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Abstract

Background: Metastasis via pelvic and/or para-aortic lymph nodes is a major risk factor for endometrial cancer.
Lymph-node resection ameliorates risk but is associated with significant co-morbidities. Incidence in patients with
stage I disease is 4–22% but no mechanism exists to accurately predict it. Therefore, national guidelines for primary
staging surgery include pelvic and para-aortic lymph node dissection for all patients whose tumor exceeds 2cm in
diameter. We sought to identify a robust molecular signature that can accurately classify risk of lymph node metastasis
in endometrial cancer patients. 86 tumors matched for age and race, and evenly distributed between lymph
node-positive and lymph node-negative cases, were selected as a training cohort. Genomic micro-RNA expression
was profiled for each sample to serve as the predictive feature matrix. An independent set of 28 tumor samples was
collected and similarly characterized to serve as a test cohort.

Results: A feature selection algorithm was designed for applications where the number of samples is far smaller than
the number of measured features per sample. A predictive miRNA expression signature was developed using this
algorithm, which was then used to predict the metastatic status of the independent test cohort. A weighted classifier,
using 18 micro-RNAs, achieved 100% accuracy on the training cohort. When applied to the testing cohort, the
classifier correctly predicted 90% of node-positive cases, and 80% of node-negative cases (FDR = 6.25%).

Conclusion: Results indicate that the evaluation of the quantitative sparse-feature classifier proposed here in clinical
trials may lead to significant improvement in the prediction of lymphatic metastases in endometrial cancer patients.
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Background
Endometrial cancer (adenocarcinoma of the uterine cor-
pus) is the most common malignancy unique to women.
It is estimated that in 2016, 60,500 women will develop
endometrial cancer and 10,470 will die of it [1]. A major
risk factor is metastasis via pelvic and/or para-aortic
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lymph nodes. For patients with cancer confined to the
uterus, the five-year recurrence-free survival is 93%. How-
ever, metastasis to pelvic lymph nodes and/or to aortic
lymph nodes decreases this to 57.8% and 41.2% respec-
tively [2]. In consequence, primary staging surgery for
endometrial cancer often consists of removal of the
uterus, ovaries, fallopian tubes, and pelvic and para-
aortic lymph node dissection. Morbidities associated
with lymph node dissection include increased opera-
tive times, increased blood loss, ileus, increased number
of thromboembolic events, lymphocyst formation, and
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major wound dehiscence, all of which adversely affect the
patients’ health and quality of life [3].
Incidence of pelvic and para-aortic node metastasis

in patients with stage I endometrial cancer varies from
4–22% depending on grade, depth of invasion, lymphovas-
cular space invasion, and histologic subtype [4]. Patients
harboring tumors less than 2 centimeters in diameter and
with less than 50% myometrial invasion are considered
to be at low risk for lymphatic metastasis [5]. In a key
clinical study, patients whose tumors violate these crite-
ria were recommended for lymphadenectomy. Yet, within
this high risk group, only 22% had lymph node metasta-
sis, suggesting that 78% of the lymphadenectomies were
unnecessary [5]. A more recent study [6] that separately
considered pelvic versus paraaortic lymph node invasion
showed little improvement in this statistic. It is therefore
clear that current best practice clinical-pathologic param-
eters are grossly insufficient for reasonable prediction of
metastatic disease [5].
To address this clinical need, efforts have been made to

develop molecular signatures for predicting lymph node
metastasis. An ideal classifier should consist of two parts:
a set of features that are highly predictive, and a numeri-
cal procedure for combining the measured values of these
features so as to make a binary prediction (yes or no)
about the metastatic risk of a patient. Most of the cur-
rent molecular signatures under consideration perform
the first step but not the second; that is, they contain a set
of key biomarkers, but do not apply a systematic method
for predicting the outcome on an independent testing
cohort. For example, absence of expression of the estro-
gen receptor (ER) and progesterone receptor (PR) genes,
the so-called double-negative situation, correlates with
increased risk of lymph node metastasis [7]. However, this
correlation does not appear to translate into a prognostic
test that can predict lymph node metastasis on a patient-
by-patient basis. Of note, levels of CA125 together with
three parameters obtained from radiological images are
sufficient to correctly identify low-risk patients. However,
about half of patients are incorrectly classified as at risk for
metastasis [8]. Finally, CA125 together with HE4 are posi-
tively correlated with tumor grade as well as risk of lymph
node metastasis, but again, this correlation has not been
translated into a prognostic classifier [9].
Machine learning is a discipline that combines engineer-

ing, statistics, and computer science that can potentially
be used to generate highly informative biomarkers auto-
matically from biological data sets. Most effective and
widely used machine learning methods, such as the sup-
port vector machine (SVM) [10], are specialized for appli-
cations where the number of samples is far larger than
the number of features per sample. However, a common
conundrum for medical research applications is that the
number of characterized patient samples is far smaller

than the number of molecular measurements (features)
per sample. Consequently, the application of machine
learning methods to translational medical research must
address two distinct but interwoven challenges: the selec-
tion of a handful of the most predictive features from a
very large initial set of features, and a method for com-
bining the measured values of these predictive features
into a numerical recipe for making predictions. Motivated
by this consideration, we have developed an algorithm
that is specifically tailored for such biological applications.
The �1-norm SVM formulated in [11] guarantees sparse
solutions, but in biological applications where the data is
highly correlated its prediction performance is poor and
the set of nonzero features is not stable when the data is
noisy. To overcome this limitation, the Elastic Net (EN)
algorithm was introduced in [12], which minimizes a con-
vex combination of the �1-norm and the square of the
�2-norm. It is shown in [12, Theorem 1] that the EN for-
mulation achieves the so-called “grouping effect,” whereby
highly correlated features are achieved near equal weight.
However, in a theoretical paper written by a subset of
the present authors [13], it is established that the EN
formulation is not suitable for compressed sensing; see
[13, Theorem 2.1]. To overcome these limitations, we take
a novel approach and use a convex combination of �1- and
�2-norms in our sparse classification algorithm.
In [13], it is established that our algorithm out-performs

both the �1-norm SVM and the Elastic Net. Robustness to
variations in experimental protocols is achieved by incor-
porating recursive feature elimination [14], and stability
selection [15].When applied to quantitative genome-scale
microRNA expression data from 86 clinically annotated
primary endometrial tumors, 18 micro-RNAs were recov-
ered that are sufficient to predict the risk of lymph node
metastasis within the training cohort. This biomarker
panel was tested on an independent cohort of 28 tumors,
and returned predictions with high sensitivity, low false
discovery rate, and P < 0.0004. The panel therefore
provides a path towards the development of a practical
molecular diagnostic to avoid unnecessary surgeries (and
their associated morbidities) in patients who are not at
risk currently about 78% of all lymph node resections for
endometrial cancer patients in the USA. This study is thus
a transdisciplinary combination of two distinct advances:
(i) a new algorithm for sparse feature selection in binary
classification problems, and (ii) its application to predict
the risk of metastasis in endometrial cancer.

Results
Selection of training cohort and generation of the
predictive feature matrix
We established strict inclusion and exclusion criteria for
this study in an effort to control for the known clinical fac-
tors associated with lymph node metastasis. Specifically,
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we excluded all non-endometrioid histologies as these
tumors are clinically and biologically distinct from the
more common endometrioid histologic subtypes and are
much more likely to show evidence of lymphatic spread.
We also excluded those tumors with gross evidence of
extra-uterine disease at the time of surgery, thus limit-
ing inclusion to clinical stage I tumor, as the presence of
gross pelvic or intra-abdominal tumor increases the like-
lihood of positive lymph node metastasis [3]. Fifty stage
I (1988 FIGO staging) and 50 stage IIIC frozen endome-
trial cancer samples were obtained from the Gynecologic
Oncology Group tumor bank according to the above cri-
teria. The samples were collected from patients enrolled
in GOG tissue acquisition protocol 210 which established
a repository of clinical specimens with detailed clini-
cal and epidemiologic data from patients with surgically
staged endometrial carcinoma. Samples were matched for
age, grade, presence of lymphvascular space invasion, and
where possible for race. All patients enrolled in GOG 210
have undergone comprehensive surgical staging consist-
ing of total abdominal hysterectomy, bilateral salpingo-
oophorectomy, pelvic and para-aortic lymphadenectomy.
All patients included in this study had no gross or patho-
logic evidence of extra-uterine disease aside from lymph
node metastasis and could therefore be considered clin-
ical stage I tumors. While more patients with stage IIIC
tumors had LVSI and deep myometrial invasion relative
to the stage I tumors, the majority of patients in both
groups had poor prognostic factors and would have been
included in the high-intermediate risk (HIR) subgroup set
forth in GOG protocol 99 [16]. Specifically, 65% the stage
I tumors and 81% of the stage IIIC tumors would be con-
sidered HIR (P = 0.5), highlighting the homogeneity of
the entire tumor set (Table 1). All tumors were subjected
to central pathologic review by the GOG.

Table 1 Clinical Parameters of the training cohort

Lymph node Lymph node
negative (n = 46) positive (n = 47)

Age ≤ 60 23 (50%) 19 (40%)

>60 23 (50%) 28 (60%)

Race AA 2 (4%) 3 (6%)

non-AA 44 (96%) 44 (94%)

Tumor Grade (n = 93) 1 8 (17%) 13 (28%)

2 14 (30%) 17 (36%)

3 24 (53%) 17 (36%)

LVSI (n = 92) Present 17 (38%) 37 (80%)

Absent 28 (62%) 9 (20%)

Myometrial Invasion Inner 1/2 23 (50%) 11 (25%)
(n = 90) Outer 1/2 23 (50%) 33 (75%)

Quantitative measurement of miRNA expression was
chosen for detection of putative predictive features. As a
family, miRNAs represent a relatively compact feature set
which is, never-the-less, profoundly integrated with cell
and tissue behavior [17–19]. Moreover, miRNA expres-
sion patterns have been identified that can predict benign
vs. malignant disease, histologic subtypes, survival, and
response to chemotherapy [20–22]. Two recent surveys
highlight the role of miRNAs in cancer in general [23] and
endometrial cancer in particular [24].
Total cellular miRNA was extracted from all tissues and

measured using LNA-based detection arrays (Additional
file 1: Table S1). 86 samples passed quality controls based
on RNA integrity and expression array performance.
Among the 1,428 available probe sets, 213 miRNAs were
detectable in all 86 samples (Additional file 1: Table S2).
An unsupervised two-way hierarchical clustering of the
resulting miRNA expression values within each subclass
revealed substantial expression variation between tumors,
with no qualitatively evident distinctions between sub-
classes (Fig. 1).

Generation of molecular signature for predicting lymph
nodemetastasis
In order to detect candidate quantitative microRNA fea-
ture sets within the primary tumors that may discriminate
between node positive and node negative disease, as well
as a numerical procedure for combining the measured
values of the features, we turned to machine learning pro-
tocols. When the number of features is larger than the
number of samples, which is typical for biological prob-
lems such as the one here, machine learning approaches
commonly encounter a phenomenon known as “over-
fitting,” wherein a classifier does an excellent job on the
training data, but has poor generalization abilities. To
overcome this problem, we developed a sparse classifica-
tion algorithm that uses a convex combination of �1- and
�2 norms as a regularization term in its objective function.
The traditional support vector machine (SVM), as

broadly applied to medical research, generates a clas-
sifier via a so-called discriminant function, which is a
weighted linear combination of the measured values of
the features, minus a threshold. If the discriminant value
associated with a particular sample is positive, the sam-
ple is assigned to the positive class (in our case, at
risk of metastasis), and is assigned to the negative class
otherwise (in our case, not at risk). The main drawback
of the traditional SVM is that in general the discrimi-
nant assigns a nonzero weight to all the features, which
is unacceptable when the number of features is large.
Therefore we replaced the Euclidean or �2-norm dis-
tance measure used in the traditional SVM algorithm by
a combination of the �2-norm and the so-called �1-norm,
which is the sum of the absolute values of a vector. The
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Fig. 1 Hierarchical clustering of training data. Unsupervised two-way hierarchical clustering of the 213 miRNA expression levels across the 86 tumor
samples. The 43 samples at left are lymph node-negative while the 43 samples at right are lymph node-positive. It is evident that there is no
discernible pattern in the clustering

use of �1-norm in the penalty function causes the clas-
sifier to be sparse, while the �2-norm causes correlated
features to be selected together providing robustness to
the method; see [13, Theorem 2.2]. To reduce the size
of the feature set still further, we applied recursive fea-
ture elimination (RFE) [14]. When RFE is applied with
the traditional SVM, the performance is often erratic,
and the algorithm must be iterated many times before a
satisfactory result can be obtained, if at all [14]. How-
ever, because the combined �1-and �2-norm SVM assigns
“exactly" zero weights to several features at once, RFE
together with the combined �1- and �2-norm SVM led to a
steady improvement in the fitting at each iteration. Finally,
to ensure that the chosen feature set is relatively insen-
sitive to noise, at each iteration of lone star we divided
the available samples into random training and cross-
validation sets, repeated this exercise many times till the
number of the selected features stabilizes. This approach
is known as “stability selection” [15]. The number of such
divisions is the only user defined parameter in lone star
and in practice we have observed that 80 iterations is
optimal, in the sense that increasing this number does
not lead to better performance. Furthermore, to avoid
over-fitting lone star compensates for it automatically by
increasing the number of iterations. The overall algorithm
is referred to in its full form as “�1-, �2-norm SVM t-
test and RFE,” or “lone star” for short. To facilitate its
use by the general community, a Matlab implementation
of the algorithm has been made freely available by the
authors at the following URL: http://sourceforge.net/
projects/lonestar/.
To detect discriminatory features that may predict

metastatic disease, 213 miRNA expression features

measured in 86 samples (43 lymph node-positive and 43
lymph node-negative) were used as the training data after
normalization (Additional file 1: Table S3). The applica-
tion of the lone star algorithm in the training data with 80
random cross validations at each iteration resulted in a set
of 18 features. Afterwards, to compute a unique classifier,
a single iteration of lone star is run with these 18 fea-
tures and the 20 best-performing classifiers giving the best
cross-validation error were computed (Additional file 1:
Table S4). To have a more robust classifier the weight vec-
tors and thresholds of these 20 classifiers were averaged to
arrive at the weight vector and threshold of the final clas-
sifier. Table 2 gives the details of the classifier, including
the 18 miRNAs, the weights assigned to their expression
levels, and the threshold. This classifier was applied to the
86 tumor training cohort, and it classified all 86 tumors
correctly. Figure 2 shows the values of the discriminant
function on the expression levels of all 86 tumors.

Biological significance of selected biomarkers
We next carried out an analysis of the various genes that
are regulated by the 18 miRNAs in the final feature set.
The results are shown in Table 3. We retrieved data from
the miRTarbase database, which comprises experimen-
tally validated micro-RNA to target gene interactions in
humans. A total of 740 genes were recovered, the vast
majority of which are associated with the micro-RNA
hsa-mir-155. A recent study suggests that hsa-mir-155
is over-expressed in endometrial cancer patients vis-a-
vis normal patients [25]. We next computed the average
expression value of each of the 18 miRNAS within the
43 node-positive samples as well as the 43 node-negative
samples to identify those with a statistically significant

http://sourceforge.net/projects/lonestar/
http://sourceforge.net/projects/lonestar/
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Table 2 Micro-RNA signature

Micro-RNA Weight

hsa-miR-3607-3p –2.43

hsa-miR-299-5p 2.01

hsa-miR-365 1.747

hsa-miR-513a-5p –2.4368

hsa-miR-29b-1* 2.2202

hsa-miR-340 –1.4319

hsa-miR-1284 1.8007

hsa_SNORD6 1.7312

hsa-miR-934 –2.223

hsa-miR-3182 1.8238

hsa-miR-1908 –1.1631

hsa-miR-155 –1.5283

hsa-miR-23c 1.3968

hsa-miR-451 –1.2663

hsa-miR-300 –1.4832

hsa-miR-223 1.0996

hsa-miR-150 –0.7774

hsa-miR-3613-3p 1.3349

Threshold –1.0025

differential representation between node positive versus
node negative tumors. This returned hsa-miR-340, hsa-
miR-451, hsa-miR-1284, has-miR-1908 and hsa-miR-223
(P < 0.05, student t-test). To prune the list of 740 miRNA
targets, we used two criteria: (i) A gene is targeted by

0 10 20 30 40 50 60 70 80 86
−8

−6

−4

−2

0

2

4

6

8

10

12

Samples

D
is

cr
im

in
an

t 
F

u
n

ct
io

n
 V

al
u

e

Lymph neg.
Lymph pos.

Fig. 2 Values of the discriminant function on the training cohort of 86
tumors. Negative values of the discriminant correspond to labelling
the tumor as node-negative, while positive values of the discriminant
correspond to labelling the tumor as node-positive. The 43
node-negative tumors are on the left side of the plot, and the 43 node-
positive tumors are on the right side of the plot. It can be seen that the
discriminant values of all node-negative tumors are negative, and
that the discriminant values of all node-positive tumors are positive.
Thus the classifier achieves 100% accuracy on the training cohort

Table 3 The list of 23 genes and associated cancer sites

Gene Associated cancer sites

BCL2 Colorectal cancer, Small cell lung cancer, Prostate cancer

MMP2 Bladder cancer

E2F1 Non-small cell lung cancer, Pancreatic cancer, Small cell
lung cancer, Prostate cancer, Bladder cancer

MMP9 Bladder cancer

AKT1 Endometrial cancer, Colorectal cancer, Acute myeloid
leukemia, Non-small cell lung cancer, Pancreatic cancer,
Small cell lung cancer, Prostate cancer

HSP90B1 Prostate cancer

CHUK Acutemyeloid leukemia, Pancreatic cancer, Small cell lung
cancer, Prostate cancer

IL6 Prostate cancer

NFIA

SCARB1

RHOB

LMO2

NFIX

STMN1

ARPP19

MIF

ABCB1

MEF2C

CAB39

RAB14

TMED7

UBE2H

MYB

more than one microRNA in the set of 18 features, or
(ii) A gene is targeted by one of the five differentially
expressed microRNAs. This reduced the number of genes
to 23. Note that out of the five differentially expressed
miRNAs only hsa-miR-223 and hsa-miR-451 have known
experimentally validated targets. The resulting networks
are shown in Figs. 3 and 4.
Next, we compared the list of 23 genes to the path-

ways in the KEGG database. Several cancer pathways were
examined, and for each pathway, the q-value of the gene
set was computed. The q-value is obtained from the Fisher
exact test after the Benjamini-Hochberg multiple testing
correction and quantifies the statistical significance of the
overlap between the gene list and a set of genes in a partic-
ular pathway. The complete list of pathways examined and
the associated q-values were computed (Additional file 1:
Table S10). Themost enriched pathways are Prostate Can-
cer, Small Cell Lung Cancer and Bladder Cancer with
q-values of 0.00074, 0.01048 and 0.01418 respectively.
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Fig. 3 The network of 740 genes regulated by the 18 micro-RNA
features. The micro-RNA with the vast majority of interactions, which
are all confirmed, is hsa-mir-155. Out of the 18 micro-RNAs, three are
differentially expressed across the two classes (lymph-positive and
lymph-negative) in the training cohort of 86 tumors. The genes
regulated by these three micro-RNAs are also shown in the figure

Classifier validation with an independent cohort
To rigorously test the classifier developed using the lone
star algorithm, an independent cohort of primary tumors
with known metastatic state was collected. This com-
prised 28 endometrial cancer samples obtained between

2010 and 2012 under an IRB approved Comprehen-
sive Gynecologic Oncology Tumor Repository protocol.
Patients were consented according to protocol and fresh
tumor was obtained in the operating room after the
uterus was excised from the patients and bivalved with
a scalpel. Tissue was flash frozen in liquid nitrogen and
stored at −80◦. The cohort included 19 corpus confined
endometrial cancers and 9metastatic endometrial cancers
(Additional file 1: Table S5). Eight cases in the latter group
demonstrated nodal metastasis while one (sample 198)
had metastatic disease involving the left fallopian tube.
Six sampled lymph nodes from this patient were negative
for metastatic disease. However, this patient developed
recurrent disease involving the left lung within six months
of completing adjuvant chemotherapy. Thus the surgeons
believe that this patient actually presented with metastatic
disease that was not detected.
MicroRNAs were extracted and measured using the

identical procedures as described for the training cohort
with the exception that the Exiqon version 6 arrays were
replaced by version 7 (Additional file 1: Table S9). For all of
the 28 samples the discriminant value is calculated using
the classifier obtained from the training data. The dis-
criminant values for each of the 28 samples are given in
the Additional file 1: Table S11 and plotted in Fig. 5. The

Fig. 4 The Set of 23 Key Genes and Their Controlling micro-RNAs. Genes in this figure satisfy one of two criteria: (i) The gene is targeted by more
than one micro-RNA in the set of 18 features, or (ii) the gene is targeted by one of the three differentially expressed micro-RNAs, which are the first
three, namely hsa-mir-223, hsa-mir-451, and hsa-mir-155
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Fig. 5 Values of the discriminant function on the independent cohort
of 28 tumors. Negative values of the discriminant correspond to
labelling the tumor as node-negative, while positive values of the
discriminant correspond to labelling the tumor as node-positive. The
19 node-negative tumors are on the left side of the plot, and it can be
seen that 15 out of 19 tumors have negative discriminant values and
are thus classified correctly. The 9 node-positive tumors are on the
right side of the plot, and it can be seen that 8 out of 9 tumors have
positive discriminant values and are thus classified correctly

left-most nineteen samples correspond to lymph node-
negative patients while the right-most nine samples are
lymph node-positive patients. A patient with a positive
discriminant value is predicted to be lymph positive, while
a patient with a negative discriminant value is predicted
to be lymph negative. Sample 198 is the right-most point
in each plot. It can be seen that the value of the discrimi-
nant function is very large for this sample. This reinforced
our suspicion that the clinical annotation of this sample
as lymph node-negative is erroneous and that in fact this
patient had metastatic disease.
The quality of the classification results were determined

with a 2 × 2 contingency table, and computing the like-
lihood of arriving at the classifications purely through
chance. P-values were computed using the Fisher exact
test [26] and the Barnard exact test [27] (Table 4). When
sample 198 was treated as being lymph node-positive, as
potentially justified by the fact that the patient subse-
quently developed recurrent disease within the left lung,
the P-value was 0.0004 with the Barnard exact test, and
0.0012 with the less powerful Fisher exact test. Even when
sample 198 was treated as lymph node-negative, and thus

Table 4 Contingency table of classifier performance on test
cohort

Actual/Classification Positive Negative Total Positive Negative Total

Node-Positive 8 1 9 7 2 9

Node-Negative 4 15 19 4 15 19

Total 12 16 28 11 17 28

Accuracy 0.8214 0.7857

Sensitivity 0.8889 0.7778

Specificity 0.7895 0.7895

False Discovery Rate 0.0625 0.1174

P-Value (Fisher) 0.0012 0.0104

P-Value (Barnard) 0.0004 0.0037

(The performance of the classifier on the 86 training cohort is not shown as it was
100%.) The left part of the table corresponds to sample #198 treated as
node-positive, while the right part of the table corresponds to sample #198 treated
as node-negative. When sample #198 is treate as node-positive, the classifier has
accuracy of 82.14%, with 23 out of 28 tumors being correctly classified; sensitivity of
88.89% with 8 out of 9 lymph-positive tumors being correctly classified; and
specificity of 78.95%, with 15 out of 19 lymph-negative tumors being correctly
classified. The P-value of obtaining these values purely by chance was computed
using the Fisher exact test at 0.0012 and as 0.0004 using the more powerful
Barnnard exact test. The corresponding figures with sample #198 treated as
node-negative are shown for comparison. It can be seen that even this case, all
P-values are far lower than the widely accepted threshold of 0.05

as having been missclassified by the classifier, the classi-
fication had a P-value of 0.0037 with the Barnard exact
test and 0.0107 with the Fisher exact test. In the other
direction, the false negative likelihood of this classifier
was 1/16 = 0.0625 when sample 198 is treated as node-
positive. In other words, among the 16 patients classified
as being not at risk for lymph node metastasis, only one
patient was actually at risk.

Discussion
Lone star as a sparse classification algorithm
The development of the support vector machine (SVM)
[10] was a major milestone in machine learning, because
the algorithm is very robust numerically, and can there-
fore handle very large datasets. The original SVM formu-
lation was for engineering problems, where it is relatively
easy to generate a large number of samples, as a result of
which the number of features is far smaller than the num-
ber of samples. However, it was recognized almost at once
that the standard SVM formulation had some weaknesses
when applied to biological datasets, where the situation
is the reverse. Specifically, the classifier produced by the
traditional SVM assigns a nonzero weight to every single
feature. When the number of features is larger than the
number of samples, this leads to a phenomenon known
as “over-fitting," wherein a classifier does an excellent job
on the training data, but has poor generalization abilities.
This phenomenon is also referred to as “memorization" of
the training data.
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To overcome this shortcoming, several approaches have
been proposed in the literature. The �1-norm SVM of [11]
suggests replacing the traditional �2-norm proposed in
[10] with the �1-norm, which is the sum of the absolute
values of the components of a vector. As shown in [11],
the �1-norm SVM is guaranteed to choose no more fea-
tures than the number of samples, no matter how large
the number of features happens to be. However, when
the number of samples is around a hundred, as in the
application studied in the present paper, even this number
is too large to be useful in practice. An entirely differ-
ent approach known as recursive feature elimination is
proposed in [14], in which a traditional (�2-norm) SVM
is trained, the feature with the smallest weight (in mag-
nitude) is dropped, and the algorithm is run anew. In
[14] the approach was applied to a leukemia data set,
and identified just two features as being sufficient. How-
ever, in general, the performance of the algorithm is
non-monotonic, meaning that the performance on train-
ing data tends to go up and down as more and more
features are dropped. For this reason, the recursive fea-
ture elimination step needs to be repeated many times
from different starting points. Another improvement in
machine learning is stability selection proposed in [15],
that suggests running an algorithm many times with dif-
ferent random partitionings of the available data into
training and testing datasets. Stability selection ensures
that the finally selected feature set is quite robust against
measurement noise. The lone star algorithm combines
the above-mentioned ideas in a self-contained package.
Specifically, the objective function minimized in the lone
star algorithm is a convex combination of the �1- and the
�2-norms. In this respect, the algorithm differs from both
the �2-norm SVM of [10] as well as the �1-norm SVN of
[11]; it also differs from the Elastic Net formulation of
[12]. In addition, the algorithm also incorporates differen-
tial weighting for false positive and false negatives [28] and
an optional t-test to filter the features when their initial
number is very large. Our new algorithm is therefore of
interest to the theoretical machine learning community.
While the above-mentioned ideas have been individu-

ally proposed in the machine learning literature, thus far
they have not been effectively combined into one algo-
rithm. The closest approach to the lone star algorithm is
the so-called SVM-T-RFE algorithm introduced in [29]. In
that algorithm, the authors use as their starting point the
SVM-RFE approach suggested in [14], and also compute
the t-test statistic to determine whether an individual gene
does, or does not, show a significant variation between
the two classes to be discriminated. Thus the SVM-T-RFE
algorithm in [29] still uses the traditional SVM formula-
tion based on Euclidean distances, which causes all genes
to be assigned positive weights in general. Then a new
figure of merit is computed for each gene, which is a

combination of its weight from the Euclidean norm-based
SVM output and the t-test statistic. The gene (or feature)
with the smallest of merit is discarded, and the process
is repeated. This is in contrast to the lone star algorithm,
wherein a combination of the �2- and the �1-norm dis-
tance measures is used, which causes most weights to
exactly equal zero. As a result, a large number of features
can be eliminated at each iteration, as opposed to one fea-
ture at a time in SVM-T-RFE. Consequently the lone star
algorithm converges far more quickly and is also more
numerically stable, compared to SVM-T-RFE and other
methods based on using Euclidean distance measures.

Application to endometrial cancer
The problem of assessing the risk of endometrial cancer
patients for lymph nodemetastasis has been the subject of
much study over the years. So far as we are able to deter-
mine, the present study is one of only two in which predic-
tive biomarkers were tested with an independent sample
cohort, the other being [30]. Validation on an indepen-
dent cohort is vital to determine whether the prediction
methodology is robust against unavoidable variations in
measurement platforms and experimental protocols. If a
prediction methodology is cross-validated on a common
cohort, all of the potential variations in data introduced by
platform-and protocol-dependencies are absent. This can
lead to misleadingly high performance that may or may
not be repeated with a genuinely independent data set.
The ultimate objective of a molecular signature for

endometrial cancer should be to identify patients who are
not at risk of lymph node metastasis, in such a way that
most patients who require lymphadenectomy receive it.
However, in every clinical test there is an associated false
negative rate and a good test should be able to make this
rate acceptably small, say around 5%. In the validation
analysis presented here, 8 out of the 9 surgically con-
firmed node positive patients were correctly identified.
In addition, 15 out of the 16 patients classified as not
requiring surgery were surgically confirmed node negative
patients. Thus the classifier achieved both desired objec-
tives within a significant confidence interval. Application
to much larger patient cohorts is anticipated to deter-
mine if appropriate receiver operator characteristics can
be achieved for clinical application as a diagnostic.

Conclusions
In this work, we have developed a novel sparse classifica-
tion algorithm and applied it to predict risk of lymph node
metastasis in endometrial cancer patients. The algorithm
produced a weighted classifier, using 18 micro-RNAs, and
achieved 100% accuracy on the training cohort. When
applied to an independent testing cohort, the classifier
correctly predicted 90% of node-positive cases, and 80%
of node-negative cases (FDR= 6.25%).
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The classifier developed in this study was based on
molecular measurements from excised tumors. If one
could predict the risk of lymph node metastasis on the
basis of a biopsy, then the decision to carry out lym-
phadenectomy or not could be made at the time of exci-
sion of the primary tumor. Therefore a useful next step
would be to repeat the present study on a cohort of biop-
sies. Pending the completion of such a study, it is worth
noting that a prediction of the risk of metastasis is valu-
able even if lymphadenectomy is not performed, as it can
inform choices for post-resection patient care.

Methods
Selection of specimens
Fifty stage I and 50 stage IIIC frozen endometri-
oid endometrial cancer samples were obtained from
the Gynecologic Oncology Group (GOG) tumor bank.
The samples were collected from patients enrolled in
GOG tissue acquisition protocol 210 which established
a repository of clinical specimens with detailed clini-
cal and epidemiologic data from patients with surgi-
cally staged endometrial carcinoma. All patients enrolled
in GOG 210 have undergone comprehensive surgi-
cal staging consisting of total abdominal hysterectomy,
bilateral salpingo-oophorectomy, pelvic and para-aortic
lymphadenectomy. While there was no mandated mini-
mum lymph node count for inclusion on GOG protocol
210, specific procedural requirements for pelvic and para-
aortic lymphadenectomy were stipulated which necessi-
tated removal of all lymphatic tissue from the relevant
lymphatic beds. Patients included in our study had no
gross or pathologic evidence of extra-uterine disease and
could be considered clinical stage I tumors. All tumors
have undergone central pathologic review by the GOG
and contain ≥ 75% tumor.

MicroRNA isolation and array analysis:
Once the tumor samples were collected, frozen tissue was
added to a chilled BioPulverizer H tube (Bio101, Irvine,
CA). Lysis buffer from the Ambion mirVana microRNA
isolation kit (Ambion, Austin TX) was added and the tis-
sue homogenized for two minutes in a Mini-Beadbeater
(Biospec Products, Bartlesville, OK). Tubes were spun
briey to pellet the garnet mixture and reduce foam.
The lysates were then transferred to a new 1.5 ml tube
using a syringe. MicroRNA was then extracted using
the Ambion mirVana microRNA isolation kit (Ambion,
Austin TX).

Array methods:
Total RNA samples were labeled with Hy3 using the Hi-
Power labeling kit (Exiqon) per the manufacturers pro-
tocol. miRCURY LNA microRNA Array Spike-in kit v2
(Exiqon) was used as a control for the labeling reaction

and to calibrate scanner settings. Briefly, 1.5 μg total RNA
in 3 μL,1 μL spike-in miRNA kit v2, 0.5 μL CIP buffer
and 0.5 μL CIP enzyme were mixed on ice and incu-
bated at 37◦ for 30 minutes. The RNA was then denatured
at 95◦ and then immediately placed on ice for at least 2
minutes. This reaction product was then mixed with 3
μL Hi-Power labeling buffer, 1.5 μL Hy3 uorescent label,
2 μL DMSO and 1 μL Hi-Power labeling enzyme for
a total of 12.5 μL, and then incubated for 2 hours at
16◦. Samples were subsequently hybridized to microarray
slides (Exiqon miRCURY LNA microRNA 6th generation
array) using a NimbleGen/MAUI 4-Bay hybridization sta-
tion per the manufacturers protocol. Briefly, the labeled
RNA was brought up to 25 μL volume and 25 μL of
hybridization buffer (Exiqon) was added. This solution
was then denatured at 95◦ and put on ice for at least
2 minutes. Microarray slides were placed in hybridiza-
tion chambers and pre-warmed to 56◦ for at least 5
minutes. A total of 45 μL of sample was added to the
microarray slide and hybridized for 16 hours at 56◦ in
the hybridization chamber. Slides were then washed once
for 2 minute at 56◦ in wash buffer A (Exiqon) and once
for 2 min at 23◦ in wash buffer B (Exiqon). Slides were
then washed for 2 minutes at 23◦ in wash buffer C
(Exiqon), washed briey in 99% ethanol, and then spun in
a centrifuge (1000 rpm) for 5 minutes to dry. Microarray
slides were scanned using the Tecan PowerScanner scan-
ning system. Spot quantification and statistical analysis
were performed using ImaGene 9 and Nexus Expression
2 software (BioDiscovery Inc.) using the Exiqon default
settings. Briefly, for quality control, correlation coeffi-
cients of spike-in controls across arrays were calculated,
and arrays with correlation coefficients less than 0.8 were
removed from the dataset; spot background subtraction
was done by subtracting the median local background
from the mean intensity of the spot, replicated probes
on each array were combined into one output value
using the median value, and normalized across all arrays
using quantile normalization. The data output was log 2
transformed.

Lone star algorithm:
Suppose we are given a set of labeled data here xi ∈ R

n

and yi ∈ {−1, 1} for i = 1, 2, · · · ,m. Therefore, n denotes
the number of features andm denotes the number of sam-
ples. The feature vector xi is viewed as a row vector. The
objective is to choose a subset of features F ⊆ {1, · · · , n},
a weight vector w ∈ R

n and a threshold θ ∈ R such that
(a) the discriminant function f (xi) = xiw − θ has the

same sign as yi for most indices i,
(b) wj = 0 for all j /∈ F , and (c) |F| � m.
In words, the discriminant function f is linear, and

the set of features used by the discriminant has smaller
cardinality than the number of samples. Define
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P = {i : yi = 1},N = {i ∈ yi = −1}.
and let m1 = |P|, m2 = |N |. The algorithm consists of
three parts, namely: an optional preprocessing step, an
iterative loop and a final classifier generation step. The
first step is the preprocessing, steps 2 through 4 are the
iterative loop, and step 5 is the final classifier generation.

1. Normalization of Feature Vectors: Normalize each
of the remaining feature vectors by subtracting the
mean over all m samples and then scaling so that the
resulting vector has Euclidean norm of one. The
resulting vector is just the set of Z-scores divided by√
m. Set the iteration counter to 1, the feature set F

to the set of significant features, the feature count s1
to |F|, the iteration count i to one, and proceed to
the iterative loop.

2. Stability Selection: Fix an integer l. Choose at
random k1 out of them1 positive samples and k2 out
of them2 negative samples as the “training" set of
samples. Repeat this random choice l times, so that
there are l different pairs of training samples: k1 from
the class P and k2 from the class N. Ensure that k1
and k2 are roughly equal and roughly equal to the
smaller ofm1/2,m2/2.

3. Combined �1- and �2-Norm SVM: For each pair of
k1, k2 training samples, solve the following �1-norm
support vector machine formulated in [11]:

min
w,θ ,y,z

(1 − λ)

⎡
⎣α

k1∑
j=1

yj + (1 − α)

k2∑
j=1

zj

⎤
⎦

+ λ

⎡
⎣γ

s∑
i=1

|wi| + (1 − γ )

( n∑
i=1

w2
i

)1/2
⎤
⎦ ,

subject to the constraints

wtxj−θ +yj ≥ 1, j ∈ P,wtxj−θ −zj ≤ −1, j ∈ N ,

y ≥ 0k1 , z ≥ 0k2 .
The parameter λ should be chosen “close to" zero but
not exactly zero. The parameter α should be chosen
as 0.5 if sensitivity and specificity are equally
important. To place more emphasis on sensitivity, α
should be chosen less than 0.5, while α should be
chosen to be greater than 0.5 to place more emphasis
on specificity. Finally the parameter γ adjusts the
relative weights given to the �1- and �2-norms. In
this study, we choose α = 0.5 and we used 2-fold
cross-validation for tuning γ = 0.5.

4. Recursive Feature Elimination (RFE): The
previous step results in l different optimal weight
vectors wi

1, · · · ,wi
l, where i is the iteration count.

Each weight vector will have a different number of
nonzero components. Compute the average number
of nonzero components, and round upwards to the

next integer. Denote this integer as ri. Compute the
average of all l weight vectors. Retain the ri
components with the largest magnitude and discard
the rest. Increment the iteration counter i, set
si+1 = ri, and proceed to Step 3. If Ri = si, meaning
that no features can be discarded, the iterative step is
complete. Proceed to the next step.

5. Final Classifier Generation:When this step is
reached, the set of features is finalized. Run the
�1-norm SVM on l different randomly chosen pairs
of (k1, k2) training samples to generate l different
classifiers and evaluate the performance of each of
the l classifiers on the remaining (m1 − k1,m2 − k2)
samples. Determine the accuracy, sensitivity, and
specificity of each of the l classifiers. Average the
weights and thresholds of the best-performing
classifiers to generate an overall classifier.

Additional file

Additional file 1: List and description of supplemental tables. Table S1.
This table contains the measurements of 1428 micro-RNAs for 94 Samples.
The rows correspond to the features (miRNA) and the columns correspond
to the samples. The samples consist of 47 lymph node-positive and 47
lymph node-negative samples. 43.75% of the entries in this sheet are NaN.
It contains measurements for 213 miRNAs of 86 samples. Out of those 86
samples, 43 are lymph node-positive, and the remaining 43 are lymph
node-negative. A sample whose label has the term IB or IC belongs to a
lymph node-negative patient, whereas a sample with a label containing
IIIC belong to a lymph node-positive patient. A lymph node-positive or
neagtive status was defined empiracally during pimary staging. Table S2.
This table contains a subset of the raw data, used for training the classifier.
This data was obtained by removing four patients from each class, and
1,215 features. It contains measurements for 213 miRNAs of 86 samples.
Out of those 86 samples, 43 are lymph node-positive, and the remaining
43 are lymph node-negative. Table S3. This table contains the normalized
version of the training data. The following procedure is used for
normalization: 1) From each entry of the i-th row vector (i-th feature vector),
we subtract the mean valuemi of the i-th row vector computed over all the
86 samples. 2) Multiply each entry of the i-th row vector by a scale factor si
so that the resulting vector has euclidean norm equal to the square root of
86. Table S4. The lone star algorithm selected 18 final features. This sheet
contains the 20 best classifiers based on these eightteen features, sorted
with respect to accuracy. The sensitivity, specificity and accuracy figures
(columns T, U and V) are based on the classification of the 86 samples in
the training data by the corresponding classifier.Table S5. This table shows
the classifier obtained by taking the average of the classifiers in Sheet 4. In
particular, we average the numbers in each column of the 20 classifiers
given in Sheet 4 (20 best classifiers) (Columns A-S). Table S6. This sheet
contains clinical information about the independent cohort of 28 patients
who were used to validate the classifier. Out of these, 9 are lymph-node
positive and 19 are lymph node-negative. Table S7. This sheet contains
the raw microRNA measurements on the 28 test data samples. Table S8.
This is the transformed version of the test data. We apply the same
transformation as w did for the training data, as described on Sheet 3. For
each of the 18 features (miRNAs), we subtract the original mean valuemi
from each entry and multiply each entry by the constant si . The calculation
ofmi and si is as in Additional file 1, Table S3. Table S9. This sheet contains
the discriminant values of the classifier on the Test Data. In column D an
entry of 1 means that the sample is correctly classified. Table 10. This sheet
contains the number of overlaps between our 23 gene signature with the
pathways in the KEGG database. The q-value is obtained from the Fisher

http://dx.doi.org/10.1186/s12864-017-3604-y
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exact test after the Benjamini-Hochberg multiple testing correction and
quantifies the statistical significance of the overlap between the gene list
and a set of genes in a particular pathway. (1170 KB XLSX)
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