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Abstract: Airway wall thickening (AWT) plays an important pathophysiological role in airway
diseases such as chronic obstructive pulmonary disease (COPD). There are only a few studies
on the genetic components contributing to AWT in the Korean population. This study aimed to
identify AWT-related single-nucleotide polymorphisms (SNPs) using a genome-wide association
study (GWAS). We performed GWAS for AWT using the CODA and KUCOPD cohorts. Thereafter, a
meta-analysis was performed. Airway wall thickness was measured using automatic segmentation
software. The AWT at an internal perimeter of 10 mm (AWT-Pi10) was calculated by the square
root of the theoretical airway wall area using the full-width-half-maximum method. We identified a
significant SNP (rs11648772, p = 1.41 × 10−8) located in LINC02127, near SALL1. This gene is involved
in the inhibition of epithelial–mesenchymal transition in glial cells, and it affects bronchial wall
depression in COPD patients. Additionally, we identified other SNPs (rs11970854, p = 1.92 × 10−6;
rs16920168, p = 5.29 × 10−6) involved in airway inflammation and proliferation and found that AWT
is influenced by these genetic variants. Our study helps identify the genetic cause of COPD in an
Asian population and provides a potential basis for treatment.

Keywords: airway wall thickening; chronic obstructive pulmonary disease; genetic variants; genome-
wide association study; single-nucleotide polymorphism

1. Introduction

Chronic obstructive pulmonary disease (COPD) is one of the most common lung
diseases worldwide and is characterized by airflow obstruction that is not fully reversible
with treatment [1]. Small airway diseases and parenchymal destruction play a role in the
pathogenesis of COPD at different rates over time, resulting in chronic airflow limitation.
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These pathologies do not always occur simultaneously, and their contribution to the devel-
opment of COPD differs between individuals [2]. Airway remodeling in asthma and COPD
results in airway wall thickening (AWT), which affects lung function. AWT is associated
with chronic mucus hypersecretion in larger airways and airway obstruction in smaller
airways [3]. The pathological process underlying AWT is chronic inflammation and remod-
eling of the airway wall by external factors, such as dust [3]. However, there are no certain
genetic factors known to influence airway inflammation. Understanding the underlying
genetic mechanisms will help develop novel diagnostic techniques and treatment strategies.
Many improvements have been made in the quantification of the airway phenotype using
computed tomography (CT) quantification methods. We attempted to measure airway wall
thickness more objectively using image scanner technology and the associated software.

AWT plays an important pathophysiological role in airway disease [4]. COPD patients
with chronic bronchitis have thicker airway walls than COPD patients without chronic
bronchitis [5]; AWT plays a major role in COPD, and COPD-associated genes are also asso-
ciated with AWT [6]. Moreover, two single-nucleotide polymorphisms (SNPs) associated
with AWT were identified in male participants from Groningen and Utrecht [3].

However, few studies have explored the genetic mechanism underlying AWT using
genome-wide association studies (GWAS) [7]. Therefore, we aimed to identify SNPs
associated with AWT through GWAS. This study may enable the identification of genetic
mechanisms that aid in understanding the development of AWT.

2. Materials and Methods
2.1. Study Population

Study participants were chosen from two cohorts: 500 subjects (324 COPD patients and
176 controls) from the COPD in dusty areas (CODA) cohort [8] and 474 subjects (235 COPD
patients and 239 matched controls) from the KoGES-Ansan cohort [9,10]. Written informed
consent was obtained from all the participants. This study was approved by the Kangwon
National University Hospital IRB (KNUH 2012–06-007, clinical trial registration number
KCT-0000552) and the Korea University Ansan Hospital IRB (2017AS0070).

2.2. Spirometry and Imaging Procedures

Lung function was measured before and after administering 400 µg of salbutamol
using EasyOne (NDD, Zurich, Switzerland). The pulmonary function measures were
calculated according to the American Thoracic Society and European Respiratory Society
guidelines [11]. CT was performed at maximal inspiration and expiration in the supine posi-
tion using a dual-source CT scanner (Somatom Definition, Siemens Healthcare, Forchheim,
Germany for the CODA cohort; Brilliance 64, Philips Healthcare, Cleveland, OH, USA for
the KUCOPD cohort). Airways were measured using automatic segmentation software
(Aview, Coreline Soft, Seoul, Korea). The AWT at an internal perimeter of 10 mm (AWT-
Pi10) was calculated by plotting the square root of the airway wall area against the internal
perimeter of each measured airway using the full-width-half-maximum (FWHM) method.

2.3. Genotyping and Quality Controls

Genomic DNA was isolated from blood samples. Genotypes were created using
the Axiom™ Precision Medicine Research Array, which contains more than 860,000 SNPs.
Quality control of the SNPs was performed using PLINK [12] and ONETOOL [13]. SNPs
were excluded based on the following exclusion criteria: genotype call rate < 95% and the
Hardy-Weinberg equilibrium (HWE) test [14], where p < 1 × 10−5. Subjects were excluded
if 0.2 < X chromosome homozygosity < 0.8, genotype call rate < 95%, or heterozygosity
rates of SNPs were outside the average heterozygosity rate ± 3 standard deviation (SD).
Following the quality control processes, 433 and 387 subjects and 768,913 and 775,371 SNPs
were included in the CODA and KUCOPD cohorts, respectively (Figure 1).
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Figure 1. Workflow of quality control for CODA and KUCOPD data. Several standard quality
control steps were produced for CODA and KUCOPD data to exclude outlier single-nucleotide
polymorphisms (SNPs) and subjects.

2.4. Genotype Imputation of SNP Genotype Data

The imputation was conducted using the Michigan imputation server (https://im
putationserver.sph.umich.edu, accessed on 20 May 2020) for the CODA and KUCOPD
data. We used Haplotype Reference Consortium release v1.1 as a reference panel and
considered only ‘not European’ or ‘mixed’ populations [15]. Pre-phasing and imputation
were conducted using Eagle V 2.4 and Minimac4, respectively [16,17]. After the impu-
tation processes, the following imputed SNPs were removed: SNPs with Rsq less than
0.3; with duplications; missing genotype rates larger than 0.05; p values for HWE less
than 1 × 10−5; and minor allele frequencies (MAFs) less than 0.05. Additionally, subjects
with identity-by-descent > 0.9 and principal component score outside the 5 × IQRPC were
excluded. A total of 433 and 387 subjects and 4,941,935 and 4,956,071 SNPs were used for
our analyses (Figure 1).

2.5. Meta-Analysis of GWAS

GWAS for AWT was applied to CODA and KUCOPD data using linear regression.
Airway wall thickness was used as a response variable, and ten PC scores, estimated using
PLINK adjusted for population structure, age, and sex, were included as covariates. A

https://imputationserver.sph.umich.edu
https://imputationserver.sph.umich.edu


Genes 2022, 13, 1258 4 of 10

meta-analysis of both datasets was performed using METAL program. The sample size of
each dataset was used as the weight [18]. The genome-wide significance level was set at
α = 5 × 10−8.

2.6. RNA Expression Association Test

GSE18965 from the GEO database was used to detect significant associations between
AWT and the RNA expression of genes identified from the meta-analysis [19]. RNA
expression in the airway epithelial cells of nine patients with asthma and seven healthy
non-atopic controls was evaluated using the Affymetrix Human Genome U133A Array.
The ‘limma’ and ‘balli’ tools of the R package [20,21] were used to detect the differentially
expressed genes.

3. Results
3.1. Subject Characteristics

The demographic properties of the CODA data of 433 subjects and the KUCOPD
data of 387 subjects are presented in Table 1. There were significant differences in age,
height, weight, and BMI between the CODA and KUCOPD data. Subjects from the CODA
data group were much older, shorter, and heavier than those included in the KUCOPD
data group. Lung function is indicated by the predicted forced expiratory volume in 1 s
measured without a bronchodilator (FEV1.Pred.pre-BD, %); this was lower in the CODA
data (83.9 ± 22.7) than in the KUCOPD data (101.7 ± 17.0). Additionally, forced expiratory
volume in 1 s divided by forced vital capacity (FEV1/FVC) was lower in the CODA data
(65.1 ± 11.5) than in the KUCOPD data (71.2 ± 8.7). There were no significant differences
in the level of smoking. In conclusion, there were significant differences in age, physique,
and pulmonary functions between both CODA data and the KUCOPD data.

Table 1. Descriptive statistics.

Variable CODA Cohort
(n = 433)

KUCOPD Cohort
(n = 387)

Total
(n = 820) p Value

Female sex, n (%) 118 (27.3%) 96 (24.8%) 214 (26.1%) 0.4737
Age 72.0 ± 7.1 63.0 ± 7.6 67.7 ± 8.6 <0.001

Height 159.3 ± 9.3 164.1 ± 7.7 161.5 ± 8.9 <0.001
Weight 59.9 ± 10.2 65.7 ± 9.5 62.7 ± 10.3 <0.001

BMI 23.6 ± 3.2 24.4 ± 2.9 24.0 ± 3.1 <0.001
Pack-Year 17.3 ± 22.9 16.6 ± 20.3 17.0 ± 21.7 0.8058

Smoking, n (%) 0.4748
Never 156 (36.2%) 152 (39.4%) 308 (37.7%)

Former 179 (41.5%) 160 (41.5%) 339 (41.5%)
Current 96 (22.3%) 74 (19.2%) 170 (20.8%)

FEV1. Pred. pre-BD (%) 83.9 ± 22.7 101.7 ± 17.0 92.0 ± 22.1 <0.001
FEV/FVC (%) 65.1 ± 11.5 71.2 ± 8.7 67.9 ± 10.7 <0.001
COPD, n (%) 278 (64.2%) 194 (50.1%) 472 (57.6%) <0.001

FWHM_AWT_P10_WL 4.7 ± 0.4 4.4 ± 0.2 4.5 ± 0.3 <0.001
Mean ± standard deviation (SD) values are shown in each cell. BMI: body mass index; EI: emphysema index;
FEV1: forced expiratory volume in one second; BD: bronchodilator; FVC: forced vital capacity;
FWHM_AWT_P10_WL: AWT-Pi10 (mm) in the whole lung by full-width-half-maximum methods.

3.2. GWAS of Airway Wall Thickness

We performed GWAS with linear regression for the CODA and KUCOPD data. A
multi-dimensional scaling plot based on our dataset and the 1000 genome datasets was
generated; no evidence of population stratification was found for both the CODA and
KUCOPD data (Supplementary Figure S1). However, both CODA and KUCOPD data
were case-control data, and the population stratification was expected to be the main
confounder for genetic analyses. Ten PC scores were utilized as covariates to adjust this
problem. Quantile-quantile plots for GWAS with CODA data, KUCOPD data, and their
meta-analyses are shown in Supplementary Figure S2. There was no genomic inflation, as
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indicated by the genomic inflation factors (ΛCODA = 1.00, ΛKUCOPD = 0.99, Λmeta = 1.00).
In Supplementary Figure S3, the top Manhattan plot indicated a genetically significant
locus (rs4491106, β = 0.1503, p = 1.58 × 10−8) in the linear regression of CODA data.
However, there were no significant SNPs in the linear regression of KUCOPD data (bottom
Manhattan plot). For meta-analysis, rs11648772, located on chromosome 16 in LINC02127
and Spalt-like transcription factor 1 (SALL1), met the genome-wide significance level
(p = 1.41 × 10−8) (Figure 2). Table 2 shows the results for the most significant ten SNPs by
meta-analysis. The MAFs of the ten SNPs were compared with those of the SNPs in the
Korean reference (Kref) dataset. When there were several genome-wide significant SNPs
in the same LD block, only the most significant SNP was included. Figure 3 shows the
forest plot for the top ten SNPs in Table 2. In particular, rs11648772, which is located near
rs147153117, has been shown to be associated with post-bronchodilator and FEV1/FVC
ratio [22]. In summary, we found rs11648772 located near the SALL1 gene is genetically
correlated with airway wall thickness in a meta-analysis using CODA and KUCOPD data.
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Figure 2. Meta-analysis results. (a) Manhattan plot of p values from the genome-wide association
study (GWAS). One region on chromosome 16 met genome-wide significance (p < 5 × 10−8) according
to the meta-analysis of CODA and KUCOPD data. (b) The expanded Manhattan plot of the 800 kb
region shows both genotyped and imputed single-nucleotide polymorphisms (SNPs). rs11648722,
the most significant SNP, is indicated by the purple diamond, and other SNPs are coloured according
to their r2 values in relation to that of rs11648722. LOC101927334 (LINC02127) and SALL1 are the
closest located genes.
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Table 2. Meta-analysis results.

Chr BP SNP MAFKRef Effect SE p Value Alt
/Ref

CODA Cohort KUCOPD Cohort Gene

p Value MAF HWE p Value MAF HWE

16 51065076 rs11648772 0.19 −0.08 0.01 1.41 × 10−8 G/T 0.0240 0.24 0.6950 2.87 × 10−7 0.25 0.4168 LINC02127

16 9109561 rs12931044 0.13 0.09 0.02 9.22 × 10−7 A/G 0.2466 0.13 1.0000 1.05 × 10−6 0.13 0.5096 USP7 (dist = 52,220),
C16orf72 (dist = 75,976)

7 139176178 rs11970854 0.45 0.06 0.01 1.92 × 10−6 T/C 0.0012 0.47 0.9235 3.35 × 10−4 0.49 0.9190 KLRG2 (dist = 7721),
CLEC2L (dist = 32,496)

15 97215196 rs4383104 0.10 0.09 0.02 3.02 × 10−6 G/A 0.0006 0.12 0.2442 8.28 × 10−4 0.09 0.3565 NR2F2 (dist = 331,704),
SPATA8-AS1 (dist = 100,039)

4 113212158 rs150827063 0.10 0.11 0.02 3.15 × 10−6 A/G 0.7282 0.09 0.7667 2.07 × 10−7 0.07 0.7092 TIFA (dist = 5099),
ALPK1 (dist = 6341)

3 87115233 rs56694856 0.14 0.08 0.02 4.45 × 10−6 T/C 0.0015 0.15 0.5605 5.12 × 10−4 0.17 0.5816 VGLL3 (dist = 74,960),
LINC00506 (dist = 23,197)

8 56895276 rs16920168 0.10 0.09 0.02 5.29 × 10−6 T/C 0.0127 0.10 0.2902 1.58 × 10−4 0.09 0.3644 LYN

10 107851568 rs673353 0.33 −0.06 0.01 5.68 × 10−6 G/T 0.8980 0.33 0.8277 6.05 × 10−7 0.33 0.2038 LOC101927549 (dist = 271,477),
LOC105378470 (dist = 48,355)

21 45757631 rs56242109 0.13 −0.09 0.02 6.27 × 10−6 A/G 0.0687 0.12 0.5001 3.77 × 10−5 0.12 0.0962 C21orf2

9 21359818 rs140373339 0.03 0.11 0.03 6.41 × 10−6 A/C 0.0220 0.06 0.6320 1.18 × 10−4 0.06 0.1563 IFNA6 (dist = 8932),
IFNA13 (dist = 7553)

Chr: chromosome; BP: base pair; SNP: single-nucleotide polymorphism; SE: standard error; MAF: minor allele frequencies; HWE: Hardy-Weinberg equilibrium; KRef: Korean reference
data used in this study were provided by the CODA (http://coda.nih.go.kr, accessed on 31 May 2020). CODA accession numbers R002754, R002755, R002774, R002814 and R002854.

http://coda.nih.go.kr
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3.3. Analysis of Differentially Expressed Genes

To assess the differentially expressed genes associated with AWT, we evaluated
six genes (SALL1, CYLD, NOD2, BRD7, ADCY7, and HEATR3) located near rs11648772,
using the GSE18965 dataset from the GEO database. SALL1 gene expression was upreg-
ulated in patients with asthma (βlimma = 0.12, plimma = 0.0173, βballi = 0.12, pballi = 0.0092)
(Table 3). In short, we confirmed that the expression of the SALL1 gene, the closest gene to
the rs11648772, had a positive association with airway wall thickness in asthmatic patients.

Table 3. Differentially expressed genes analysis from GSE18965.

Gene Chr BP
Coefficient p Value

limma balli limma balli

SALL1 16 51,169,886–51,185,278 0.12 0.12 0.0173 0.0092
CYLD 16 50,775,961–50,835,846 0.02 0.84 0.8502 0.9079
NOD2 16 50,727,514–50,766,988 0.03 0.64 0.6576 0.7697
BRD7 16 50,347,398–50,402,845 0.01 0.93 0.9312 0.9609

ADCY7 16 50,280,048–50,352,046 −0.01 0.93 0.9764 0.9864
HEATR3 16 50,099,852–50,140,298 0.11 0.33 0.3587 0.5156

Chr: chromosome; BP: base pair.

4. Discussion

In this study, we identified SNPs associated with AWT using genotype and CT data
meta-analysis from two Korean cohorts. The most significantly associated SNP was
rs11648772, located in LINC02127 and SALL1. SALL1 was the nearest gene to rs11648772,
and its RNA expression was associated with airway wall thickness in asthmatic patients
with atopic dermatitis.

Previous studies have assessed airway dimensions, such as lumen area or diameter,
or Pi10 with different airway sampling methods, in particular chest CT, in relation to
airflow limitation, respiratory symptoms, and emphysema [3]. The high resolution and
marked natural contrast between air and normal lung parenchyma enable quantitative
measurements using dedicated software. The combination of quantitative parameters
offered by these tools enables better analysis of COPD phenotypes and prediction of
outcomes. Therefore, in addition to diagnosis, these quantitative measurements allow
for the staging of disease severity and phenotyping of patients [23]. In chest CT scan
phenotypes, the estimated heritability of both FEV1 and FEV1/FVC is close to 25%, while
the heritability of COPD status was estimated to be 37.7% in non-Hispanic whites and
African Americans [24].

Identifying SNPs associated with the AWT phenotype through GWAS will enable the
discovery of airway disease-related genes. Therefore, we used FWHM to detect SNPs asso-
ciated with AWT and found that rs11648772 was the most significant in the meta-analysis.
rs11648772 is located in the LINC02127 and SALL1 genes. SALL1, the nearest target gene
to rs11648772, encodes a zinc finger transcriptional repressor, which functions in the nu-
cleosome remodeling deacetylase histone deacetylase complex. Asthmatic epithelial cells
in children secrete less fibronectin, an important contributor to the dysregulated airway
epithelial cell repair. Fibronectin is an essential component of the provisional extracellular
matrix because it provides a surface for epithelial migration and proliferation. Impaired
fibronectin expression contributes to the abnormal epithelial repair seen in asthmatic air-
ways [19]. SALL1 inhibits cell migration by preventing epithelial–mesenchymal transition
(EMT) and downregulating the expression of stem cell markers [25]. Furthermore, it acts as
a tumor suppressor by inhibiting Wnt/β-catenin signaling [25]. Recently, the role of EMT in
airway remodeling was established [26]. In COPD, the airway epithelium may be damaged
and/or activated by irritants, such as the constituents of cigarette smoke, stimulating the
deposition of collagen from myofibroblasts in the lamina propria [27]. SALL1 influences
EMT inhibition in glial cells, and it could affect bronchial wall depressions in asthmatic
patients. Therefore, we hypothesize that SALL1 is associated with the EMT pathway and
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inhibition of cell proliferation in the bronchial airway. However, further studies on SALL1
expression in patients with bronchial damage are essential to elucidate its role in bronchial
epithelial cells, and the genetic functions of rs11648772 need further analysis.

In addition to SALL1, rs11970854 and rs16920168 were involved in airway inflamma-
tion and proliferation; rs11970854 is located near KLRG2 (dist = 7,721) on chromosome 7,
and rs16920168 is located in the LYN of chromosome 1. KLRG2 is associated with the inflam-
matory Innate counterpart of type 2 helper T cells (ILC2s); it expresses GATA3, a key tran-
scription factor of ILC2 [28]. Increased ILC2 levels cause pathogenic chronic inflammation
and/or alterations in the structure, repair, and developmental processes of the lung [29].
LYN downregulates allergen-induced airway inflammation, and its overexpression de-
creases mucus secretion and MUC5AC transcription in mice exposed to allergens [30].

In a cohort recruited from the Dutch NELSON, novel AWT-associated SNPs rs10794108
and rs7078439 on the C10ORF90 and DOCK1 loci were identified. These SNPs were not
significant in the meta-analysis and KUCOPD data; however, in CODA data, rs10794108
was replicated with p = 0.04352 in the linear regression. We also found a significant SNP
(rs4492106) located on chromosome 5 in the CODA data group.

This study has some limitations. We could not identify the SNPs reported in a previous
study based on the European population. This could be attributed to ethnic differences.
Although our analysis was conducted in two independent groups, the small sample size
could decrease the statistical power. Therefore, further studies with larger population sizes
are needed.

To conclude, we identified SNPs associated with the AWT phenotype, which could
influence the pathogenesis of airway diseases and provide a potential basis for treatment in
Asian populations.
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