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Profile hidden Markov models (HMMs) based on classical HMMs have been widely
applied for protein sequence identif ication. The formulation of the forward and
backward variables in profile HMMs is made under statistical independence as-
sumption of the probability theory. We propose a fuzzy profile HMM to overcome
the limitations of that assumption and to achieve an improved alignment for protein
sequences belonging to a given family. The proposed model fuzzif ies the forward
and backward variables by incorporating Sugeno fuzzy measures and Choquet inte-
grals, thus further extends the generalized HMM. Based on the fuzzif ied forward
and backward variables, we propose a fuzzy Baum-Welch parameter estimation al-
gorithm for profiles. The strong correlations and the sequence preference involved
in the protein structures make this fuzzy architecture based model as a suitable
candidate for building profiles of a given family, since the fuzzy set can handle
uncertainties better than classical methods.
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Introduction

Hidden Markov models (HMMs) are probabilistic
models that have been applied in various biological
problems. For example, profile HMMs (1–4 ) are
used for aligning protein sequences of the same family
based on homology through Viterbi algorithm. The
parameters of profile HMMs are estimated by MAP
and Baum-Welch algorithms (5 ). However, classical
HMMs have several limitations. First, HMMs do not
capture any higher-order correlations of the amino
acids in protein sequences. An HMM assumes that
the identity of an amino acid at a particular position is
independent of the identity of all other positions (6 ).
Second, HMMs are also constrained by the statistical
independence assumptions during the formulation of
the forward and backward variables that are used to
compute the matching scores of an unknown sequence
to a known family. Due to such assumptions, the joint
measure variables (forward and backward) are decom-
posed as a combination of two measures defined on
amino acid emission probabilities and state probabili-
ties. To relax such assumptions and achieve improved
performance and flexibility, Mohamed and Gader (7 )
proposed a fuzzy HMM based on fuzzy measures and
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integrals. Fuzzy measures are an extension of the
classical additive measures, obtained by replacing
the additive requirement of classical measures with
weaker properties of monotonicity, continuity, and
semi-continuity (8 ). Integrals are used to aggregate
the fuzzy measures by combining the partial support
for a hypothesis from the viewpoint of each informa-
tion source and the importance of various subsets of
sources. This model does not require the assumption
of decomposing the measures. It also does not require
fixing the lengths of the sequences and the availabil-
ity of large training datasets as required by classical
HMMs in order to learn the transition parameters,
thus it offers more flexibility and robustness. The
fuzzy HMM has been successfully applied in various
domains such as speech processing and image process-
ing (9–11 ).

The fuzzy measure concept for protein sequence
analysis was first introduced into profile HMMs in
our previous studies (12 , 13 ), which showed improved
performance over classical profile HMMs. In this pa-
per, we originally propose a fuzzy Viterbi search algo-
rithm based on Choquet integrals and fuzzy measures
in order to overcome the limitations of the classical
Viterbi search algorithm that has been used tradition-
ally to align a query sequence to a profile model. It in-
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corporates ascending values of the scores of the neigh-
boring states while calculating the scores for a given
state, hence providing better alignment and accurate
scores. We also propose a fuzzy Baum-Welch algo-
rithm to relax the statistical independence assump-
tion in the classical Baum-Welch algorithm. Eval-
uation results obtained with protein sequences from
globin and kinase databases demonstrate the superi-
ority of the fuzzy profile HMM over classical models
measured in terms of matching scores and alignments.

Model

Classical profile HMM

Profiles introduced by Gribskov (14 ) are statistical
descriptions of the consensus of multiple sequence
alignment, which use position-specific scores for
amino acids and position-specific penalties for open-
ing and extending an insertion or deletion. Figure 1
shows the Plan 7 architecure of profile HMM used in
software HMMER 2. This architecture differs from
the original (Plan 9) Krogh/Hausler architecture (15 )
used in earlier version of HMMER by reducing the
number of transitions from 9 to 7, without D → I and

I → D transitions. Profile HMMs capture position-
specific information such as how conserved each col-
umn of the alignment is and which residues are likely
to occur in each column. They are capable of model-
ing gapped alignments including insertions and dele-
tions, which allows modeling of a complete conserved
domain (rather than just a small ungapped motif). If
a trusted alignment is not yet known, profile HMMs
can be trained from unaligned sequences using Baum-
Welch expectation maximization. The profile HMM
architecture shown in Figure 1 is characterized by the
following parameters:

Mk match state k, with 20 emission probabilities
Dk delete state k, non-emitter
Ik insert state k, with 20 emission probabilities

It consists of a linear set of match (M), insert (I),
and delete (D) states. There is one M state per
consensus column in the multiple alignments. Each
M state carries a vector of 20 probabilities for scor-
ing the 20 amino acids. Each M state is associated
with an I and a D state. The group of three states
(M/D/I) at the same consensus position in the align-
ment is called a node. The states are interconnected
by arrows as shown in Figure 1, representing state

Fig. 1 Profile HMM architecture based on Plan 7 (HMMER 2).
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transition probabilities. The transitions are arranged
so that at each node, either an M state is triggered (a
residue is aligned and scored) or a D state is triggered
(no residue is aligned, resulting in a deletion-gap char-
acter “–”). Insertions occur between nodes, and an I
state can have a self-transition, allowing one or more
inserted residues to occur between consensus columns.
The transition to an I state for the first inserted
residue, followed by zero or more I→I self-transitions
for each subsequent inserted residue, is the proba-
bilistic equivalent of the familiar gap-open and gap-
extend affine gap penalty system. Like all HMMs,
profile HMMs have emission and transition probabili-
ties with probability distribution over the whole space
of sequences, which is parameterized using Baum-
Welch re-estimation formulas to peak the distribution
around the members of the family (5 ). Forward algo-
rithm, backward algorithm, re-estimation algorithm,
and Viterbi algorithm are the four main components
of profile HMM.

Forward algorithm

Forward algorithm is used to calculate the log-odd
scores of a protein sequence. The forward variables
for classical profile HMM, namely, fMk

(i), fIk
(i), and

fDk
(i) for the kth match, insert, and delete state are

estimated using Equations 1–3, respectively (5 ):

fMk
(i) = eMk

(i)[fMk−1(i − 1)aMk−1Mk

+ fIk−1(i − 1)aIk−1Mk

+ fDk−1(i − 1)aDk−1Mk
] (1)

fIk
(i) = eIk

(i)[fMk
(i − 1)aMkIk

+ fIk
(i − 1)aIkIk

+ fDk
(i − 1)aDkIk

] (2)

fDk
(i) = fMk−1(i)aMk−1Dk

+ fIk−1(i)aIk−1Dk

+ fDk−1(i)aDk−1Dk
] (3)

Backward algorithm

Backward algorithm is used for parameter estima-
tion. In classical profile HMM, the backward vari-
ables bMk

(i), bIk
(i), and bDk

(i) for the kth match, in-
sert, and delete state, respectively, are calculated as
shown in Equations 4–6 (5 ):

bMk
(i) = [bMk+1(i + 1) aMkMk+1 eMk+1(xi+1)

+ bIk
(i + 1) aMkIk

eIk+1(xi+1)

+ bDk+1(i) aMkDk+1 ] (4)

bIk
(i) = [bMk+1(i + 1) aIkMk+1 eMk+1(xi+1)

+ bIk
(i + 1) aIkIk

eIk+1(xi+1)

+ bDk+1(i) aIkDk+1 ] (5)

bDk
(i) = [bMk+1(i + 1) aDkMk+1 eMk+1(xi+1)

+ bIk
(i + 1) aDkIk

eIk
(xi+1)

+ bDk+1(i) aDkDk+1 ] (6)

Re-estimation algorithm

The emission and transition matrices for classical
profile HMM are re-estimated by computing all the
elements of the emission and transition matrices as
shown in Equations 7–11:

EMk
(a) =

1
P (O)

∑
i|Oi=a

fMk
(i)bMk

(i) (7)

EIk
(a) =

1
P (O)

∑
i|Oi=a

fIk
(i)bIk

(i) (8)

AMkMk+1 =
1

P (O)

∑
i

fMk
(i)aMkMk+1eMk+1(xi+1)

bMk+1(i + 1) (9)

AMkIk
=

1
P (O)

∑
i

fMk
(i)aMkIk

eIk
(xi+1)

bIk
(i + 1) (10)

AMkDk+1 =
1

P (O)

∑
i

fMk
(i)aMkDk+1bDk+1(i)(11)

P (O) represents the probability of the sequence.

Viterbi algorithm

Classical Viterbi algorithm is used to compute the
negative logarithm of the probability of the single
most likely path, δ̂, for a given sequence O. It can
be formulated as:

δ̂ = − log max
π̂

P (O|π̂, λ̂) (12)

where π̂ represents the path containing the sequence
of states (M, I, and D) that emitted the amino acid
residues in sequence O for the given model λ̂. In
classical profile HMM, the Viterbi variables δ̂Mk

(i),
δ̂Ik

(i), and δ̂Dk
(i) for the kth match, insert, and delete

state, respectively, are calculated as shown in Equa-
tions 13–15 (5 ):
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δ̂Mk
(i) = − log(max{eMk

(i) δ̂Mk−1(i − 1) aMk−1Mk
,

eMk
(i) δ̂Ik−1(i − 1) aIk−1Mk

,

eMk
(i) δ̂Dk−1(i − 1) aDk−1Mk

}) (13)

δ̂Ik
(i) = − log(max{eIk

(i) δ̂Mk
(i − 1) aMkIk

,

δ̂Ik
(i − 1) aIkIk

,

δ̂Dk
(i − 1) aDkIk

}) (14)

δ̂Dk
(i) = − log(max{δ̂Mk−1(i) aMk−1Dk

,

δ̂Ik−1(i) aIk−1Dk
,

δ̂Dk−1(i) aDk−1Dk
, Dk)}) (15)

The equations formulated above are based on the
Plan 9 architecture (15 ). They can be easily extended
to Plan 7 architecture by setting the transition pa-
rameters aIk−1Dk

and aDkIk
to zero. Since protein

sequences have high degrees of interdependencies, the
additive hypothesis of probability measure is not well
suited. The classical model (HMMER) based on prob-
ability theory assigns the same level of importance to
the source, that is, the states in profile HMM. A more
flexible way to overcome this limitation is provided by
fuzzy measures and integrals (16 ). They take into ac-
count the relative importance of the source along with
the information (8 ).

Fuzzy measures and integrals

Probability measure theory obeys the additivity of
classical theory by assigning one to the universal
set. Fuzzy measures are an extension of the classi-
cal additive theory. They are obtained by replacing
the additive requirement of classical measures with
weaker properties of monotonicity, continuity, and
semi-continuity (8 ). The aggregation of fuzzy mea-
sures is done using Choquet or Sugeno integrals.

Fuzzy measure

Let Ω be the power set of a universal set X. A set
function g : Ω→[0, 1] defined on Ω, which satisfies the
conditions of boundary, monotonicity, and continuity
shown in Equations 16–18, is called a fuzzy measure.
It represents the mapping of a crisp power set of a
universal set to a unit interval representing evidence.

Boundary: g(φ) = 0, g(X) = 1 (16)

Monotonicity: If A, B ⊆ Ω and A ⊆ B,

then g(A) ≤ g(B) (17)

Continuity: For any increasing sequence A1 ⊆ A2 ⊆
· · · ⊆ Ai · · · of sets in Ω, if

⋃∞
i=1 Ai ∈ Ω, then

lim
i→∞

g(Ai) = g(
∞⋃

i=1

Ai) (18)

From the definition of a fuzzy measure g, the
union of two disjoint subsets cannot be directly com-
puted from the component measures. Possibility mea-
sure based on t-conorm S is one of the most widely
used fuzzy measures. The t-conorm S is an opera-
tion on the unit interval [0,1] satisfying the following
conditions on elements a, b, and c (17 ).

Neutrum element : S(a, 0) = a (19)

Monotonicity : b ≤ c → S(a, b) ≤ S(a, c) (20)

Commutativity : S(a, b) = S(b, a) (21)

Associativity : S
(
a, S(b, c)

)
= S

(
S(a, b), c

)
(22)

Two types of S operations, maximum and drastic
t-conorm operators, are shown in Equations 23 and
24, respectively:

S(a, b) = max(a, b) if a and b �= 0 (23)

S(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

a if b = 0,

b if a = 0,

1 if a and b �= 0

(24)

Possibility measure is based on the above
defintions of max t-conorm operation. If X is a uni-
versal set with Ω consisting of all the subsets of X,
then the possibility measure gP is:

gP : Ω → [0, 1] (25)

where gP (φ)= 0 and gP (X) = 1. It satisfies the con-
straints shown in Equation 26 along with the ones
defined above for the fuzzy measures.

gP (
⋃

Ai∈Ω

Ai) = max
(
gP (Ai)

)
(26)

The possibility measures on each element of the set
X denoted by gP (x) are called the possibility-density
measures. Using these density measures, we can cal-
culate the possibility measures for all the sets in Ω:

gP (Ai) = max
(
gP (x)

)
, ∀ x ∈ Ai (27)
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Fuzzy integrals

Fuzzy integrals, defined with respect to fuzzy mea-
sures, are nonlinear functions combining multiple
sources of uncertain information (7 ). They use in-
formation concerning the importance of individual
source as well as source subsets to derive a reason-
able numerical confidence value for the particular hy-
pothesis decision under consideration. Here, we give
a brief description of the Choquet integral, which is
one of the most commonly used fuzzy integrals.

Let (X, Ω) be a measurable space and let h : X →
[0, 1] be an Ω measurable function. The Choquet in-
tegral over A ⊆ X of the function h with respect to a
fuzzy measure g is defined by:∫

X

h(x) ◦ g(·) =
∫ 1

0

g(Aα)dα (28)

where Aα = {x|h(x) > α}. For a discrete set X with
N elements, the Choquet integral (ec) can be com-
puted as follows:

ec =
N∑

i=1

h(xi)[g(Ai) − g(Ai+1)] (29)

where h(x1) ≤ h(x2) ≤ · · · ≤ h(xN ) and Ai =
{xi, xi+1, · · · , xN}.

Fuzzy profile HMM

In classical profile HMM, the joint probability mea-
sure P (O1, O2, · · · , Ot, Ot+1, qt+1 = Zj) is written
as the product P (O1, O2, · · · , Ot, Ot+1|qt+1 = Zj) ·
P (qt+1 = Zj), thus making the following two assump-
tions of the statistical independence.

• The amino acid Ot+1 emitted by the HMM
at position t + 1 at Zj state is independent
of the previously emitted amino acid sequences
(O1, O2, · · · , Ot) (6 ).

• The active state at position t + 1, Zj , is inde-
pendent of the previous subsequence of amino
acids (O1, O2, · · · , Ot) observed.

These assumptions are not realistic for the homol-
ogous sequences of a family since they have a high cor-
relation among neighboring residues (3 ). Improved
results for building profiles can be expected through
the relaxation permitted by fuzzy measures leading to
the fuzzy profile HMM. As mentioned above, in the
fuzzy profile HMM, the additive property of probabil-
ity measures is replaced with the weaker condition of

monotonicity by using fuzzy measures and integrals
(8 ). The Choquet integral, used to aggregate the
fuzzy measures, takes into account the importance of
the individual and subsets of source (states and subset
of states). The fuzzy forward and backward variables
form the basis of the fuzzy Viterbi algorithm used for
alignments and the fuzzy Baum-Welch algorithm for
parameter estimation (12 ). The fuzzy profile HMM,
θ = (Â, B̂, π̂), is characterized by the following pa-
rameters (12 ).

O protein sequence
T length of the protein sequence
N profile model length
Ω set of protein sequences of the family
X finite set of states at position t

Y finite set of states at position t + 1
Z states {Z1, Z2, · · · , ZN}

π̂Z(·) initial state fuzzy measure
π̂Z({Zi}) initial state fuzzy density

b̂j(Ot) symbol fuzzy density
ây(·|X) transition fuzzy measure

ây(yj |xi) transition fuzzy density
qt state visited at position t

where Â = [ây(yj |xi) = âij ], B̂ = [̂bj(Ot)], and
π̂ = [π̂Z({Zi})].

Fuzzy forward algorithm

We formulate the fuzzy forward variable,
f̂Ωy

({O1, O2, · · · , Ot} × {yj}) for the fuzzy profile
HMM, which can be reduced to the combination of
two measures defined on {O1, O2, · · · , Ot} and on
the states yj = (Mt+1, It, Dt+1). This avoids the
assumption of decomposition of measures as done in
classical HMMs. At any time, the fuzzy measure f̂Ωy

on Ω1,t+1×Y can be constructed from its constituent
forward variables through recursion, after integrating
with the Choquet integral and with multiplication
as an intersection operator. This is shown by the
following equations:

fyj
(t + 1) = f̂Ωy

({O1, O2, · · · , Ot} × {yj}) (30)

=
∫

X

ây({yj}|x) ◦ f̂ΩX
({O1, O2, · · · ,

Ot}) ∧ b̂j(Ot+1) (31)

where ∧ is the fuzzy intersection operator and ◦ is
the multiplication operator. The elements of matrix
Â = [ây(yj |xi)], containing the probability values for
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transition to state yj from state xi, are assigned ac-
cordingly to function h as shown below:

h(xi, yj) = ây(yj |xi) (32)

All the values h(xi, yj) representing the transition
probabilities to state yj are sorted in Equation 33:

h(x1, yj) ≤ h(x2, yj) ≤ . . . ≤ h(xi, yj) ≤ . . . ≤ h(xN , yj)
(33)

Based on the above sorting, a set ki(yj) is obtained
as:

ki(yj) = {xi, xi+1, . . . , xN} (34)

where xi is the state number at the ith position ac-
cording to constraints in Equation 33 based on transi-
tion to the yj

th state from all other states. According
to the definition of fuzzy measures and fuzzy integrals,
fyj

(t + 1) is given by Equation 35, which satisfies the
constraints in Equations 33 and 34.

fyj (t + 1) =
N∑

i=1

h(xi, yj)[g(ki(yj)) − g(ki+1(yj))]

=
N∑

i=1

h(xi, yj)di(yj) (35)

where di(yj) represents the difference between suc-
cessive fuzzy measures and g(ki(yj)) represents the
fuzzy measure. After normalizing the difference be-
tween successive fuzzy measures with respect to fuzzy
density fxi

(t), we obtain:

ρt(xi, yj) = di(yj)/fxi(t) (36)

Based on Equations 35 and 36, the forward variable
for the yj

th state at position t+1 can be reformulated
as:

fyj (t + 1) =
N∑

i=1

h(xi, yj)ρt(xi, yj)fxi(t) ◦ b̂j(Ot+1)

(37)
Accordingly, we reformulate the forward variables
fMk

(i), fIk
(i), and fDk

(i) for the kth match, insert,
and delete state, respectively, using the possibility
measure as shown below:

fMk
(i) = eMk

(i)[fMk−1(i − 1)aMk−1Mk
ρi−1(Mk−1,Mk)

+ fIk−1(i − 1)aIk−1Mk
ρi−1(Ik−1,Mk)

+ fDk−1(i − 1)aDk−1Mk
ρi−1(Dk−1,Mk)] (38)

fIk
(i) = eIk

(i)[fMk
(i − 1)aMkIk

ρi−1(Mk, Ik)

+ fIk
(i − 1)aIkIk

ρi−1(Ik, Ik)

+ fDk
(i − 1)aDkIk

ρi−1(Dk, Ik)] (39)

fDk
(i) = fMk−1(i)aMk−1Dk

ρi−1(Mk−1, Dk)

+ fIk−1(i)aIk−1Dk
ρi−1(Ik−1, Dk)

+ fDk−1(i)aDk−1Dk
ρi−1(Dk−1, Dk)] (40)

The term ρ in the above equations represents the
fuzzy measure difference, which is calculated using
the Choquet integral as shown in Algorithm 1.

Algorithm 1: Calculation of fuzzy measure difference
density-ρ

input : χ̂ = (Â, B̂, π̂)
output : ρt (xi,y j) ∀ y j ∈ Y and xi ∈ X

Repeat for the length = T of the sequence;
for t = 1 to T do

Evaluate fuzzy densities for each state x at position t which is a measure of
importance of each state;
for i = 1 to N and xi ∈ X do

g({xi}) = fxi (t);
end
Define fuzzy measures sets corresponding to transition to state y j at position
t+1 ;
for j = 1 to N and y j ∈ Y do

Set containing the indices of the states;
g(ki(y j)) = g({xi,xi+1, . . . ,xN});
Calculate the possibility fuzzy measures based on the sets;
g(ki(y j)) = ∧(g({xi}),g(ki+1(y j)));
for i = 1 to N do

Calculate ρt (i,y j) ;
di(y j) = g(ki(y j))−g(ki+1(y j)), ρt (xi,y j) = di(y j)/g({xi(y j)});

end
end

end
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Fuzzy backward algorithm

The fuzzy backward variable bsi(t+1) is a conditional
fuzzy measure, measuring the fuzziness of the obser-
vation O1, O2, · · · , Ot because of visiting state Zi.

bZi
(t) = b̂Ωt−1,T

({Ot+1, · · · , OT } × {xi}) (41)

Equation 42 shows the fuzzy backward variable
when integrated using the Choquet integral with re-
spect to any fuzzy measure and multiplication as the
intersection operator.

bsi
(t) =

∫
Y

[̂bΩt−2,T
({Ot+1, · · · , OT }|y) ∧ b̂j(Ot+1)]

◦ âY (·|x) (42)

We reformulate the backward variables bMk
(i),

bIk
(i), and bDk

(i) for the kth match, insert, and delete
state, respectively, using the possibility measure as
shown below:

bMk (i) = bMk+1(i + 1)aMkMk+1ρi+1(Mk, Mk+1)

eMk+1(i + 1) + bIk (i + 1)aMkIkρi+1(Mk, Ik)

eIk+1(i + 1) + bDk+1(i)aMkDk+1ρi(Mk, Dk+1)

(43)

bIk (i) = bMk+1(i + 1)aIkMk+1ρi+1(Ik, Mk+1)

eMk+1(i + 1) + bIk (i + 1)aIkIkρi+1(Ik, Ik)

eIk+1(i + 1) + bDk+1(i)aIkDk+1ρi(Ik, Dk+1)

(44)

bDk (i) = bMk+1(i + 1)aDkMk+1ρi+1(Dk, Mk+1)

eMk+1(i + 1) + bIk (i + 1)aDkIkρi+1(Dk, Ik)

eIk (i + 1) + bDk+1(i)aDkDk+1ρi(Dk, Dk+1)

(45)

Fuzzy Baum-Welch re-estimation algorithm

After formulating the forward and backward vari-
ables, we extend fuzzification to parameter estima-
tion methods for the profile HMM. The emission and
transition matrices for the fuzzy profile HMM are re-
estimated by computing all the elements of the emis-
sion and transition matrices as given by Equations
46–50:

EMk
(a) =

1
P (O)

∑
i|Oi=a

fMk
(i)ρi(Mk, ·)bMk

(i)

(46)

EIk
(a) =

1
P (O)

∑
i|Oi=a

fIk
(i)ρi(Ik, ·)bIk

(i)

(47)

AMkMk+1 =
1

P (O)

∑
i

fMk
(i)aMkMk+1ρi(Mk,Mk+1)

eMk+1(xi+1)bMk+1(i + 1) (48)

AMkIk
=

1
P (O)

∑
i

fMk
(i)aMkIk

ρi(Mk, Ik)

eIk
(xi+1)bIk

(i + 1) (49)

AMkDk+1 =
1

P (O)

∑
i

fMk
(i)aMkDk+1ρi(Mk, Dk+1)

bDk+1(i) (50)

The transition parameters for insert and delete states
can be calculated similarly.

Fuzzy Viterbi algorithm

The classical Viterbi algorithm can be modified us-
ing fuzzy measures to compute δ̂Zi

(t) at position t for
state Zi as shown below (7 ):

δ̂Zi
(t) = max

q1,q2,··· ,qt−1
P (q1, q2, · · · , qt = Zi, O1, O2, · · · , Ot|λ̂)

(51)
where qt represents the state visited at position t,
emitting amino acid residue Ot, and can be either
match, insert, or delete state represented by Zi.
The maximization is modified using fuzzy measure
difference density ρ to obtain fuzzy Viterbi algorithm:

δ̂Zi
(t) = max

q1,q2,··· ,qt−1
{π̂q1 b̂q1(O1)

t∏
τ=2

[âqτ−1qτ
ρτ (qτ−1,

qτ )] b̂qτ (Oτ )} (52)

where π̂q1 represents the initial state fuzzy den-
sity, and ρτ (qτ−1, qτ ) represents the fuzzy measure
difference density. δ̂Zi(t + 1) is computed recursively
for the entire length of the sequence as shown in Al-
gorithm 2.

Based on Equation 1 and Algorithm 1, δ̂Mk
(i),

δ̂Ik
(i), and δ̂Dk

(i) for the kth match, insert, and delete
state, respectively, can be formulated as shown below:

δ̂Mk
(i) = − log(max{eMk

(i)δ̂Mk−1(i − 1)aMk−1Mk

ρi−1(Mk−1,Mk), eMk
(i)δ̂Ik−1(i − 1)

aIk−1Mk
ρi−1(Ik−1,Mk), eMk

(i)δ̂Dk−1(i − 1)

aDk−1Mk
ρi−1(Dk−1,Mk)})

(53)
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δ̂Ik
(i) = − log(max{eIk

(i)δ̂Mk
(i − 1)aMkIk

ρi−1(Mk, Ik), δ̂Ik
(i − 1)aIkIk

ρi−1(Ik, Ik),

δ̂Dk
(i − 1)aDkIk

ρi−1(Dk, Ik)}) (54)

δ̂Dk
(i) = − log(max{δ̂Mk−1(i)aMk−1Dk

ρi−1(Mk−1, Dk), δ̂Ik−1(i)aIk−1Dk

ρi−1(Ik−1, Dk), δ̂Dk−1(i)aDk−1Dk

ρi−1(Dk−1, Dk)}) (55)

Algorithm 2: Fuzzy Viterbi algorithm

Initialization for N match, insert and delete states;

for 1 ≤ i ≤ N do

δ̂Zi (1) = π̂Zi b̂Zi (O1)

ψ̂Zi (1) = 0
end

Recursion through the length of the sequence T for N states;

for 2 ≤ τ ≤ T do
for 1 ≤ j ≤ N do

δ̂Z j (τ) = max1≤i≤N [δ̂Zi (τ −1)âziz j ρτ (zi,z j)]b̂Z j (Oτ )

ψ̂Z j (τ) = argmax1≤i≤N [δ̂Zi (τ −1)âziz j ρτ (zi,z j)]

end
end

Termination conditions;

P̂∗ = max1≤i≤N [δ̂Zi (T )] q̂∗ = argmax1≤i≤N [δ̂Zi (T )]

Backtracking for optimal paths;

for 1 ≤ τ ≤ T-1 do

q̂∗τ = ψ̂q̂∗τ+1
(τ +1)

end

Computational complexity analysis

In a classical (HMMER) profile model with N states,
the forward variables and the Viterbi algorithm have
a computational complexity of the order of O(N2T )
in time (15 ) for a protein sequence of length T. At
any instant of time, transitions occur to the kth M
state only from the (k−1)th M, I, and D states. Sim-
ilarly, D and I states also have only three incoming
transitions that reduce the computational complexity
to O(3NT ). In the fuzzy profile model, the compu-
tational complexity is of the order of O

(
(2N−1)NT

)
since 2N−1 subsets are computed at each state during
the forward variable calculation. The computational
complexity for the fuzzy profile model can be reduced
to O(7NT ). The fuzzy model is computationally ex-
pensive compared with the classical model, but the

trade-off is provided by improved accuracy of family
identification and biologically significant alignments.
As the primary goal is to improve the accuracy, the is-
sue of computational complexity becomes secondary,
since these computations are carried offline.

Evaluation

We evaluated the performance of the fuzzy profile
HMM using sequences of widely studied globin and
kinase families, and compared the results with those
of the HMMER profile model.

Evaluation on globins

Globins are part of a large family of heme-containing
proteins involved in the storage and transport of oxy-
gen that have different oligomeric states and overall
architecture (18 , 19 ). They are responsible for bind-
ing and/or transporting oxygen. The major groups of
globins are hemoglobins and myoglobins from verte-
brates and invertebrates, leghemoglobins from plants,
and flavohemoglobins from bacteria. Hemoglobin is a
protein responsible for transporting oxygen from the
lungs to other tissues, and is a tetramer of two α

and β chains each. We extacted the globin sequences
from the SWISS-PROT database (20 ) by searching
the keyword “globin”. The globin dataset sample
used in the evaluation consists of 625 different globin
sequences. These sequences also belong to the Pfam
(21 , 22 ) domains with accession numbers PF00042,
PF0152, PF01099, and PF06438. The sequences vary
in length from 109 to 428 amino acids.

The globin dataset was divided into 12 random
folds. The model parameters were trained and opti-
mized using one of the folds and the remaining folds
were used as test dataset. To incorporate noise into
the model, 1,953 non-globin sequences were added
to the test dataset. The non-globin sequences var-
ied in length from 25 to 350 amino acids and were
obtained from SWISS-PROT database. The match
of sequences to classical and fuzzy profile HMMs was
scored using log-odd scores (defined later). The align-
ments for globin sequences were obtained through
fuzzy and classical Viterbi algorithms. The classical
Viterbi algorithm was used to align the sequences to
the globin profile model based on HMMER. The es-
timation of both fuzzy and classical model parame-
ters was done 12 times and the models with the high-
est overall log-likelihood scores were selected. Similar
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cross-fold validations have been carried out in earlier
studies (5 ).

The performance of the fuzzy model was evaluated
and compared with the HMMER profile model based
on estimation comparison and Z-score plots.

Estimation comparison

The transition parameters were obtained using the
classical and fuzzy Baulm-Welch re-estimation meth-
ods on the 50 globin sequences used for training. Fig-
ures 2 and 3 graphically depict the converged tran-
sition probabilities for all match states of classical
and fuzzy profile HMMs, respectively. The transition
probability from the kth match state to the (k + 1)th

match, the kth insert, and the (k + 1)th delete state
are represented by the top, middle, and bottom sub-
graphs, respectively. It is observed from the tran-
sition diagrams that the classical and fuzzy HMMs
learn different values at some specific points, indi-
cating the difference in their observed behavior. We
further observed the following behaviors for transition
matrices in classical and fuzzy profile HMMs.

1. The classical profile HMM has 5 transition
probability values from the kth match state to
the kth insert state with value greater than 0.05
before the state number 60 is reached (Figure
2). This indicates that the classical HMM has
more insertions compared with the fuzzy profile
model, which has only 3 transition probability
values greater than 0.05 in the same region (Fig-
ure 3).

2. The more insert transitions observed in the clas-
sical HMM compared with the fuzzy HMM in-
dicates that there are more transition probabil-
ities from the kth insert state to the (k + 1)th

match state.

3. Both classical and fuzzy profile models have
the same nature for the transitions from delete
states.

The emission parameters were also obtained us-
ing the classical and fuzzy Baum-Welch re-estimation
methods on the 50 globin sequences used for training.
Figures 4 and 5 show the emission probability dis-
tribution of 20 amino acids at different match states
(25, 50, 100, and 125) obtained by classical and fuzzy
models, respectively. When match state M = 125, the
residue histidine has the highest emission probability
according to the classical model, while serine is the
highest in the fuzzy profile model. This difference in
emission distributions contributes to a different con-
sensus alignment.

Z-score plot

Log-odd score is given by the ratio of most probable
alignment Π* of the sequence R for a given model λ

with respect to the probability of R through a null
random model (Υ):

Log-odd score =
P (R Π∗, |λ)

P (R|Υ)
(56)
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Fig. 4 Emission distribution of 20 amino acids for match

states (25, 50, 100, 125) of the classical profile HMM

trained by the classical Baum-Welch estimation algorithm.
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Fig. 5 Emission distribution of 20 amino acids for match

states (25, 50, 100, 125) of the fuzzy profile HMM trained

by the fuzzy Baum-Welch estimation algorithm.

The probability of R through RM, which assumes
that the underlying sequences are unrelated, is given
by the simple product of frequencies of residues as
shown below:

P (R|Υ) =
L∏

i=1

(
eΥ(Ri)

)
(57)

This ratio provides a significance assessment of log-
odd scores (5 ). The amino acid frequencies of the
sequences in training dataset are used for Υ. To cal-
culate Z-score, a smooth curve is fitted for the log-
odd score plot using the local window technique (5 ).
A standard deviation is estimated for each length and
Z-score is calculated for each score by estimating its
distance from the curve in terms of standard devi-
ation. The normalized Z-score plots for the classical
(HMMER) and fuzzy profile models are shown in Fig-
ures 6 and 7, respectively. For the fuzzy model, it is
observed that all the globin member sequences (both
from training and test datasets) are clustered with
the normalized Z-score between 2.0 to 8.0. This is
mainly because of the max operation performed by
the possibility measure. The member sequences are
scattered sparsely with the normalized Z-score vary-
ing from 1.0 to 8.0 for the HMMER profile model.
There is also a greater overlap between globins and
non-globins in the HMMER profile model compared
with the fuzzy model. There are 3 globins overlapping
with non-globins for Z-scores varying from 1.0 to 2.0
in the HMMER profile model. In contrast, the fuzzy
model has no globins in this range. Figures 8 and 9
show the plots of sensitivity and specificity with re-
spect to Z-scores for both classical and fuzzy profile

models. The plots demonstrate that the fuzzy model
performs better than the classical model.

Evaluation on kinases

We repeated the evaluation on the kinase family.
Kinases are enzymes belonging to a very extensive
family of proteins, which share a conserved catalytic
core common with both serine/threonine and tyro-
sine. They are responsible for transferring a phos-
phate group from a phosphate donor onto an acceptor
amino acid in a substrate protein. Kinases have been
extensively studied by Taylor (23 ) and Krogh (19 ).
Complete protein kinase catalytic domains range from
250 to 300 residues. The kinase dataset used in this
study consists of 126 sequences with 72 representa-
tive sequences. A total of 1,141 non-kinase sequences
extracted from SWISS-PROT database (20 ) were in-
cluded in the test dataset. The kinase sequences range
in length from 100 to 800 amino acids and the profile
model was built using 5-fold cross validation. From
the Z-score plots shown in Figures 10 and 11 for classi-
cal and fuzzy kinase profile models, respectively, sim-
ilar trends were also observed in the kinase family as
observed in the globin family.

Conclusion

We have proposed a fuzzy profile HMM based on Cho-
quet integrals and Sugeno fuzzy measures to overcome
the limitations of statistical independence in classical
HMMs and to achieve an improved alignment and
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better log-odd scores for the sequences belonging to
a given family. The estimation of Choquet integrals
takes into account the ascending values of the scores of
the neighboring states while calculating the scores for
a given state, hence providing better alignment and
improved log-odd scores and Z-scores. The proposed
fuzzy profile HMM was tested on the globin and ki-
nase families and compared with the classical profile
model. The obtained results establish the superior-
ity of the fuzzy profile HMM. In addition, the fuzzy
profile model produces more accurate biologically sig-
nificant alignments than the classical model because
of the relaxation of the statistical independence as-
sumption. Our future study will try to make the fuzzy
measures more effective by taking into account the
relative importance of biological and physio-chemical
factors of the family.
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