false positive rate
to approximately 2%, compared with a 24% false positive rate reported in the NLST [1]. In
order to further reduce the false positive rate while maintaining a high sensitivity, various
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CT reporting systems were developed [6–11]. The Lung CT Screening Reporting and Data
system (Lung-RADS) developed by the American College of Radiology has been the most
used for the reporting of annual screening CT scans in the USA [8]. Such reporting systems
can help radiologists to detect, measure, classify and characterize pulmonary nodules, to
detect other significant findings, to estimate the malignancy probability of the detected
abnormality, and finally propose modalities of the follow-up. The complete analysis of
these scans is very challenging and time-consuming, has substantial reader variability, and
thus influences the effectiveness of lung cancer screening. One possible solution for this
problem is to use artificial intelligence (AI).

Despite the fact that LCS via LDCT scans can reduce the number of deaths from
lung cancer, many smokers die of comorbid smoking-related diseases [5,12]. LCS scans
contain findings of smoking-related diseases that are not currently systematically assessed.
Regan et al. showed that analysis of LCS CT scans extended to these findings allows us
to identify individuals with evidence of previously undiagnosed cardiovascular disease,
emphysema or osteoporosis that corresponded with adverse events [13]. The identification
of those smoking-related comorbidities via LDCT could increase the value of screening
with minimal impact on LCS programs. AI solutions could facilitate extended readings of
LCS LDCT scans by including assessment of these smoking-related diseases and have a
positive impact on the health of many smokers.

The first objective of this article is to analyze the results of previously published studies
that focus on AI solutions, developed specifically either to identify lung nodules or to detect
and quantify other smoking-related diseases on chest CT scans. The second objective is to
discuss the potential role of these AI solutions to help radiologists in the management of
lung nodules and smoking-related diseases on LDCT scans in LCS.

2. Identification of Pulmonary Nodules

The algorithms developed for pulmonary nodule identification are often referred to as
computer-aided detection (CAD) systems. They are designed for different purposes, in-
cluding lung segmentation, pulmonary nodule detection and classification, and prediction
of nodule malignancy.

2.1. Lung Segmentation

Recently, deep learning (DL) algorithms have replaced the classical approaches for
automatic lung segmentation. Current state-of-the-art methods use statistical finite element
analysis [14], or three-dimensional lung segmentation, improved by deep convolution
image-to-image network training, which was successfully implemented by Siemens Health-
inners in their AI-RAD Companion framework [15] (Figure 1).
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voxels that have an attenuation value of less than 950 HU (emphysema) are green turquoise. 
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gist [21]. These results suggest the potential utility of the CAD system in the role of a 
second reader [22].  

CAD systems have also been developed to help radiologists to automatically classify 
nodule types in order to identify the relevant ones. Ciompi et al. developed an AI algo-
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Figure 1. Automatic 3D segmentation of lung and lobe contours and quantitative analysis of emphy-
sema in a 65year-old former smoker using the AI-RAD Companion (Siemens Healthinners) solution.
The contours of the left lower lobe are blue and those of the right lower lobe are dark green. The
contours of the right upper lobe are yellow and those of the left upper lobe are light green. The voxels
that have an attenuation value of less than 950 HU (emphysema) are green turquoise.

2.2. Nodule Detection and Classification

Many articles have been published on AI algorithms for detecting lung nodules [14,16–18].
As reported in a review article by Schreuder et al., published in 2021, algorithms demonstrated
slightly lower or similar sensitivities compared to radiologists, at the expense of a significant
increase in the false positive rate [19]. Even if DL-CAD systems showed a higher detection rate
than double readings by radiologists, regardless of nodule size, the false positive rates (per
CT scan) of the DL-CAD systems were higher than that of the double readings. Binczyk and
associates recently reported the results of new methods to reduce the rate of false positives [14].
Sensitivities of algorithms to detect lung nodule varied from 72.00% to 97.87%, with a rate of
false positives varying from 0.42 to 7.90 per case.

To assess the impact of CAD as a second reader, investigators evaluated the perfor-
mances of double readings by radiologists and CAD within a subset of 400 patients from the
NELSON trial. They showed that 22% of nodules ≥50 mm3 were identified solely by CAD,
including one instance of lung cancer [20]. In another study, Liang et al. showed that four
different CAD systems detected up to 70% of lung cancers not detected by the radiologist,
but missed about 20% of the lung cancers that were identified by the radiologist [21]. These
results suggest the potential utility of the CAD system in the role of a second reader [22].

CAD systems have also been developed to help radiologists to automatically classify
nodule types in order to identify the relevant ones. Ciompi et al. developed an AI algorithm
for differentiating between the following six nodule types: spiculated, solid, part-solid,
non-solid, calcified, and perifissural [23]. The training of the DL system was carried
out with data from the Italian MILD screening trial and the validation performed on
an independent set of data from the Danish LCS trial, which was also assessed by four
independent radiologists. The results showed that the performance of the DL algorithm
was within the limits defined by the inter-observer variability in the four experienced
readers, thus performing equally to an independent human expert.

With the knowledge that large nodule size is one of the best predictors of malignancy,
it can be determined by manually measuring the longest and perpendicular diameters in
the transverse plane. Unfortunately, this measurement is prone to inter- and intra-observer
variability [24], which can interfere with the diagnostic workup recommendation [25,26].
Volumetric segmentation methods offer the advantage of being less subject to inter- and
intra-radiologist variability [27,28]. Considering there is a large variation among different
algorithms, the same segmentation algorithm should be used in order to ensure reliable
measurement of nodule growth over time. Both 2D and 3D diameters can be automatically
obtained from the segmented volume (Figure 2). Using multivariable logistic regression
models, Tammemagi et al. showed that both mean diameter and volume measurements of
nodule with CAD may provide malignancy risk estimation similar to those of the previously
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validated PanCan model that was based on radiologist-read LDCT scans and maximum
nodule size, with similar predictive abilities between the mean diameter and volume
models [29]. Despite many improvements in screening procedures using AI-based solutions
to detect and classify pulmonary nodules, the performances of the developed algorithms
need to be proven to be quite robust in external datasets before being implemented in
routine clinical care.
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Figure 2. Automatic detection of 3 solid nodules in a 56 current smoker using the AI-RAD Companion
(Siemens Healthinners) solution. (Left top): axial CT image that shows the results of the automatic
segmentation and contouring of the largest left upper lobe nodule. (Right top): coronal view that
summarizes all lung nodules detected by the CAD system with their location (red). (Bottom): table
that reports the lobe location, 2D and 3D diameters, and volume of the 3 detected nodules.

2.3. Malignant Prediction

Accurate estimation of the malignancy risk of pulmonary nodules is essential and
remains challenging. In practice, to predict the malignancy of a pulmonary nodule, radi-
ologists currently use the statistical risk model established using patient demographics,
nodule size, type and morphology. The most widely used statistical risk model for esti-
mating nodule malignancy risk is the Brock model, also known as the PanCan model [30].
Nevertheless, accurately distinguishing between benign and malignant nodules remains
a challenge.

Several studies [31,32] showed the potential of DL with convolution neural networks
(CNNs) in predicting the malignancy risk of a pulmonary nodule through the publicly
available Lung Image Database Consortium image collection data set [33]. However, the
algorithm performances were evaluated by comparison with the subjective scoring pro-
vided by radiologists without a definitive reference standard for malignant and benign
nodules. By contrast, Venkadesh et al. used a reference standard based on histopathologic
confirmation for malignant lesions and/or follow-up with CT for more than two years for
benign nodules [34]. They developed a DL algorithm for malignancy risk estimation of
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pulmonary nodules by using LDCT scans from the NLST and validated it in the Danish
LCS trial (DLCST). The algorithm was based on 2D and 3D CNNs with information from
a single CT examination. In the DLCST cohort, the accuracy of the developed algorithm
significantly outperformed that of the Pan-Can model. The area under the curve (AUC)
was 0.93 vs. 0.90 (p = 0.046). At a specificity of 90%, the sensitivities were 84% and 63% for
the DL algorithm and the Pan-Can model, respectively. The DL algorithm performances
were also assessed on two subsets of cancer-enriched cohorts selected from the DLCST
cohort. Both subsets included all lung cancer nodules and twice as many benign nodules.
In one subset, the benign nodules were sampled at random, whereas in the second subset,
they were size matched to the cancers before sampling at random to remove the effect of
nodule size. The DL algorithm performed in a significantly comparable way to thoracic
radiologists in both subsets. In addition, it significantly outperformed the Pan-Can model
only in the size-matched cancer-enriched subset, indicating that the algorithm takes into
account valuable predictive information unrelated to nodule size. One of the limitations
of the algorithm was that it considers only one CT examination and not any previous CT
images if available; therefore, it is adapted for nodules first observed during screening, sim-
ilar to the Pan-Can model [35]. On the other hand, for nodules detected during incidence
screening, their growth and appearance on the previous CT examinations are important to
consider. As nodule growth on CT is the most important predictor of cancer, in order to
estimate lung cancer risk, Ardila et al. developed a DL system mainly based on changes
in nodule volume [36]. They trained and tested the algorithm on data from 42,290 and
6716 NLST participants, respectively, and validated it retrospectively in an independent
clinical dataset of 1139 individuals. In the test set, the model achieved an AUC of 94.4%
(95% CI 91.1–97.3%), with a similar result obtained in the external validation set. When
multiple scans were available, the model performance was equal to that of radiologists.
Huang et al. developed a DL algorithm to identify nodule features that were predictive
of malignancy on the screening chest LDCTs within a three-year period [37]. The training
set included baseline and follow-up LDCT data from 25,097 NLST participants who had
undergone at least 2 LDCT scans. The validation set included LDCT data of 2294 partici-
pants from the Pan-Can study. Performance of the AI algorithm score to inform lung cancer
incidence was compared with Lung-RADS and volume doubling time. Compared to the
Pan-Can model incorporated into Lung-RADS, the algorithm classified a high-risk group
that was smaller and had a higher proportion of cancers. Individuals with high AI scores
had significantly higher mortality rates compared to those at lower risk. The algorithm also
identified more accurately those with very low risks of lung cancer within 2 years.

Although these studies show promising results, several additional important steps
need to be finalized before the AI algorithms can be widely accepted into screening practice.
Even if these algorithms appear to demonstrate a potential use to practice LCS, they must
undergo multiple iterations of external validation [35].

3. Assessment of Smoking-Related Diseases (Comorbidities)

Collateral findings of smoking-related diseases are frequently observed on LDCT LCS.
Many of them are associated with morbidity and mortality in smokers and are predictive
of adverse events.

3.1. Coronary Artery Calcification and Cardiovascular Events

Among the Nelson trial results, after three LDCT scans and ten years of surveillance,
the number of deaths from lung cancer (N = 370–21.4%) was similar to the number of deaths
from cardiovascular disease (N = 370–21.4%) [5]. Estimates of coronary artery calcifications
(CAC) have proved to be a strong predictor of cardiovascular events [38]. Smokers are
at risk of adverse events, including myocardial infarctions, strokes and congestive heart
failure. Since 2011, we have known that ungated chest CT scans can provide reliable
estimations of CAC [39]. The rate of deaths from cardiovascular event increases with the
amount of CAC [40–42]. So far, a simple semi-quantitative scoring method (none, mild,
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moderate, or severe) has been used to evaluate CAC on LDCT. When used by cardiac
imaging experts, this method globally correlates with conventional CAC score groups.
The implementation of AI in a LDCT LCS program can potentially provide a reliable and
reproducible numerical value to the calcium score, based on whole heart volume scoring of
calcium [43]. This method provides results that closely align with the Agatston scores. The
total volume (mm3) of calcium within the walls of coronary arteries may be classified on
ungated LDCT scans into four categories (<10, 10–100, 101–500, >500 mm3) [44]. A score
of 4 (>500 mm3) is a significant predictor of death from cardiovascular disease (Figure 3)
and should lead to further invasive or functional assessment examinations (stress testing,
echocardiography, coronary angiography). Furthermore, guidelines recommend that lipid
lowering medication should be given to patients with increased CAC [45].
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Figure 3. Ungated non contrast chest CT scans in two different smokers with automatic quantification
of coronary artery calcifications (CAC) and heart volume using the AI-RAD Companion (Siemens
Healthinners) software. Axial CT images show the CAC (left) and coronal 3D projection of the heart
(right) that shows the segmented CAC (yellow). The total CAC and heart volumes were 1175 mm3

(category IV) and 620 mL, respectively, in the first subject (top), and 187 mm3 (category III) and
832 mL, respectively, in the second (bottom).

In 2020, Lee et al. summarized the current AI-based applications for CAC scoring
and their potential clinical impact [46]. Recent developments of DL-based algorithms have
provided considerable progress in CAC evaluation. Several investigations that evaluated
the clinical role of DL solutions in CAC assessment showed excellent agreement between
those algorithms and manual scoring [46,47]. More specifically, Chao et al. trained a DL
cardiovascular disease risk prediction model with 30,286 LDCT scans from the NLST [48].
They achieved an AUC of 0.871 on a separate test set of 2085 subjects and identified patients
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with high cardiovascular mortality risks (AUC of 0.768). Then, the same investigators
validated their model against ECG-gated cardiac CT-based markers obtained from an
independent dataset of 335 subjects. Hence, the potential of obtaining a quantitative and
reliable cardiovascular disease risk score by analyzing the same scans as those for LCS may
benefit a large patient population. In addition, the automatic exclusion of LDCT scans with
a negative test for CAC could significantly reduce the workload of radiologists [49].

3.2. Emphysema

To detect the presence of emphysema and assess its extent in smokers make sense
for several reasons. 1- Centrilobular emphysema is associated with a greater risk of lung
cancer, which also increases with emphysema severity [50], and as a result, its identification
provides important information for the malignancy risk estimation. 2- Smokers with normal
spirometry may have emphysema that is visible on CT scans [51]. 3- Undiagnosed COPD
is common among smokers and is associated with exacerbation-like respiratory events [52].
4- The presence of emphysema on a chest CT scan in smokers with or without symptoms,
but with normal spirometry, has proven to be predictive of emphysema progression,
lung function loss, and increased risk of mortality [53]. 5- The presence and extent of
emphysema visually assessed on chest CT scans are both associated with an increased risk
of mortality [54].

DL-based solutions have been developed to detect and quantify emphysema on LDCT
examinations [55–57] (Figure 1). In practice, lung abnormalities are visually assessed using
high-contrast thin-slice images reconstructed from raw scan data using sharp kernels,
despite increased image noise. On the opposite side, accurate CT quantification requires
low-contrast thin-slice images with low noise, which are reconstructed with soft kernels.
Investigators have applied DL techniques for converting sharp-kernel images to soft-kernel-
like images and normalizing CT kernels effects in order to reduce the kernel-induced
variability in lung density measurements [56,57]. Hence, the DL algorithm has the potential
to increase the accuracy of emphysema quantification, and can allow reliable surveillance of
emphysema in LCS, even if follow-up CT scans are acquired with different reconstruction
kernels. To demonstrate that emphysema quantification was feasible on LDCT scans using
DL-based conversion strategies, the Korean Society of Imaging Informatics in Medicine
organized a challenge between 24 November 2020 and 26 January 2021 [58]. Using the
training set, each of the seven participating teams developed an algorithm that provided
converted LDCT by changing the pixel values of LDCT to simulate those of standard-
dose CT.

3.3. Osteoporosis and Fragility Fractures

Osteoporosis and fragility fractures that occur in aging adults are associated with
death, loss of independence and decline in physical functionality [59,60]. Osteoporosis itself
is associated with mortality and morbidity in the elderly, especially among patients with
COPD [61,62]. Osteoporosis is highly prevalent in COPD patients and bone attenuation
has been shown to be lower in COPD subjects, compared with smoker and nonsmoker con-
trols [63]. Bone attenuation measured on routine chest CT has proved to correlate strongly
with bone marrow density assessed on DXA in patients with COPD [64]. Ohara et al.
showed that in COPD patients, the extent of pulmonary emphysema was significantly
correlated with decreased bone density [65]. In addition, van Dort and associates evalu-
ated bone attenuation in vertebrae T4–T12 and prevalent and incident vertebra fractures
in 1239 individuals included in the ECLIPSE study, with baseline and 1-year and 3-year
follow-up CT scans [66]. The results demonstrated that in former smokers with and without
COPD, the combination of bone attenuation and prevalent vertebra fractures was strongly
associated with the short-term risk of incident vertebra fractures. In 2021, Fang et al. devel-
oped a DL-based algorithm, allowing fully automatic segmentation of vertebral body and
bone mineral density calculation in CT images. They demonstrated that a DL algorithm
could automatically identify osteoporosis, osteopenia, and normal bone mineral density in
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CT images [67]. At the same time, Pan et al. developed a DL-based system to automatically
measure bone mineral density on LDCT scans obtained for LCS, with the objective to screen
opportunistic osteoporosis [68]. They trained and tested the DL model with 200 annotated
LDCT scans to segment and label all vertebral bodies. Then, the mean CT numbers of
the trabecular area of target vertebral bodies were obtained based on the segmentation
mask, and mapped with their bone mineral densities collected from approved software
used for osteoporosis diagnosis. The authors evaluated the diagnostic performance of the
developed system using an independent dataset of 374 LDCT scans with standard bone
mineral densities and osteoporosis diagnosis. The DL algorithm achieved 86.6% and 97.5%
accuracies for vertebral body segmentation and labeling, respectively. Linear regression
and Bland–Altman analyses showed good agreement between the predicted bone mineral
measure and the ground truth, with correlation coefficients of 0.964–0.968 and mean errors
of 2.2–4.0 mg/cm3. The sensitivity and specificity of the developed system for detecting
osteoporosis were 85.7% and 99.7%, respectively, with an AUC of 0.927. These diagnostic
performances seem to be quite promising for automatic measurement of vertebral bone
mineral density in opportunistic osteoporosis screening, using LDCT scans obtained for
LCS (Figure 4).

Diagnostics 2022, 12, 2435 8 of 13 
 

 

with 200 annotated LDCT scans to segment and label all vertebral bodies. Then, the mean 
CT numbers of the trabecular area of target vertebral bodies were obtained based on the 
segmentation mask, and mapped with their bone mineral densities collected from ap-
proved software used for osteoporosis diagnosis. The authors evaluated the diagnostic 
performance of the developed system using an independent dataset of 374 LDCT scans 
with standard bone mineral densities and osteoporosis diagnosis. The DL algorithm 
achieved 86.6% and 97.5% accuracies for vertebral body segmentation and labeling, re-
spectively. Linear regression and Bland–Altman analyses showed good agreement be-
tween the predicted bone mineral measure and the ground truth, with correlation coeffi-
cients of 0.964–0.968 and mean errors of 2.2–4.0 mg/cm3. The sensitivity and specificity of 
the developed system for detecting osteoporosis were 85.7% and 99.7%, respectively, with 
an AUC of 0.927. These diagnostic performances seem to be quite promising for automatic 
measurement of vertebral bone mineral density in opportunistic osteoporosis screening, 
using LDCT scans obtained for LCS (Figure 4). 

 
Figure 4. Lateral reconstruction of LDCT images in a COPD patient. Labelling of thoracic vertebra 
and measures of vertebral bodies heights were automatically obtained through the AI-RAD Com-
panion (Siemens Healthinners, Erlangen, Germany) software. The heights of the T8 and T9 vertebral 
bodies were lower than those above and below. The bone attenuation values measured within the 
T8 and T9 vertebral bodies were also lower than those above and below (osteoporosis and minimal 
collapse of the T8 vertebral body). 

4. Simultaneous Assessment of Lung Nodule, CAC, Emphysema and Osteoporosis 
Simultaneous identification of lung nodule and smoking-related diseases on LDCT 

scans may be obtained using AI solutions that combine the simultaneous processing of 

Figure 4. Lateral reconstruction of LDCT images in a COPD patient. Labelling of thoracic vertebra and
measures of vertebral bodies heights were automatically obtained through the AI-RAD Companion
(Siemens Healthinners, Erlangen, Germany) software. The heights of the T8 and T9 vertebral bodies
were lower than those above and below. The bone attenuation values measured within the T8 and
T9 vertebral bodies were also lower than those above and below (osteoporosis and minimal collapse
of the T8 vertebral body).
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4. Simultaneous Assessment of Lung Nodule, CAC, Emphysema and Osteoporosis

Simultaneous identification of lung nodule and smoking-related diseases on LDCT
scans may be obtained using AI solutions that combine the simultaneous processing of
several algorithms. Using an AI CNN prototype (AI-RAD Companion, Siemens Healthi-
neers) that automatically detects pulmonary nodules and quantifies CAC volume on chest
LDCT, Chamberlin et al. compared results to expert radiologists in a retrospective cohort
of 117 patients who underwent LDCT [69]. All subjects were used for lung nodule analysis,
and 96 subjects met the criteria for CAC volume analysis. Agreement of the AI findings
with experts was excellent, with high sensitivity and specificity. The authors also found that
the AI-based algorithm results correlated with adverse outcomes at the 1-year follow-up
and showed improvement of the prediction of major cardiopulmonary outcomes, including
major adverse cardiac events and lung cancer.

Currently, the AI-RAD Companion solution includes several DL-algorithms that
provide simultaneous automatic results, which are as follows: 1- segmentation of the lungs
and lobes (Figure 1), 2- detection and quantification of emphysema (volume percentage
per lobe and per lung) (Figure 1), 3- detection of solid nodules that measure 6 mm or
more using diameter and volume measurements (Figure 2), 4- segmentation and volume
quantification of coronary artery calcifications (Figure 3), 5- measures of aortic diameters
that are strictly perpendicular to the central axis of the vessel at different segments of the
thoracic aorta, 6- labeling of thoracic vertebra bodies with measurements of vertebra bodies’
heights and bone attenuation (Figure 4). In a few minutes time, the results are available
and automatically implemented in the PACS. This complete solution is particularly well
adapted for a platform that allows personalized risk estimation of cardiovascular and
respiratory adverse events, and bone fracture, combined with a LCS program using LDCT.

5. Conclusions

Extensive efforts have been made to develop AI solutions for pulmonary nodule
detection, classification, and malignancy estimation on chest CT scans. The most recent
algorithms developed with DL methods have similar performance or are close to double
reading by radiologists. After deep external validation made of multiple iterations, these
algorithms could be used as a second reader in LCS programs. At the same time, DL
algorithms have been developed to detect and quantify on chest CT scans other smoking-
related diseases, including CAC, emphysema, and osteoporosis, that have an impact on
morbidity and mortality.

Despite the absence of official recommendations about the role of AI applications
for LCS, these new achievements should be kept in mind when developing new LCS
programs. AI algorithms that provide a second reading for lung nodule detection and
simultaneous assessment of smoking-related comorbidities could increase radiologist
confidence, shorten turnaround time, provide better patient outcomes, and eventually
reduce costs by improving disease prevention in this high-risk population.

Author Contributions: Conceptualization, P.A.G. and A.L.B.; methodology, P.A.G.; formal analysis,
P.A.G.; investigation, P.A.G.; writing—original draft preparation, P.A.G.; writing—review and editing,
P.A.G. and A.L.B.; visualization, F.M.; supervision, F.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: PA Grenier received speaking fees from Siemens Healthinners. He has been a
member of the advisory board of Mediantechnologies.



Diagnostics 2022, 12, 2435 10 of 13

References
1. National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.;

Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N.
Engl. J. Med. 2011, 365, 395–409. [CrossRef] [PubMed]

2. US Preventive Services Task Force; Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.;
Donahue, K.E.; Doubeni, C.A.; Krist, A.H.; et al. Screening for Lung Cancer: US Preventive Services Task Force Recommendation
Statement. JAMA 2021, 325, 1965–1977. [CrossRef]

3. Meza, R.; Jeon, J.; Toumazis, I.; Haaf, K.T.; Cao, P.; Bastani, M.; Han, S.S.; Blom, E.F.; Jonas, D.E.; Feuer, E.J.; et al. Evaluation of the
Benefits and Harms of Lung Cancer Screening with Low-Dose Computed Tomography: Modeling Study for the US Preventive
Services Task Force. JAMA 2021, 325, 988–997. [CrossRef] [PubMed]

4. Field, J.K.; Duffy, S.W.; Baldwin, D.R.; Brain, K.E.; Devaraj, A.; Eisen, T.; Green, B.A.; Holemans, J.A.; Kavanagh, T.; Kerr,
K.M.; et al. The UK Lung Cancer Screening Trial: A pilot randomised controlled trial of low-dose computed tomography
screening for the early detection of lung cancer. Health Technol. Assess. 2016, 20, 1–146. [CrossRef]

5. De Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.;
Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl.
J. Med. 2020, 382, 503–513. [CrossRef] [PubMed]

6. Kauczor, H.U.; Baird, A.M.; Blum, T.G.; Bonomo, L.; Bostantzoglou, C.; Burghuber, O.; Čepická, B.; Comanescu, A.; Couraud, S.;
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