
Rassokhin ﻿J Cheminform (2020) 12:10
https://doi.org/10.1186/s13321-020-0415-y

REVIEW

The C++ programming language
in cheminformatics and computational
chemistry
Dmitrii Rassokhin* 

Abstract 

This paper describes salient features of the C++ programming language and its programming ecosystem, with
emphasis on how the language affects scientific software development. Brief history of C++ and its predecessor the
C language is provided. Most important aspects of the language that define models of programming are described
in greater detail and illustrated with code examples. Special attention is paid to the interoperability between C++
and other high-level languages commonly used in cheminformatics, machine learning, data processing and statistical
computing.

Keywords:  Programming languages, C, C++, Scientific computing, Computational chemistry, Cheminformatics

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
In recent years, a plethora of high-level domain-specific
and general-purpose programming languages have been
developed to greatly increase the productivity of pro-
grammers working on various types of software projects.
Scientific programming, which used to be dominated by
Fortran up until about mid-1980s, now enjoys a healthy
choice of tools, languages and libraries that excel in help-
ing solve all types of problems computational scientists
and scientific software developers deal with in their eve-
ryday work. For example, MATLAB is widely used for
numerical computing, R dominates statistical computing
and data visualization, and Python is a great choice for a
wide range of scientific applications from machine learn-
ing and natural language processing to typical cheminfor-
matics tasks like chemical structure search and retrieval,
virtual compound screening and molecular property
prediction, just to name a few. However, among modern
high-level programming languages, C++ plays a special

role of being the language that de-facto dominates mod-
ern scientific software development, even though, at first
glance, this may not be so obvious. In this paper, we will
briefly describe the history of C++ and focus on its main
characteristics that make it so special.

Brief history of C and C++
The predecessor of C++, C was developed in the early
1970s by Dennis M. Ritchie, then an employee of Bell
Labs (AT&T), when Ritchie and his colleagues were
working on Unix, a multi-user time-sharing operating
system for mainframe computers. Early versions of this
now ubiquitous operating system were written in archi-
tecture-specific non-portable assembly languages. As
Unix was being further extended and gained popularity,
the developers realized the need to re-write parts of it
in a platform-independent high-level programming lan-
guage to make the codebase more manageable and easily
portable to different computer architectures. Back then,
Fortran was one of the most commonly used high-level
languages. Being the language of choice for numerical
computing, Fortran circa early 1979s was not suitable for
low-level programming due to its verbose flow control

Open Access

Journal of Cheminformatics

*Correspondence: rassokhin@gmail.com
Janssen Research & Development, LLC, 1400 McKean Road, Spring House,
PA 19477, USA

http://orcid.org/0000-0003-3438-1190
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-0415-y&domain=pdf

Page 2 of 16Rassokhin ﻿J Cheminform (2020) 12:10

structures and the absence of direct memory access
operations. Fortran was also ill-suited for non-numerical
computing, which typically involves defining complex
data structures and operations on them, while languages
designed for symbolic computing and list processing,
such as Lisp, the second-oldest high-level computer lan-
guage after Fortran, were quite difficult to master, and
often required specialized and very expensive hardware
to achieve acceptable performance [1]. It is remarkable
that one of the first very large and complex cheminfor-
matics software packages, an interactive computer pro-
gram designed to assist planning syntheses of complex
organic molecules called LHASA (Logic and Heuristics
Applied to Synthetic Analysis), was largely written in For-
tran and contained nearly 30,000 lines of very complex
Fortran code [2, 3].

A better alternative for further Unix development
was the programming language B, which was derived
from BCPL in the 1960s by Ken Thompson for coding
machine-independent applications, such as operating
systems and compilers for other languages. The B lan-
guage can be considered the direct predecessor of C. B
was much more suitable for the operating system devel-
opment compared to Fortran, since it provided con-
structs that map efficiently to typical machine, had a clear
and concise syntax and supported efficient direct mem-
ory access operations. The main shortcoming of B was
the lack of support for data types. In fact, it supported
only one type, the architecture-dependent computer
word treated as an integer. Therefore, in B, operations
on data types other than the machine word (such as, for
example, single-byte characters or structures composed
of fields) were difficult to implement in a portable way.
There shortcomings also made B totally unsuitable as a
general-purpose programming language. In the early 70s,
Dennis M. Ritchie gradually added support for primitive
(integer and floating-point numbers, and characters) and
complex (user-defined structures) data types to B and
cleaned up its syntax. Eventually, the improved B dif-
ferentiated from the original B so much that it become
a different language, which was half-jokingly called C
after the next letter of the English alphabet. In 1978, the
first edition of the famous “The C Programming Lan-
guage” book written by Brian Kernighan and Dennis
Ritchie was published [4]. The version of the C language
described in the book is often referred to as K&R C, after
the book authors. The C language quickly gained popu-
larity among operating system and device driver devel-
opers. Subsequently, most of the Unix components were
rewritten in C. Due to the relative simplicity, portability,
and efficiency, the popularity of C soon went far beyond
its original intended purpose of operating system devel-
opment, and it became one of the most commonly used

general-purpose programming languages for a range of
applications from device drivers, microcontrollers and
operating systems to videogames and high-performance
data analysis packages.

In 1983, a committee formed by the American National
Standards Institute (ANSI) to develop a standard version
of the C language based on the K&R C. ANSI published
the standard definition in 1989 and is commonly called
“ANSI C”. Subsequently, the ANSI X3.159-1989 C stand-
ard has undergone several revisions, the most recent of
which (informally named C18) is ISO/IEC 9899:2018 [5].

In the 1970, the object-oriented programming (OOP)
paradigm was quickly gaining popularity. Simula 67, the
first programming language to support the OOP, was
developed primarily for discrete event simulation, pro-
cess modeling, large scale integrated circuit simulations,
the analysis of telecommunication protocols and other
niche applications. In 1979, Bjarne Stroustrup, while
working towards his Ph.D. in Computer Science at the
University of Cambridge, England, used Simula 67 to
implement calculations for his research and found the
OOP paradigm to be very productive, but all its exist-
ing implementations inefficient. At that time, C had
already become one of the most used general-purpose
programming languages, so Stroustrup got a brilliant
idea of adding OOP features to C and started his work
on “C with Classes”, the superset of K&R C, which would
support object-oriented programming while preserv-
ing the portability, low-level functionality and efficiency
of C [6]. Early implementations of C with Classes were
translators that converted “C with Classes” code into the
standard K&R C, which could be compiled by any avail-
able C compiler. “C with Classes” was extended by add-
ing, among other important features, improved type
checking, operator overloading, and virtual functions. In
1983 Stroustrup renamed “C with Classes” to C++. The
++ operator in the C language is an operator for incre-
menting a variable, which reflected Stroustrup’s notion
of C++ being the next generation of the C language. In
1986, Stroustrup published his famous book called The
C++ Programming Language [7], which became the
de-facto language reference manual. Very soon, C++
started gaining a widespread popularity in the developer
community, and several good quality C++ compilers and
libraries become available for practically all major com-
puter platforms and operating systems.

Probably, the most important C++ release was C++
2.0 in 1989, documented in The Annotated C++ Refer-
ence Manual by Ellis and Stroustrup [8]. C++ 2.0 was a
full-fledged object-oriented language with support for
multiple inheritance, abstract classes, static member
functions, constant member functions and protected
class members, templates for generic programming,

Page 3 of 16Rassokhin ﻿J Cheminform (2020) 12:10 	

exceptions for structured error handling, namespaces,
and a Boolean type.

The next important release came in 2011, when the
C++11 standard was published. C++11 has been aug-
mented with several features affecting runtime per-
formance, most importantly, the “move constructor”,
which eliminated the bane of earlier C++, the costly and
unneeded copying of large objects when they are passed
to or returned from functions by value. C++11 also
included a number of significant features for producing
terser, more readable code; chief among these are auto
variables (removing the need for detailed variable dec-
larations while preserving type safety) and range-based
“for” loops (allowing looping over the elements of a con-
tainer with an almost Python-like syntax).

After the long delay to reach C++11, the C++ Stand-
ard Committee has been updating the C++ standard
every three years. In 2014, the C++14 standard was pub-
lished, followed by C ++17 in 2017, which, at the time
of writing this article, is the most recent revision of the
ISO/IEC 14882:2017 standard for the C++ program-
ming language [9]. The next standard release is planned
for 2020. The language is quickly evolving to improve
the code readability and expressive power. For example,
lambda-expressions with closures introduced in C++11
and enhanced in C++14 [10], obviously inspired by
functional programming languages like Haskel and F#,
make it possible to pass function-like objects to generic
methods, such as sorting, searching and filtering, which
considerably shortens the code using these methods
without sacrificing the performance. Latest versions
of C++ make it easier to write portable code that takes
advantage of modern multicore computer architecture
by providing facilities to create and manage sequences
of instructions executed concurrently with other such
sequences (commonly referred to as “threads”) and syn-
chronize memory accesses among different threads run-
ning in parallel.

As of 2019, C and C++ remain extremely popular
programming languages for a wide range of applications
[11]. In scientific programming, including cheminfor-
matics and computation chemistry, scripting languages
like Python (general-purpose) or R (statistical applica-
tions, predictive modeling and machine learning) have
seen the explosion of popularity in recent years; however,
as it will be discussed further below, it is a very common
scenario when Python or R are used to assemble com-
putational workflows from components of numerical,
machine learning, statistical, cheminformatics, molecular
mechanics and other specialized packages written in C or
C++.

C++ programmers enjoy a great ecosystem of devel-
opment tools. Compilers, debuggers, and integrated

development environments, both free and commercial,
are easily available for all modern computer platforms.
The competition between the two major open source
C++ compilers GCC [12] and Clang [13] has led to rapid
progress in the quality of the object code produced and,
importantly, the utility of the feedback provided to pro-
grammers in the case of errors, warnings, and diagnos-
tic messages. Both GCC and Clang are widely and easily
available on Linux and MacOS computers. Microsoft
Windows does not, by default, come with a C++ com-
piler, but one can readily download the Microsoft Vis-
ual Studio integrated development environment, which
includes a C++ compiler, runtime libraries and tools,
directly from Microsoft [14]. Compilers that generate
very efficient code targeting specific hardware are also
available from various vendors. For example, Intel C
and C++ compilers are highly optimized to processors
that support Intel architectures [15]. Sophisticated inte-
grated development environments that offer built-in C/
C++ code editors with syntax highlighting, context-sen-
sitive help, powerful debugging, profiling and refactor-
ing tools, visual interface designers, and various features
that facilitate large developer teams working together on
large-scale software projects are readily available, both
commercial (such as Microsoft Visual Studio [14] and
Visual Studio Code [16] from Microsoft or CLion [17]
from JetBrains and open-source, such as, for example, a
widely-used Eclipse CDT [18]. Libraries of C and C++
code are available for every programming task imagina-
ble, from low-level hardware control to machine learning
and natural language processing.

C++: Basic language features
Let us first discuss basic features of C++, which it inher-
ited from C and which are not related to advanced con-
cepts like object-oriented or generic programming. It
should be noted that modern C is not a true subset of
modern C++, and a modern C++ compiler will not
compile most non-trivial programs written in modern
C without at least some minor modifications. However,
for the purposes of this paper we can consider modern
C++ to be an extension of “classical C with better type
safety and without some relatively rarely used features”.
In this section, for brevity, C++ will mean “C or C++”.

C++ is primarily a compiled language
Before it can be executed, an entire program in C++ must
be “built”, that is, translated to the target machine’s native
instructions by a program called compiler and linked
with external pre-compiled libraries by a program called
linker. High-quality compilers perform extensive local
and global code optimization and produce very efficient
and compact code. Compiled programs do not need any

Page 4 of 16Rassokhin ﻿J Cheminform (2020) 12:10

additional runtime environments to be present on target
computers in order to be executed. Compare this to inter-
preted languages, such as Python, or languages that are
typically compiled into and delivered to users as platform-
independent intermediate code, just as Java. Python code
needs a Python interpreter in order to be run, and pro-
grams compiled into the intermediate Java byte code need
a Java runtime environment to translate the intermediate
code into the host machine instructions at runtime. A
large C++ program can take significant time to compile,
since every single line of its source code has to be pro-
cessed by the compiler, regardless of whether it will actu-
ally be executed during an invocation of the program. This
slows down the development cycle, but typically results in
more reliable code, as the compiler can catch many errors
at compile time, thus avoiding unpleasant “runtime error”
surprises so typical for interpreted languages like Python.
Yet another downside of a compiled language is that the
executable files produced by a compiler from source code
are not portable and will only run on the target platform
(that is, the hardware plus the operating system) for which
they are compiled, or a binary-compatible platform. Spe-
cial care must be taken when writing C++ code, specify-
ing compiler options and choosing code libraries to link
with to satisfy specific binary compatibility requirements
(see, for example, the Wikipedia article on binary com-
patibility [19] and Red Hat Enterprise Linux 7: Applica-
tion Compatibility Guide [20] just to get an idea of how
complicated the issue of binary compatibility can be). In
order to port a C++ program or library to a different
platform, the source code must be re-compiled specifi-
cally for that platform. Since nowadays C++ compilers
exist for all major computer platforms and operating sys-
tems, generally, C++ source code is highly portable.
However, complex programs written in C++ using non-
standard or poorly supported language features or hav-
ing dependencies on code libraries that have not been
widely ported, or relying on specific machine or OS fea-
tures, such as, for example, the machine word size, byte
order, or the support for certain specific CPU instruc-
tions, can be extremely difficult to port and may require
making changes at the code level by an experienced C++
programmer. There exists a very useful online tool called
Compiler Explorer [21], which can compile snippets of
programs in many programming languages including
C++ with various compilers and options interactively
and visualize the machine code output. This makes it a
great teaching tool, which can also be used low-level code
optimization.

It should be noted that the C++ language standard
does not prescribe that a program in C++ must first be
compiled in its entirety into an executable file containing
the target platform machine instructions before it can be

run. C++ interpreters that allow the execution of C++
code in the interpreted and/or interactive mode line-by-
line do exist (for example, Cling [22]), but the very nature
of the language, in particular, the static typing, does
not play along well with the interactive read-evaluate-
print-loop (REFL) execution mode, so C++ interpreters
remain very specialized niche tools for quick prototyping
and compiler development.

C++ is imperative
Imperative programming is a programming paradigm in
which a program consists of statements (or commands
to the computer) that change a program’s state. Impera-
tive programming focuses on describing how a program
operates, and imperative code closely maps to machine
code native to the computer. At the low level, the pro-
gram state is defined by the contents of memory, and the
instructions in the native machine language of the com-
puter prescribe the hardware how to change the data
in memory. Higher-level imperative languages abstract
away platform-specific instructions, for example, use var-
iables instead of memory locations and statements writ-
ten in human-readable notation rather than instruction
codes, but still follow the same pattern.

Compare the imperative to the declarative paradigm,
which focuses on what the desired result should be and
leaves it up to the execution engine to “decide” how
to obtain it. A common declarative language familiar
to most data scientists is SQL (Structured Query Lan-
guage), which is designed to manage data stored in a rela-
tional database system, such as Oracle or PostgreSQL.
For example, a typical SQL ‘select A, B, C from
Table1 join Table2 on Table1.K = Table2.
FK’ data query statement describes what records to
retrieve from which tables in a relational database, but
does not instruct the database engine how to do this, and
the implementations of SQL query processors can be
vastly different between different database engines.

C++ is procedural
A procedural programming language is an imperative
programming language which supports the concept of
procedures and subroutines isolating segments of code
into reusable units that can be “called” to perform indi-
vidual tasks. Procedures and subroutines are known as
functions in C or C++. A C++ function can take zero
or more parameters (sometimes called arguments) and
return zero or one value.

C++ supports structured programming
Structured programming languages provide intuitive
mechanisms to control the flow of a program (that is, the
order in which statements are executed). The structured

Page 5 of 16Rassokhin ﻿J Cheminform (2020) 12:10 	

flow control statements in C++ are similar to the ones
found in many other structured programming languages.
These are if/else for implementing branching logic, and
for, while, and do/while for implementing iterations
(loops). C++ does have the notorious goto statement that
can be used to pass control to an arbitrary location within
a function in a “non-structured” way, but it is rarely used.

C++ has lexical variable scope
As most modern languages, C++ uses lexical scoping for
variables and functions. A variable or function in C++
may only be referenced from within the block of code in
which it is declared. The scope is determined when the
code is compiled. The opposite of lexical scope, dynamic
scope refers to scope of a variable defined at run time and
depending upon the program state when the name of a
variable is encountered.

C++ is statically typed, but not type‑safe
The compiler does the type checking when a C++ pro-
gram is being compiled. This helps detect common pro-
gramming mistakes. In dynamically typed languages
(such as, for example, Python or JavaScript) the types of
variables and functions are checked at run-time, which
allows for extra flexibility and sometimes shortens the
code, but often results in runtime errors when an opera-
tion or function is applied to an object of inappropriate
type. It should be noted that C++ is not a type-safe lan-
guage. C++ compilers will allow many operations on
typed variables that might lead to undefined behavior or
errors, but usually the programmer must “let the com-
piler know” his or her intension, for example, by “casting”
a pointer to a memory location to a certain type. This
comes very handy in low-level programming where effi-
cient access to hardware is a must, but the programmers
are expected to know what they are doing, since errors
arising from unsafe type conversions are notoriously dif-
ficult to debug and are often platform-dependent.

C++ has facilities for low‑level memory manipulation
C++ provides operations on pointers to arbitrary mem-
ory locations, which makes C++ a perfect choice for
programming operating systems, embedded systems and
device drivers. For instance, a peripheral input/output
device driver may map (or associate) the memory and
registers of the controlled device with certain reserved
addresses [12]. To control the device, the device driver
assigns values having special meaning according to the
device specifications to those reserved memory loca-
tions. For example, the following statement in the driver’s
code (assuming it is implemented in C or C++) sets the
byte at the memory location 40008000 (in hexadecimal
notation) to 1.

(char)0x40008000 = 1;

The char data type in C/C++ is the smallest address-
able unit of the machine (one byte consisting of eight
bits on most modern computers). The (char*) is the
type cast operator telling the complier to interpret
0x40008000 as a pointer to a byte at the memory location
0x40008000, and the prefix * (the asterisk character) is
the pointer dereferencing operator used to access (read
or write) the value stored at that location.

Manipulating data via memory pointers in C++ is
a very common practice not only in low-level system
programming, but also in the implementation of a wide
variety of algorithms and data structures with minimum
possible overhead. Common vector-type data struc-
tures such as vectors, matrices and character strings are
efficiently represented in C++ by contiguous memory
blocks containing data of a certain type, and C++ pro-
vides very terse syntax for operations on these memory
blocks. For example, finding the position of a character
in a zero-terminated C string using C pointer operations
can be done with just one line of code, the while loop in
the code snippet shown below:

// Text following double forward slash to
// the end of line is a comment.
const char* text = "this is a C string";
const char* p = text;
const char charToFind = 'C';
// While p is not pointing to the terminating zero character
// and p is not pointing to the character to find,
// advance the pointer to point to the next character.
while (*p && *p != charToFind) p++;
// If p does not to the zero character, set to the index
// of the found character, otherwise, set it to -1.
int index = *p ? p - text: -1;

C++ has deterministic memory allocation
and de‑allocation
The lifetime of objects in C++ is deterministic and
defined by the programmer. This eliminates the overhead
of “garbage collection”, where the runtime environment
(such as, for example, the Java Virtual Machine or Python
interpreter) must trace the lifetime of objects during
the program execution and, when an object is no longer
used, free up the resources associated with it [23]. It also
allows placing an object at a specified memory address.
This makes C and C++ particularly suitable for writing
code for resource-limited systems, such as real-time sys-
tems and microcontrollers. Below is an example illustrat-
ing C/C++ deterministic heap and stack [24] memory
management:

Page 6 of 16Rassokhin ﻿J Cheminform (2020) 12:10

// Note: this is not a complete C++ program.
// Include file containing declarations of
// the standard C library functions malloc,
// free and memset called below.
#include <stdlib.h>

// C++ uses curly braces (also referred to as just "braces"
// or as "curly brackets") to group declarations and statements
// into blocks.
{ // Code block begins.

// Compiler reserves space for ints1
// to hold a memory address
// (commonly referred to as
// a pointer). Typically,
// the pointer size is 4 or 8 bytes on

// most modern computer platforms.
// C-style dynamic memory allocation:
// allocate a block sufficient to
// accomodate 10 integers and store
// its address in ints1.
// malloc, memset and free are standard
// C runtime library functions.
int* ints1 = (int*)malloc(sizeof(int) * 10);
// Set all array elements to 0
memset(ints1, 0, sizeof(int) * 10);
// Set the element at index 5 to 1
ints1[5] = 1;
// Some other code goes here...
// ...
// When we no longer need the previously
// reserved memory block pointed to
// by the value stored in ints1, we should
// free the block and release the memory.
// Note: memory areas reserved with malloc
// can be used outside of the code blocks
// whether they are reserved and freed much
// later, but forgetting to free previously
// allocated memory is a common source of
// "memory leaks" in C or C++ programs.
free(ints1);

// C++ operators new and delete
// can be used instead of
// C-style malloc and free:
int* ints11 = new int[10];
// ...
delete[] ints11;

// Some other code potentially calling
// the malloc and free functions and
// reusing the memory area we have just
// released can go here...

// The following statement will compile,
// but will likely cause a runtime
// error (a crash with core dump
// or memory access violation, or
// an erratic program behavior, which
// may include producing incorrect results):
ints1[5] = 1;
// Memory reserved for ints1 (4 or 8 bytes,
// depending on the pointer size on
// the host platform) is deterministically
// freed when inst1 goes out of scope.
//

} // Code block ends.

{ // Code block begins.
// Compiler reserves a block of memory
// for the local variable to hold 10
// integers (on stack in
// nearly all C implementations).
// Note that stack size is relatively small
// on most systems and rarely exceeds 8MB.
int ints2[10];
// Set all array elements to 0.
memset(ints2, 0, sizeof(int) * 10);
// Set the element at index 5 to 1
ints2[5] = 1;
// Do something here...
// Memory reserved for ints2
// is deterministically freed
// at the end of the block of code
// where ints2 is defined.

// Writing to a location past the end of the array
// is a sure recipe for disaster at runtime.
// The following statement, when executed,
// will almost certainly result in a crash.
ints2[110] = 10;

} // Code block ends.

The ultimate efficiency of C++ achieved via direct
access to memory via pointers, explicit deterministic
memory management and a very close mapping of C++
language constructs to hardware makes C++ the lan-
guage of choice in high-performance scientific comput-
ing, when implementing CPU- and memory-intensive
algorithms, for example, molecular mechanics modeling,
machine learning and statistical analysis of very large
volumes of data. The efficiency comes at a cost though.
Programmer’s errors, such as accessing an array out-
of-bounds, or forgetting to properly initialize a pointer,
result in random program crashes or unexpected behav-
ior, which, in complex code, can be extremely difficult to
locate and fix. Intentionally (for efficiency) or uninten-
tionally skipping checks for common manual memory
management errors, such as buffer overflow, in C or
C++ code is a security vulnerability that has been often
exploited by computer viruses, ransomware and other
types of malware [25]. Numerous static and dynamic
code analyzers and debuggers exist that help program-
mers detect memory management errors in C++ code,
such as, for example, the GDB debugger [26] and the
Valgrind toolkit [27]. Nevertheless, even with the help
of the most sophisticated C++ compilers and develop-
ment tools, memory management errors in non-trivial
C and C++ code are hard to avoid even for experienced
programmers. As it was mentioned above, many high-
level languages, such as Python or Java, provide auto-
matic memory management with ‘garbage collection’ and
disallow or restrict direct memory access via pointers,
thus eliminating the possibility manual memory man-
agement bugs altogether. However, automatic memory
management has substantial performance implications
and makes these languages unsuitable for low-level
programming.

C++ is a high‑level language with low‑level functionality
C++ offers the ample means for programmers to
express their ideas at the high or low level of abstrac-
tion, depending on the specific task at hand. C++
(especially, its C subset) has very little runtime over-
head and, as it was already mentioned above, uses
deterministic explicit memory allocation/deallocation.
If desired, a C++ program can be written in a mini-
malistic ‘portable assembly language’ style to effectively
control the hardware, for example, when programming
device drivers. At the same time, C++ allows coding
in terms of abstract computer science concepts, such
as functions, programmer-defined types and opera-
tors, generic types, lambda-expressions and closures,

Page 7 of 16Rassokhin ﻿J Cheminform (2020) 12:10 	

which makes it suitable for implementing complex
algorithms with non-trivial execution flow logic, for
example, graphical user interfaces and compilers. In
scientific programming, C++ is often used as a high-
level object-oriented language, taking full advantage
of its expressive power. High-level features of C++
will be described in more detail below in the sections
of this paper discussing object-oriented and generic
programming.

C++ has pre‑processor, which adds some
meta‑programming capabilities to the language
Before being passed to the compiler, C++ code is
pre-processed to expand the so-called pre-processor
directives. The most common directives in C++ are
expandable macros, file inclusion and conditional
compilation directives. A detailed description of these
is beyond the scope of this paper, but the interested
reader will find a few examples of pre-processing direc-
tives in the Hello, World code below. They can be iden-
tified in the source by the # (hash) character that marks
the beginning of a directive.

Hello, World in C
Before we address more advanced concepts related to
object-oriented and generic programming in C++,
let consider a working example of a simple pro-
gram that demonstrates the “C subset” of C++. Code
below shows a slightly extended and commented ver-
sion of the traditional “Hello, World!” program that
can be run from a command line to display “Hello,
World!” or “Hello, <someone>”, depending on the
command-line arguments it is invoked with. Note the
#include <filename> directive that includes the
contents of the header file identified by the filename
into the current source file.

// Command-line build and run instructions:

// Microsoft Visual Studio 2015 or 2017 command line:
// cl hello.c
// hello.exe

// Linux and Mac OS:
// gcc hello.c -o hello
// ./hello

// Note: depending on the compiler installed,
// you may have to use gcc, cc, g++ or c++.

// Everything after // and to the end of line
// is a comment ignored by the compiler.
// Include the standard header file containing
// declarations of common input-output
// functions, such as the formatted print function
// 'printf'. Expanded by the pre-processor
// to include the entire contents of stdio.h file
// verbatim in this compilation unit.
#include <stdio.h>

// Pre-processor directive to define a function-like macro
// PRINT_BUILD_TIMESTAMP. __TIME__ and __DATE__ are the
// standard pre-defined macros that are set to the
// current time and date by the pre-processor when compiling
// the source. \ at the end of line is the line continuation
// marker.
#define PRINT_BUILD_TIMESTAMP \

printf("This file was compiled at %s on %s\n", \
__TIME__, __DATE__);

// This is a definition of a function called greet.
// The function takes one argument and returns no value.
// When invoked, it prints Hello, <whom> to
// the standard output device (console, if not redirected).
// 'whom' must be a pointer to a memory location
// containing a zero-terminated string
// (a sequence of bytes representing printable
// characters and ending with the zero byte).
void greet(const char* whom)
{

// printf is declared in in the standard
// C runtime library header file stdio.h,
// and its implementation is contained in
// the standard C library file,
// which is usually named libc and searched
// automatically by the compiler
// when the target output is an executable module.
// "Hello, %s!\n" is the format string. The additional
// arguments following the format string
// are formatted and inserted in the resulting output
// string replacing their respective specifiers.
// The %s format specifier will cause printf to interpret
// the corresponding argument
// as a zero-terminated string. Other format specifiers
// are %d for signed integers,
// %e for floating-point numbers to be printed in
// the scientific notation, etc.
// '\n' is the "escape sequence" for the end-of-line
// character. Google 'printf' for additional info.
printf("Hello, %s!\n", whom);

}

// For a stand-alone executable, function 'main'
// is the program entry point.
// argc will contain the number of command-line arguments
// argv will contain the arguments encoded as arrays
// of characters. The 0th argument is always the path
// to the executable file itself, so normally argc is
// greater than or equal to 1.
// In C and C++ array indexes are zero-based.
int main(int argc, char* argv[])
{

// Using the macro defined above,
// print the build timestamp to the console.
PRINT_BUILD_TIMESTAMP;

if (argc > 2)
{

printf("Error: too many arguments.\n");
return 1;

}

// In C++, == is the equality operator,
// whereas = is the assignment operator.
const char* whom;
if (argc == 1)
{

// If invoked with no command-line arguments,
// print 'Hello, World'
whom = "World";

}
else if (argc == 2)
{

// If invoked with exactly one command-line argument,
// print 'Hello, <ARGUMENT>'
whom = argv[1];

}
greet(whom);
return 0;

}

Page 8 of 16Rassokhin ﻿J Cheminform (2020) 12:10

The program also illustrates the typical compile/link/
run C++ program execution pattern. In order to pro-
duce an executable file from the above source code, one
has to compile it to an intermediate module and link the
module with standard and custom libraries that contain
pre-built implementations of functions used in the source
but not defined there. The above example is very simple
and depends only on the standard C runtime library for
the program initialization routines and the implemen-
tation of the printf function, so it can be compiled and
linked to produce the executable on most modern Unix-
like systems (Linux, Mac OS X, FreeBSD, AIX and oth-
ers) with a very simple command:

gcc hello.c -o hello

When run with the above command-line options, com-
piler will invoke the linker and link the standard C runt-
ime libraries automatically to produce the executable
module. All modern Unix-like systems come with a C/
C++ compiler, but, depending on the specific OS version
and distribution, you may have to substitute cc, C++ or
g++ for gcc. If the compiler discovers one or more syn-
tax errors in the source code during the compilation,
it will report them to the programmer and generate no
executable file. Running the resulting executable from
the command line will output “Hello, World!” or “Hello,
argument!”.

./hello <optional_argument>

It should be pointed out again that the compiled exe-
cutable file contains the machine code for the target
platform and does not need an interpreter or runtime
environment in order to run. However, it is platform-
specific and will not run on hardware and operating
system other than the one for which it was built, or its
emulator. This contrasts with interpreted languages like
Python, where the interpreter translates the program
source code into the machine instructions at runtime
and immediately executes these instructions. Programs
in many languages including C or C++ may be either
compiled or interpreted, so being “compiled” or “inter-
preted” is not an essential property of a language per se.
The overwhelming majority of C and C++ implementa-
tions are compilers rather than interpreters though. The
structure of C/C++, primarily, the static typing, makes
its use as an interpreted language quite cumbersome and
does not realize its full potential as a language for system
programming and high-performance computing.

C++: Object‑oriented and generic programming
Basic ideas
As mentioned in Short history of C and C++ section
above, one of the distinctive features of C++ is its exten-
sive support for objective-oriented and generic program-
ming. A programming language that serves the purpose
of representing a programmer’s ideas in an understand-
able form to the computer dictates not only a way of rep-
resentation but also, to a considerable extent, the ideas
themselves. All programming languages consist of cer-
tain systems of terms and concepts set in a framework
into which the programmer subconsciously “squeezes”
the program he or she creates as early as during the
design stage. In other words, the way a program is coded
dictates to a considerable extent the way the program is
designed. One cannot set yourself free from a language’s
dictates, but this is not necessary. The desired solution to
this situation is to use a computer language that closely
supports the system of concepts on which we base our
vision of the world—thus, the path from design to imple-
mentation will be easier and the productivity of the labor
involved will increase.

This is exactly what object-oriented programming
(OOP) suggests. OOP demands an object-oriented
approach to program design—the so-called object-ori-
ented design (OOD)—that, in turn, successfully exploits
our natural human abilities of classification and abstrac-
tion. For instance, in speaking the word “window” we
imply something can be seen through it. Both a window
in a house through which we view a street and a “window”
on a computer screen, which is just a (usually rectangular)
area with distinct boundaries containing various graphical
elements drawn by a program possess that property. So,
these window “instances” can be thought of as belonging
to a class (or type, or concept) called “Window”. Classes
and objects, inheritance, and hierarchy are intrinsic to
human thinking and intuitively understood.

OOD and OOP are really the processes for the design
and creation of a specific world—a program—inhabited
by objects that are born, change their internal state, inter-
act with each other, and die. And OOP requires the pro-
grammer become first a creator who considers a program
not as a subsequence of actions but as a specific world
living its own life.

Rather than thinking in terms of data and procedures
the OOP paradigm encourages thinking in terms of inter-
acting objects that possess certain properties and exhibit
certain behaviors.

Let us consider a specific example from the field of
cheminformatics. Practically all cheminformatics

Page 9 of 16Rassokhin ﻿J Cheminform (2020) 12:10 	

toolkits support chemical structure (or molecule) rep-
resentation based on graph theory. The most natural
representation of a molecule is a graph where the atoms
are encoded as the graph nodes and the bonds are the
graph edges. In the “traditional” non-OOP approach,
one would design this program by first defining a data
structure that represent the basic graph, for example, as
a N×N square symmetric connection matrix M, where
N is the number of atoms in the molecule. If atom i is
connected to atom j, the corresponding elements of the
matrix Mij and Mji will contain 1, otherwise, they will
contain 0. In addition to the connection matrix, one
will need to define data structures to represent prop-
erties of each atom and bond, for example, the atomic
number and bond type. Having defined the data struc-
tures, the developer would define a set of procedures
to operate on these structures, for example, to add an
atom to the molecule, connect an atom to another atom
with a bond, determine how many atoms and bonds
are in a molecule, read from and save a molecule into
a structure file, and so on. Data in such a program are,
so to speak, low-men-on-the-totem-pole, being consid-
ered only as a sphere of action for functions.

The OOP paradigm encourages a completely differ-
ent mode of thinking, based on the data abstraction
and encapsulation. When designing code to repre-
sent molecules in the OOP style, one should focus on
data fields representing a state of a molecule and com-
mon operations that can be applied to all instances of
a molecule. In this train of thought, molecules are rep-
resented as objects (or instances) of the abstract data
type (or “class”, using C++ terminology) Molecule.
In this context, ‘abstract’ means that the type is defined
in terms of operations that can be applied to it and the
expected behavior of these operations rather than its
internal structure and details of its implementation.
Bundling (or encapsulating) the data and methods that
operate on that data in one conceptual unit—a class,—
exposing only operations that define its behavior to
the “outside world” and hiding implementation details
greatly facilitates code reusability and modularity.
For example, in the code snippet below, the adjacency
matrix-based molecular graph representation can be
replaced with an alternative representation based, for
example, on a graph edge list. After such a change, any
dependent code using only public methods and fields
of Molecule can be re-compiled and used with no
modifications.

class Molecule
{
private:

// Private fields and methods can be accessed only
// by functions ("methods") that are members of
// the class where they are defined.

// Pointer to a memory area where
// elements of the symmetric matrix
// representing atom/atom connection
// table will be stored.
bool* connectionMatrix_;
int numAtoms_;
// ...other data fields...

// ... private methods ...
// Translates atom indices to the index into
// the symmetric connection matrix.
// Marked as const because it does not change
// any fields of the class.
int symMatIdx(int atomIdx1, int atomIdx2) const
{

// Make sure atom indices are valid:
assert(atomIdx1 >= 0 && atomIdx2 >= 0 && atomIdx1 != atomIdx2);
assert(atomIdx1 < numAtoms_ && atomIdx2 < numAtoms_);

// The ? ... : ... operator is a convenient
// shorthand for 'if-else'.
int idx = atomIdx2 < atomIdx1 ?

atomIdx1 * (atomIdx1 - 1) / 2 + atomIdx2 :
atomIdx2 * (atomIdx2 - 1) / 2 + atomIdx1;

return idx;
}

public:
// This is the constructor called to initialize
// class members when a class instance is being created.
// More than one constructor can be defined for a class,
// differing by the number and types of the arguments.
Molecule(){
// initialize _connectionMatrix and other data fields...
// Initially, reserve memory for 10 atoms.

int nInitCapacity = 10;

// Size for a symmetric matrix with no diagonal elements:
int size = nInitCapacity * (nInitCapacity - 1) / 2;
connectionMatrix_ = new bool[size];
// Initially, there are no bonds.
// Set all elements to 0 ('false').
memset(connectionMatrix_, 0, sizeof(bool) * size);
numAtoms_ = 0;

}

// This is the destructor called when instances of class
// are being disposed of.
~Molecule()
{

delete[] connectionMatrix_;
}

int addAtom(int atomicNo)
{

// ...implementation (incomplete)...
// ...
// Return index of newly added atom
// and increment the atom count.
// Note: 'this' is a C++ keyword
// that represents a pointer to 'self'
// which is passed as implicit argument
// to all non-static class member functions.
// In this context, the use of this->
// is optional.
return this->numAtoms_++;

}

void addBond(int atomIdx1, int atomIdx2, int bondOrder = 1)
{

// ...implementation (incomplete)...

int idx = symMatIdx(atomIdx1, atomIdx2);
connectionMatrix_[idx] = true;
// ... set other bond properties ...
// ...

}

bool bondExists(int atomIdx1, int atomIdx2) const
{

int idx = symMatIdx(atomIdx1, atomIdx2);
return connectionMatrix_[idx];

}

// ... other methods ...
// ...

}; // End of Molecule class definition.

// Create an instance of Molecule.

Molecule mol;
// Call its methods to perform
// operations on it.
// Users of class Molecule
// are not normally concerned about
// the details of its implementation.
int a1 = mol.addAtom(6);
int a2 = mol.addAtom(8);
mol.addBond(a1, a2);
bool hasBond = mol.bondExists(a1, a2);
if (hasBond)

std::cout << "Bond between "
<< a1 << " and " << a2
<< " exists." << std::endl;

Page 10 of 16Rassokhin ﻿J Cheminform (2020) 12:10

Data abstraction is one of the key concepts of OOP
and OOD. Other key concepts on which OOP is based
are inheritance, composition and polymorphism.

Inheritance means deriving more complex data types
from simpler ones. C++ offers special mechanisms to suc-
cessfully exploit that idea. A derived class “inherits” prop-
erties and behaviors of its ancestor classes, while adding
new properties and behavior. Using class inheritance, one
can design complex classes from the general to the spe-
cific. Using our Molecule class as an example, it would
be natural to think of it as a superclass of a base class called
Graph, inheriting the internal representation and graph
algorithm functions and adding features specific to mol-
ecules, such methods to access and change properties of
atoms and bonds in a molecule, compute basic molecular
properties, etc.

Composition in OOP is yet another method of build-
ing complex types, alternative to inheritance. Types
extended via composition contain instances (or pointers to
instances) of other classes implementing additional func-
tionality rather than deriving from those classes. For exam-
ple, if we want molecules to be able to encode themselves
into the SMILES linear notation [28], we can derive a class
called, for example, SmilesEncodableMolecule from
the base class Molecule and implement the method that
will be returning SMILES-encoded molecules called, for
example, getSmiles(), plus all additional methods and
fields needed for its implementation in the derived class.
Alternatively, using the composition-based approach, we
can re-design the base class Molecule to have a con-
tainer-type data field to hold pointers to various encoders,
develop a class that represents a SMILES encoder, and add
an instance of the SMILES encoder to an instance of Mol-
ecule at runtime. A detailed discussion of composition
vs. inheritance is beyond the scope of this paper, and an
interested reader can refer to the Wikipedia article [29],
which has multiple references to publications where the
pros and cons of either approach in various development
scenarios and programming languages are debated.

Polymorphism is a Greek word meaning “having many
shapes”. Applied to OOP, this term is usually regarded
as the property of an object to respond to an operation
according to the object’s type, even if its type is unknown
at compile time. For example, we can define types
Square and Circle as deriving from the base type
Shape and pass a reference or a pointer to an instance of
type Shape to some function as an argument (for exam-
ple, that function may be defined as void f(Shape*
s)). Inside that function, we would call the function
area() declared in the base type Shape and defined
in types Square and Circle. Even though at the com-
pile time the compiler would have no information on the
exact type of the object that can potentially be passed to

the function f (as long as it derives from the base type
Shape), it will generate the code to invoke the correct
type-specific implementation of the function area(),
defined either in type Square in type Circle, depend-
ing on the actual type of the object, and applying the cor-
rect formula to calculate the area of the object.

Generic programming is a style of programming in
which algorithms are written in terms of to-be-specified-
later types that are then instantiated when needed for
specific types provided as parameters [30]. C++ provides
very effective template-based mechanisms for generic
programming, which make the generalization possible
without sacrificing efficiency, since the compiler gener-
ates the type-dependent code, so the type determination
and the type-dependent function binding do not have to
happen at the runtime. A trivial example of defining and
instantiating a function template is shown below.

// Include the definitions of the basic
// standard input/output types, operators
// and the string type from
// the Standard Template Library (STL).
// Note, most of the STL types are
// declared in the namespace std
// and accessed using the std:: prefix.
#include <iostream>
#include <string>

// Define a template for function tmax.
template <class T> T tmax(T a, T b)
{

// if a > b return a, otherwise, return b
// Note that the actual type that replaces
// template type parameter T when the template
// is being instantiated must support operator >.
return a > b ? a : b;

}

void testMax()
{

double x = 0.0;
double y = 1.0;
// At this point, the compiler
// instantiates the function template
// and generates the actual function that
// takes two parameters of type double
// and returns a double.
double m = tmax(x, y);
// C++ - style console output:
std::cout << "x: " << x << ", y: " << y

<< ", tmax(x,y): " << m << std::endl;

std::string sx = "C";
std::string sy = "C++";
// Here, the compiler generates and calls
// a different function, which operates on
// arguments of the string type and calls
// the implementation of operator > for string.
std::string sm = tmax(sx, sy);
std::cout << "sx: " << sx << ", sy: " << sy

<< ", tmax(sx, sy): " << sm << std::endl;
}

Page 11 of 16Rassokhin ﻿J Cheminform (2020) 12:10 	

Nearly all current C++ distributions include the Stand-
ard Template Library (STL), originally developed by
Alexander Stepanov, Meng Lee and David Musser [31],
whose design follows the object-oriented and generic
programming patterns. STL is a set of C++ template
classes to provide common programming data structures
and functions such as input/output streams, lists, stacks,
arrays, etc., and common algorithms, such as search-
ing, sorting, and set operations. In a sense, STL can be
thought of as an essential part of C++, and nowadays
C++ programmers increasingly rely on STL rather than
their own “homegrown” implementations of the basic
data structures and algorithms. Many C++ scientific
libraries are supplied as ‘header-only’ source code librar-
ies and heavily rely on C++ templates to make the code
generalizable so it can work with many compatible data
types and various options yet be as efficient as possible.
For example, a widely used C++ library for linear algebra
called Eigen [32] is supplied as a set of source files con-
taining definitions of various parameterized data types
and functions. C++ compilers can generate machine
instructions highly optimized for speed of execution
from function and class templates, but under certain
code building scenarios template instantiation can intro-
duce binary code bloat, since the compiler may create
multiple instantiations of the same templated function or
class that are never actually used during the program exe-
cution. Yet another notorious shortcoming of templated
code is cryptic and hard-to-interpret compile-time error
messages. Even a minor accidental typo somewhere in
the code using templates can result in a horrific compiler
error message several pages long due to very complex
templated type definitions and template instantiation
rules. It should also be noted that C++ template code
libraries must be distributed to users as C++ source files
rather than binary code libraries, which means that users
of these libraries will be able to browse the source code
and study its inner workings. There exist tools that can
“obfuscate” C++ source code, making it intentionally
hard to understand without changing its functionality,
which are sometimes used by authors of closed-source
software that must be delivered to customers in the form
of C/C++ source files.

An illustrative example of object‑oriented and generic
C++ code
To summarize this short overview of the C++ lan-
guage, let us consider a somewhat more elaborate
example, which illustrates concepts of object-oriented
and generic programming in modern C++. The source
code for this example can be obtained from Additional
file 1. It can be compiled and run from the command
line on most modern platforms that come with a C++

compiler supporting at least C++11. The example con-
tains a very basic implementation of the data type (or
“class”, in C++ parlance) Molecule to represent chemi-
cal structures in a program. The example is extensively
commented, and the reader is encouraged to examine it
closely. At the top of the class hierarchy lies the template
class Graph <TNode, TEdge>, which represents an
abstract graph of nodes connected by edges and imple-
ments such basic operations as adding nodes, connect-
ing them by edges, and accessing node and edge objects.
Classes Atom and Bond represent chemical atoms and
bonds, respectively. Class BaseMolecule derives from
Graph <Atom, Edge> and adds molecule-specific
behavior to the generic graph operations. Note that, when
template arguments are provided, they are substituted
for the template parameters to obtain a specialization
of the template, so the class Graph <Atom, Edge> is
a specialization of the template class Graph <TNode,
TEdge>. In addition to the data members and methods
inherited from Graph <Atom, Edge> , BaseMol-
ecule adds methods specific to molecules, such as the
functions that add atoms and bonds with certain atom-
and bond-specific properties, such as the atomic num-
ber and bond order. Class Molecule is derived from
BaseMolecule and further extends it with the addi-
tional property called name and adds a method to com-
pute the molecule formula. It also redefines (“overrides”)
the toString method inherited from the base class.
The re-defined method returns a more detailed textual
description of an object of the type Molecule com-
pared to the base class method.

A more sophisticated “real-world” C++ code exam-
ple of the manipulation of chemical structures using the
RDKit open-source cheminformatics library [33] can be
found in the Getting Started section of the RDKit code
repository [34]. The reader is encouraged to configure
the build environment and first compile and run the
simple molecule.cpp example from this paper, and then
attempt to follow instructions in [34] to install RDKit and
its dependencies, configure the build environment, build
the RDKit library, and then and compile and run the
example.

Interoperability between C/C++ and other
high‑level languages
C and C++ are universal languages equally well suited
for practically all types of coding, which still stay sol-
idly on top of the most popular languages for system
and embedded software programming, office desktop
application development, and the implementation
of high-performance number-crunching, image and
text processing algorithms for real-time stock market
data analysis, 3D animation and numerous life science

Page 12 of 16Rassokhin ﻿J Cheminform (2020) 12:10

applications. However, it is a very common practice
to implement different parts of a program or software
library in more than one programming language. There
are many compelling reasons for “mixed language” devel-
opment, which can be roughly split into the following
two categories:

Legacy software library reuse: For example, there
exist comprehensive high-quality software libraries for
numerical analysis and linear algebra written in Fortran:
BLAS [35], NAG [36], and LAPACK [37]. When devel-
oping a C or C++ application or a software module that
relies on certain numerical algorithms already imple-
mented in one or more of these mature Fortran librar-
ies, optimized and thoroughly tested, the time and effort
required to incorporate the existing Fortran modules into
C or C++ code is much smaller compared to the time
and effort that would be needed to translate these librar-
ies from Fortran to C or C++ in order to develop “mono-
lingual” code. Even though automatic converters from
Fortran to C do exist, for example, f2c [38] and FABLE
[39], the result of conversion of non-trivial Fortran code
to C or C++ often leaves a lot to be desired and a sub-
stantial amount of work is usually required to clean up,
debug and test the output of these automated converters.

Coding convenience and productivity: it is a very
common scenario where the main “driver” language in
which a particular program or server-side application
is implemented is much better suited for a specific task
than C or C++, but, in order to achieve required perfor-
mance characteristics and/or implement low-level hard-
ware access, certain critical modules have to be written
in C or C++. For instance, statistical computing is ruled
by R [40], MATLAB [41] is a very popular platform/lan-
guage for numerical computing, a significant fraction of
server-size components for various business applica-
tions are written in Java, and Python has recently climbed
up to the top ranks as a general-purpose language for a
wide range of applications from quick prototyping to
scripting complex data processing pipelines, and to pro-
gramming sophisticated large-scale server-side appli-
cations. Coding everything entirely in C or C++, even
though theoretically possible, would be highly counter-
productive, because C and C++ are difficult to use in
read-eval-print-loop interactive environments, have a
steep learning curve, and lack direct language support
for certain domain-specific data types and operations
(for example, C++ does not have built-in operations
on matrixes and data frames found in MATLAB or R).
Many cheminformatics, bioinformatics, statistical and
machine learning toolkits are mostly implemented in C/
C++ and provide “wrappers” to expose their program-
matic interfaces to interpreted languages, such as Python,
and/or virtual machine-based runtime environments,

such as Java or Microsoft.NET. Typical examples are
well-known and widely used CACTVS [42], RDKit [33],
OpenBabel [43] and OEChem [44] cheminformatics tool-
kits, NumPy [45] and other packages that are part of the
SciPy, a Python-based ecosystem of open-source software
for mathematics, science, and engineering [46], and Ten-
sorFlow data processing and machine learning library
[47], just to name a few. The computationally-intensive
parts of these toolkits are mostly implemented in C and
C++, with wrappers provided to make it possible to use
all these toolkits in Python, and some of them in Tcl, Java
and Microsoft.NET environments. The ThirdDimen-
sion Explorer (3DX) data retrieval, analysis and modeling
application with “native” support for chemistry and biol-
ogy developed at Johnson & Johnson Pharmaceutical
Research & Development, L.L.C with a significant contri-
bution by the author of this paper was also implemented
using this approach. The front-end parts of the applica-
tion were mostly written in the C# language for Micro-
soft.NET platform, with the core chemistry, machine
learning and some high-quality graphics implemented
in C++ and exposed to the.NET runtime via a wrapper
interface [48].

The “reverse” or “hybrid” scenarios, where an applica-
tion is largely written in C or C ++, but an interpreter for
a scripting language is embedded in it to provide conven-
ient interface for program customization and control, are
also quite common. VMD (Visual Molecular Dynamics)
molecular modeling and visualization computer program
[49] and PyMOL molecular visualization system [50] are
archetypal examples, as both include embedded Python
and Tcl interpreters to allow users to run Python or Tcl
scripts from within these applications to perform auto-
mated tasks and execute complicated workflows.

Mixing modules written in C/C++ and other lan-
guages (for example, Fortran or Ada) compiled into
machine code for the same hardware and OS can be
relatively easy, especially, if the same compiler and tool-
chain technology is used to build all modules and librar-
ies comprising the target software (for example, LLVM
[51] or GNU compiler collection [12]). The modern
language Julia, which is quickly gaining popularity in
scientific computing [52], has built-in support for call-
ing C, C++ or Fortran code using relatively simple and
straightforward syntax. However, programmatic inter-
face between modules produced from C or C++ source
code (and usually packaged as dynamically-loaded librar-
ies on Microsoft Windows platforms or shared object
libraries on Linux-based platforms) and modules in other
languages which are interpreted at runtime (such as
Python) or compiled into virtual machine bytecode (such
as C# or Java, often called “managed” runtime environ-
ments) requires a “wrapper”. Wrapper code is usually

Page 13 of 16Rassokhin ﻿J Cheminform (2020) 12:10 	

also written in C or C++ and compiled into a shared
object or dynamically linked library, which is then loaded
by the host execution environment at runtime. The aim
of a wrapper is to allow the calling of functions written in
C or C++ and compiled into machine code from other
programming languages and calling functions written in
other languages from C or C++ code, passing complex
data types between functions, coordination of manag-
ing memory management between C/C++ and other
language runtime environments, and reusing non-trivial
data types across languages. Depending on the complex-
ity of the programmatic interface exposed by a module
written in C/C++ to the host runtime environment and
the type of that environment (a Python or R interpreter,
Java or .NET runtime, etc.), the additional effort required
to create the “wrapper” code can greatly vary from triv-
ial (for example, exposing a small set of functions taking
arguments of built-in types such as integers or floating-
point number or pointers to contiguous memory blocks
containing data of built-in types) to very substantial (for
example, exposing an object-oriented programmatic
interface with complex type hierarchies and/or depend-
ing on a large number of third-party libraries, which have
to be built in a certain way in order to be compatible with
the host runtime). There exist multiple tools and librar-
ies that simplify the creation of wrapper interfaces for
C/C++ code to expose it to scripting or managed runt-
ime environments. One of the most widely used tools of
this kind is SWIG [53], which is very flexible and highly
configurable and can generate wrappers for a large num-
ber of host languages, such as Lua, Perl, PHP, Python, R,
Ruby, Tcl, C#, Java, JavaScript, Go, Modula-3, OCaml,
Octave, Scilab and Scheme. SWIG relies on manually
written annotated interface definition files and requires
programmers to learn the SWIG-specific interface-def-
inition language. Another widely used C/C++ wrap-
per aid is the Boost.Python library [54], which is limited
to interfacing C/C++ modules with only one—but very
popular—language, Python. Boost.Python is part of Boost,
which is a very comprehensive collection of free open
source peer-reviewed portable C++ source libraries.
As stated in the project documentation, Boost.Python
attempts to maximize convenience and flexibility without
introducing a separate wrapping language. Instead, it pre-
sents the user with a high-level C++ interface for wrap-
ping C++ classes and functions, managing much of the
complexity behind the-scenes with static metaprogram-
ming. This library is probably the best choice for expe-
rienced C++ programmers who are also well-versed in
Python. For example, a very popular open-source chem-
informatics toolkit RDKit [33] is mostly written in C++
and heavily relies on Boost.Python in the implementation
of its Python interface. An alternative to Boost.Python is

the pybind11 library, which offers functionality similar to
that of Boost.Python, but is much more compact and has
much fewer dependencies; however, it can only be used
with modern C++ compilers that support C++11 or
later standards of C++ [55].

Driven by the increasing popularity of Web-based
applications offering rich functionality on par with that
of their desktop counterparts but delivered seamlessly
over the Web and running completely inside standard
Web browsers, several methods of packaging compiled
C++ code have been developed to allow its execution
inside a browser, driven from JavaScript. They are not yet
widely used, but the corresponding standards are emerg-
ing and look very promising. An interesting discussion
with some working examples of the popular cheminfor-
matics toolkit RDKit [33] adding interactive chemical
functionality to web pages can be found in Greg Lan-
drum’s blog [56].

The ability to package modules written in C++ in
such a way that they can be accessed from common
interpreted or managed runtime environments, such as
Python and Java, allows a treasure trove of C/C++ code
already written for all kinds of data processing needs to
be reused in these environments and saves tremendous
amounts of time and effort that would be required to port
these libraries from C/C++ to these other languages. It
also allows the implementation of performance-critical
parts of software in C/C++ and compiling these parts
into highly-optimized machine code for maximum per-
formance, which is especially important for interpreted
scripting languages like R and Python. However, as the
famous “there’s no free lunch” adage goes, mixed-lan-
guage programming adds a substantial layer of com-
plexity to the software development process. Programs
designed to run in a scripting (for instance, Python or
R) or managed (for instance, Java or .NET) environ-
ment become hardware- and platform-dependent once
they include modules compiled into architecture- and
OS-specific machine code. For example, a program
implemented in “pure” Python will run on any platform
without any additional porting effort, as long as a Python
interpreter for that platform is available and supports the
version of Python language in which the program is writ-
ten. However, if a Python program depends on a C/C++
library wrapped as a Python package, one has to find a
version of that package that has been built specifically
for the host hardware and operating system on which
the program needs to be executed. And not only that, the
package must be built separately for as many different
commonly used Python implementations as practically
possible. For example, a version of that package built for
Python 3.6.4 MSC v.1900 64 bit (AMD64) for Microsoft
Windows won’t work with Python 3.6.4 on Ubuntu Linux

Page 14 of 16Rassokhin ﻿J Cheminform (2020) 12:10

18 distribution or even with the same version of Python
for Windows but compiled as a 32-bit rather than 64-bit
release, let alone using that module with a completely dif-
ferent Python implementation, for instance, IronPython
for the .NET platform [57]. This tremendously compli-
cates the package building and publishing process. One
may discover that a critical package on which a particular
application depends is simply not available for a specific
Python implementation (for example, there is a require-
ment that the software must run on a Windows machine,
but the dependency package is only available for Linux),
or two critically important packages are incompatible
between each other since they depend on different ver-
sions of some third-party shared runtime library. It also
happens that the same mixed-language package behaves
differently on different hosting platforms. Certain rou-
tines implemented in the package may run as expected
on one platform but would crash with a core dump on
some other platform, or—which is often the worst pos-
sible scenario—would produce different and non-repro-
ducible results. This is most often caused by bugs in the
C/C++ source code that are sensitive to such details of
implementation as memory alignment, the size of mem-
ory pointer and certain primitive built-in data types (for
example, 32-bit vs 64-bit), the availability of certain hard-
ware features, etc. And the last but not least, there can
be significant overhead with crossing the boundary and
passing data structures (also known as “marshalling”)
between Python or Java runtime and native machine code
compiled from C/C++ when calling functions imple-
mented in C/C++ from Python or Java and vice versa.
When the performance of mixed-language code becomes
an issue, it is generally advised to re-write the code to
minimize the number of calls that cross the language bar-
rier as much as possible. Using a good code profiler tool
can be a great help and an eye-opening experience when
working on a mixed-language code optimization. Having
said that, we have to point out that the mixed-language
scenarios are extremely common in scientific software
development, and the advantages of the existing code
reuse and substantial gain in performance that can be
achieved by implementing the most critical parts of the
code in C/C++ overweigh the disadvantages of the addi-
tional complexity of the mixed-language software build
and distribution process.

Conclusion: C++ as a language for scientific
software development
C++ is a universal multi-paradigm imperative, object-
oriented and generic programming language with great
library and development tool support and a very large
developer community. Modern C++ compilers pro-
duce highly optimized executable code that can very

efficiently utilize hardware resources. In scientific soft-
ware development, C++ is widely used to write entire
software packages (including stand-alone command-line
or GUI applications and server backend components),
or to implement just performance-critical parts of com-
putational algorithms of applications and packages pro-
grammed in multiple languages. An excellent review of
open-source molecular modeling tools was recently pub-
lished by Pirhadi et al. [58]. The companion online up-
to-date catalog maintained by Koes [59] lists over two
hundred toolkits and stand-alone programs for chemin-
formatics, molecular visualization, QSAR/ADMET mode-
ling, quantum chemistry, ligand dynamics and free energy
calculations, and virtual screening and ligand design. The
catalog does not classify the software by the programming
language and mentions the language only for a small frac-
tion of programs and libraries described in it. However,
since the programs listed in the catalog are open-source,
the author of this paper was able to browse the respec-
tive source code repositories and collect statistics on their
implementation languages. As it turned out, most pack-
ages listed in the catalog are implemented in C/C++ as
the primary language (75), followed by Python (52), Java
(34), Fortran (18), JavaScript (9), R (7), Pascal (1), Perl (1),
Haskel (1), OCaml (1), PHP (1), Scala (1) and C# (1). Nine
programs or libraries out of 52 implemented mostly in
Python and three out of seven implemented mostly in R
have substantial performance-critical parts written in C
or C++. It is worth mentioning that Fortran still remains
a popular choice in the development of software heavily
relying on numerical methods, such as, for instance, pro-
grams for Ab initio calculations (11 out of the 21 listed in
the catalog) and Ligand Dynamics and Free Energy calcu-
lations (7 out of 21), but many of those applications whose
major parts are programmed in Fortran include some
components implemented in C or C++. There is also a
clear trend for newer versions of packages that were origi-
nally programmed in Fortran to be completely or partially
re-written in C/C++ (quite often, with Python providing
the scripting interface), or in Python (with performance-
critical parts written in C/C++). Detailed analysis of the
C++ usage in the areas of scientific programming not
directly related to cheminformatics or computational
chemistry is beyond the scope of this paper, but there
has been an apparent tendency in recent years towards
mixed-language programming with general-purpose
scripting languages, such as Python or Julia, or domain-
specific languages, such as R or MATLAB, being used to
implement the majority of a stand-alone application or a
software package, with performance-critical and/or hard-
ware-dependent parts programmed in C or C++.

Even though C++ is a universal general-purpose lan-
guage suitable for most types of scientific programming, it

Page 15 of 16Rassokhin ﻿J Cheminform (2020) 12:10 	

is rather difficult to learn, lacks built-in support and “short-
hand” syntax for operations on common data structures
such as, for example, matrices and data frames found in
domain-specific languages such as R or MATLAB, and is
not a good choice for interactive read-evaluate-print-loop
execution mode. Typically, end-user applications or soft-
ware libraries are coded in C and C++ by experienced
programmers with domain expertise combined with tech-
nical skills and deep knowledge of hardware architecture.
Data scientists, computational chemists, biologists and
statisticians tend to use languages like Python, R or MAT-
LAB, which are easier to learn, better suited for interactive
execution, and come with complete comprehensive com-
puting environments supporting package management
infrastructure, interactive notebooks containing “live” code
and graphics, and a plethora of project management and
collaboration tools. However, most of these computing
environments themselves are written in C and C++, and
a significant fraction of reusable packages for them have
critical parts programmed in C or C++. Therefore, it is fair
to say that C and C++ still totally dominate scientific pro-
gramming, perhaps, maybe, not in terms of the total num-
ber of lines of code written in these languages, but in terms
of how many times these lines of code have been executed.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1332​1-020-0415-y.

Additional file 1. A simple implementation of type Molecule in C++11
to illustrate the concepts of object-oriented and generic programming.

Acknowledgements
The author thanks Dimitris Agrafiotis, Walter Cedeno and Greg Landrum for
taking their time to thoroughly read the manuscript. Their insightful com-
ments and constructive criticism are much appreciated by the author.

Authors’ contributions
The author wrote the entire manuscript. The author read and approved the
final manuscript.

Funding
The author has received no funding for this work.

Availability of data and materials
Source code for all code examples included in this manuscript is either con-
tained in the manuscript body or available as Additional files.

Competing interests
The author declares that he has no competing interests.

Received: 8 November 2019 Accepted: 27 January 2020

References
	1.	 Neuss N (2003) On Using Common Lisp for Scientific Computing. In:

Bänsch E (ed) Challenges in scientific computing-CISC 2002 lecture notes
in computational science and engineering, vol 35. Springer, Berlin

	2.	 Corey EJ, Howe WJ, Pensak DA (1974) Computer-assisted synthetic analy-
sis. Methods for machine generation of synthetic intermediates involving
multistep look-ahead. J Am Chem Soc 96(25):7724–7737

	3.	 Pensak DA, Corey EJ (1977) LHASA—Logic and heuristics applied to
synthetic analysis computer-assisted organic synthesis. ACS symposium
series 61. American Chemical Society, Washington, pp 1–32

	4.	 Kernighan BW, Ritchie DM (1978) The C programming language.
Prentice-Hall, Englewood Cliffs, p 228

	5.	 ISO/IEC. ISO/IEC 9899:2018. Programming languages—C. 2018
	6.	 Stroustrup B. Evolving a language in and for the real world: C++ 1991-

2006. Proceedings of the third ACM SIGPLAN conference on History of
programming languages; San Diego, California. 1238848: ACM; 2007. p
4-1-4-59

	7.	 Stroustrup B (1986) The C++ programming language. Reading, mass.
Addison-Wesley, Boston, p 327

	8.	 Ellis MA, Stroustrup B (1990) The annotated C++ reference manual. Read-
ing, mass. Addison-Wesley, Boston, p 447

	9.	 ISO/IEC. ISO/IEC 14882:2017. Programming languages—C++. 2017
	10.	 Lambda expressions. cplusplus.com website. https​://en.cppre​feren​

ce.com/w/cpp/langu​age/lambd​a. Accessed 27 Sept 2019
	11.	 Interactive: the top programming languages. IEEE SPECTRUM website:

IEEE. https​://spect​rum.ieee.org/stati​c/inter​activ​e-the-top-progr​ammin​
g-langu​ages-2019. Accessed 27 Sept 2019

	12.	 GCC, the GNU compiler collection. GCC, the GNU Compiler Collection
website. https​://gcc.gnu.org/. Accessed 27 Sept 2019

	13.	 Clang: a C language family frontend for LLVM. LLVM website. https​://
clang​.llvm.org/. Accessed 27 Sept 2019

	14.	 Visual Studio Technologies: Develop C and C++ applications.
Microsoft(R) Visual Studio website. https​://visua​lstud​io.micro​soft.com/vs/
featu​res/cplus​plus/. Accessed 27 Sept 2019

	15.	 Intel® C++ Compiler release notes and new features. Intel® Developer
Zone website. https​://softw​are.intel​.com/en-us/artic​les/intel​-cpp-compi​
ler-relea​se-notes​#2019u​5 Accessed 14 Dec 2019

	16.	 Visual Studio Code. Microsoft(R) Visual Studio Code website. https​://code.
visua​lstud​io.com/ Accessed 27 Sept 2019

	17.	 JetBrains CLion. JetBrains(R) CLion website. https​://www.jetbr​ains.com/
clion​/. Accessed 27 Sept 2019

	18.	 Eclipse CDT (C/C++ Development Tooling). The Eclipse Foundation CDT
website. https​://www.eclip​se.org/cdt/. Accessed 27 Sept 2019

	19.	 Binary-code compatibility. Wikipedia. https​://en.wikip​edia.org/wiki/Binar​
y-code_compa​tibil​ity. Accessed 16 Dec 2019

	20.	 Red Hat Enterprise Linux 7: application compatibility GUIDE Red Hat
Knowledgebase website. https​://acces​s.redha​t.com/artic​les/rhel-abi-
compa​tibil​ity. Accessed 16 Dec 2019

	21.	 Compiler Explorer. Compiler Explorer website. https​://godbo​lt.org/.
Accessed 30 Dec 2019

	22.	 Cling. ROOT Data analytics Framework Cling website. https​://gcc.gnu.
org/. Accessed 27 Sep 2019

	23.	 Garbage collection (computer science). Wikipedia. https​://en.wikip​edia.
org/wiki/Garba​ge_colle​ction​_(compu​ter_scien​ce). Accessed 10 Dec
2019

	24.	 Stack vs Heap memory allocation. GeeksforGeeks website. https​://www.
geeks​forge​eks.org/stack​-vs-heap-memor​y-alloc​ation​/. Accessed 10 Dec
2019

	25.	 Buffer overflow. Wikipedia. https​://en.wikip​edia.org/wiki/Buffe​r_overf​low.
Accessed 16 Dec 2019

	26.	 GDB: The GNU Project Debugger. GDB: The GNU Project Debugger web-
site. https​://www.gnu.org/softw​are/gdb/. Accessed 16 Dec 2019

	27.	 Valgrind. Valgrind website. https​://valgr​ind.org/. Accessed 16 Dec 2019
	28.	 SMILES—A simplified chemical language. Daylight Chemical Information

Systems website. https​://www.dayli​ght.com/dayht​ml/doc/theor​y/theor​
y.smile​s.html. Accessed 27 Dec 2019

	29.	 Composition over inheritance. Wikipedia. https​://en.wikip​edia.org/wiki/
Compo​sitio​n_over_inher​itanc​e. Accessed 13 Dec 2019

	30.	 Generic programming. Wikipedia. https​://en.wikip​edia.org/wiki/Gener​
ic_progr​ammin​g. Accessed 27 Sep 2019

	31.	 Plauger PJ, Lee M, Musser D, Stepanov AA (2000) C++ Standard template
library. Prentice Hall PTR, Upper saddle river

	32.	 Eigen is a C++ template library for linear algebra: matrices, vectors,
numerical solvers, and related algorithms. Eigen hosted by Tuxfamily
website. http://eigen​.tuxfa​mily.org/. Accessed 17 Dec 2019

https://doi.org/10.1186/s13321-020-0415-y
https://doi.org/10.1186/s13321-020-0415-y
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/language/lambda
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://gcc.gnu.org/
https://clang.llvm.org/
https://clang.llvm.org/
https://visualstudio.microsoft.com/vs/features/cplusplus/
https://visualstudio.microsoft.com/vs/features/cplusplus/
https://software.intel.com/en-us/articles/intel-cpp-compiler-release-notes#2019u5
https://software.intel.com/en-us/articles/intel-cpp-compiler-release-notes#2019u5
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.jetbrains.com/clion/
https://www.jetbrains.com/clion/
https://www.eclipse.org/cdt/
https://en.wikipedia.org/wiki/Binary-code_compatibility
https://en.wikipedia.org/wiki/Binary-code_compatibility
https://access.redhat.com/articles/rhel-abi-compatibility
https://access.redhat.com/articles/rhel-abi-compatibility
https://godbolt.org/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/
https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/
https://en.wikipedia.org/wiki/Buffer_overflow
https://www.gnu.org/software/gdb/
https://valgrind.org/
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Generic_programming
http://eigen.tuxfamily.org/

Page 16 of 16Rassokhin ﻿J Cheminform (2020) 12:10

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	33.	 RDKit: Open-Source Cheminformatics Software. RDKit website. https​://
www.rdkit​.org/. Accessed 08 Oct 2019

	34.	 Getting Started/sample.cpp source code. RDKit repository hosted by
GitHub. https​://githu​b.com/rdkit​/rdkit​/blob/maste​r/Code/Demos​/RDKit​/
Getti​ngSta​rted/sampl​e.cpp. Accessed 16 Dec 2019

	35.	 BLAS (Basic Linear Algebra Subprograms). Netlib Repository at UTK and
ORNL website. http://www.netli​b.org/blas/. Accessed 27 Sep 2019

	36.	 The NAG Library. The Numerical Algorithms Group (NAG) website: The
Numerical Algorithms Group, Ltd. https​://www.nag.com/conte​nt/nag-
libra​ry. Accessed 27 Sep 2019

	37.	 LAPACK—Linear Algebra PACKage. Netlib Repository at UTK and ORNL
website. http://www.netli​b.org/lapac​k/. Accessed 27 Sep 2019

	38.	 Netlib/f2c. Netlib Repository at UTK and ORNL website. http://www.netli​
b.org/f2c/. Accessed 08 Oct 2019

	39.	 Grosse-Kunstleve R, Terwilliger T, Sauter N, Adams P (2012) Automatic
Fortran to C++ conversion with FABLE. Source Code Biol Med 7:5

	40.	 The R Project for statistical computing. The R Project website. https​://
www.r-proje​ct.org/. Accessed 08 Oct 2019

	41.	 MATLAB. MathWorks website. https​://www.mathw​orks.com/produ​cts/
matla​b.html. Accessed 08 Oct 2019

	42.	 The Xemistry Tools Universe. Xemistry GmbH website. https​://xemis​try.
com/toolu​niver​se.shtml​ Accessed 08 Oct 2019

	43.	 Open Babel: The Open Source Chemistry Toolbox. Opoen Babel website.
http://openb​abel.org/wiki/Main_Page. Accessed 08 Oct 2019

	44.	 OEChem TK. OpenEye Scientific website. https​://www.eyeso​pen.com/
oeche​m-tk. Accessed 08 Oct 2019

	45.	 NumPy. NumPy.Org website. https​://numpy​.org/. Accessed 08 Oct 2019
	46.	 SciPy. SciPy.Org website. https​://www.scipy​.org/. Accessed 08 Oct 2019
	47.	 TensorFlow. TensorFlow website. https​://www.tenso​rflow​.org/. Accessed

08 Oct 2019
	48.	 Agrafiotis DK, Alex S, Dai H, Derkinderen A, Farnum M, Gates P et al

(2007) Advanced biological and chemical discovery (ABCD): Centralizing

discovery knowledge in an inherently decentralized world. J Chem Inf
Model 47(6):1999–2014

	49.	 VMD Visual molecular dynamics. Theoretical and Computational Biophys-
ics Group, The University of Illinois at Urbana–Champaign website. https​
://www.ks.uiuc.edu/Resea​rch/vmd/. Accessed 08 Oct 2019

	50.	 PyMol. PyMOL by Schrödinger website. https​://pymol​.org/2/. Accessed
08 Oct 2019

	51.	 The LLVM Compiler Infrastructure. The LLVM Project website. https​://llvm.
org/. Accessed 08 Oct 2019

	52.	 The Julia Programming Language. JuliaLang.org website. https​://julia​
lang.org/. Accessed 08 Oct 2019

	53.	 Welcome to SWIG. SWIG.ORG website. http://www.swig.org/. Accessed
13 Oct 2019

	54.	 Boost.Python. Boost.org website. https​://www.boost​.org/doc/
libs/1_71_0/libs/pytho​n/doc/html/index​.html Accessed 08 Oct 2019

	55.	 pybind11—Seamless operability between C++11 and Python. Pybind
project hosted by GitHub. https​://githu​b.com/pybin​d/pybin​d11.
Accessed 08 Oct 2019

	56.	 Landrum G. Introducing new RDKit JavaScript wrappers. RDKit blog.
http://rdkit​.blogs​pot.com/2019/11/intro​ducin​g-new-rdkit​-javas​cript​.html.
Accessed 27 Dec 2019

	57.	 IronPython. IronPython.net website. https​://ironp​ython​.net/. Accessed 14
Oct 2019

	58.	 Pirhadi S, Sunseri J, Koes DR (2016) Open source molecular modeling. J
Mol Graph Model 69:127–143

	59.	 Koens D. Open Source Molecular Modeling. Open Source Molecular
Modeling hosted by GitHub. https​://opens​ource​molec​ularm​odeli​
ng.githu​b.io/. Accessed 17 Dec 2019

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.rdkit.org/
https://www.rdkit.org/
https://github.com/rdkit/rdkit/blob/master/Code/Demos/RDKit/GettingStarted/sample.cpp
https://github.com/rdkit/rdkit/blob/master/Code/Demos/RDKit/GettingStarted/sample.cpp
http://www.netlib.org/blas/
https://www.nag.com/content/nag-library
https://www.nag.com/content/nag-library
http://www.netlib.org/lapack/
http://www.netlib.org/f2c/
http://www.netlib.org/f2c/
https://www.r-project.org/
https://www.r-project.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://xemistry.com/tooluniverse.shtml
https://xemistry.com/tooluniverse.shtml
http://openbabel.org/wiki/Main_Page
https://www.eyesopen.com/oechem-tk
https://www.eyesopen.com/oechem-tk
https://numpy.org/
https://www.scipy.org/
https://www.tensorflow.org/
https://www.ks.uiuc.edu/Research/vmd/
https://www.ks.uiuc.edu/Research/vmd/
https://pymol.org/2/
https://llvm.org/
https://llvm.org/
https://julialang.org/
https://julialang.org/
http://www.swig.org/
https://www.boost.org/doc/libs/1_71_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_71_0/libs/python/doc/html/index.html
https://github.com/pybind/pybind11
http://rdkit.blogspot.com/2019/11/introducing-new-rdkit-javascript.html
https://ironpython.net/
https://opensourcemolecularmodeling.github.io/
https://opensourcemolecularmodeling.github.io/

	The C++ programming language in cheminformatics and computational chemistry
	Abstract
	Introduction
	Brief history of C and C++
	C++: Basic language features
	C++ is primarily a compiled language
	C++ is imperative
	C++ is procedural
	C++ supports structured programming
	C++ has lexical variable scope
	C++ is statically typed, but not type-safe
	C++ has facilities for low-level memory manipulation
	C++ has deterministic memory allocation and de-allocation
	C++ is a high-level language with low-level functionality
	C++ has pre-processor, which adds some meta-programming capabilities to the language
	Hello, World in C

	C++: Object-oriented and generic programming
	Basic ideas
	An illustrative example of object-oriented and generic C++ code

	Interoperability between CC++ and other high-level languages
	Conclusion: C++ as a language for scientific software development
	Acknowledgements
	References

