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Comprehensive analyses
identify RIPOR2 as a genomic
instability-associated immune
prognostic biomarker in
cervical cancer

Fangfang Xu1†, Chang Zou1†, Yueqing Gao1†, Jiacheng Shen1,
Tingwei Liu1, Qizhi He2*, Shuangdi Li1* and Shaohua Xu1*

1Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine,
Tongji University, Shanghai, China, 2Department of Pathology, Shanghai First Maternity and Infant
Hospital, School of Medicine, Tongji University, Shanghai, China
Cervical cancer (CC) is a malignancy that tends to have a poor prognosis when

detected at an advanced stage; however, there are few studies on the early

detection of CC at the genetic level. The tumor microenvironment (TME) and

genomic instability (GI) greatly affect the survival of tumor patients via effects

on carcinogenesis, tumor growth, and resistance. It is necessary to identify

biomarkers simultaneously correlated with components of the TME and with

GI, as these could predict the survival of patients and the efficacy of

immunotherapy. In this study, we extracted somatic mutational data and

transcriptome information of CC cases from The Cancer Genome Atlas, and

the GSE44001 dataset from the Gene Expression Omnibus database was

downloaded for external verification. Stromal components differed most

between genomic unstable and genomic stable groups. Differentially

expressed genes were screened out on the basis of GI and StromalScore,

using somatic mutation information and ESTIMATE methods. We obtained the

intersection of GI- and StromalScore-related genes and used them to establish

a four-gene signature comprising RIPOR2, CCL22, PAMR1, and FBN1 for

prognostic prediction. We described immunogenomic characteristics using

this risk model, with methods including CIBERSORT, gene set enrichment

analysis (GSEA), and single-sample GSEA. We further explored the protective

factor RIPOR2, which has a close relationship with ImmuneScore. A series of in

vitro experiments, including immunohistochemistry, immunofluorescence,

quantitative reverse transcription PCR, transwell assay, CCK8 assay, EdU

assay, cell cycle detection, colony formation assay, and Western blotting

were performed to validate RIPOR2 as an anti-tumor signature. Combined

with integrative bioinformatic analyses, these experiments showed a strong

relationship between RIPOR2 with tumor mutation burden, expression of

genes related to DNA damage response (especially PARP1), TME-related

scores, activation of immune checkpoint activation, and efficacy of

immunotherapy. To summarize, RIPOR2 was successfully identified through

comprehensive analyses of the TME and GI as a potential biomarker for
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forecasting the prognosis and immunotherapy response, which could guide

clinical strategies for the treatment of CC patients.
KEYWORDS

RIPOR2, cervical cancer, genomic instability, tumor microenvironment,
prognostic model
Introduction

Cervical cancer (CC) is the fourth deadliest malignancy in

women worldwide. In 2018, there were about 569,000 confirmed

cases of CC and about 311,000 deaths worldwide (1).

Approximate ly 85% of deaths from CC occur in

underdeveloped countries and areas (2), with the highest

mortality rates found in parts of America and sub-Saharan

Africa (3).

In addition to the high morbidity and poor prognosis of CC,

the refractoriness of the disease tends to increase with the stage

of tumor development at diagnosis. Around two-thirds of this

population have developed locally advanced cervical cancer by

the time anti-tumor treatment is initiated. Even when these type

of CC patients are operated with proper multidisciplinary

treatment, they still always receive low survival rates. The 3-

year local control rates for patients diagnosed with early-stage

and advanced CC are 87%–95% and 74%–85%, respectively

(4, 5).

Genomic instability (GI) has long been considered a

contributing factor to tumorigenesis and acquisition of

resistance to therapy. On the one hand, GI is a “facilitating

characteristic” of various tumor types and encourages the

expression of hallmarks (6). Simultaneously, tumor patients

with higher levels of GI potentially present more immunogens

compared with those with a lower genetic burden (7). Therefore,

GI may have potential applications both as a prognostic marker

in cancer and as a source of novel drug targets. Moreover, GI

may be associated with the tumor microenvironment (TME).

Distinguishing features of the TME include vascular

abnormalities, hypoxia, and cell constituents including cancer

cells, immune-related cells (such as T cells, dendritic cells, and

fibroblasts), as well as extracellular matrix and blood vessels (8).

The TME can downregulate GI by suppressing processes related

to the DNA damage response (DDR) (9). Hypoxia plays an

essential part in this process by repressing c-MYC, which

accelerates proliferation-related transcription of mismatch

repair (MMR) promoters Mlh1 and Mlh2, thereby indirectly

downregulating the expression of Mlh1 and Mlh2 (10). The rate

of binding of suppressive transcriptional factors MNT and

MAD1 to promoters of Mlh1 and Mlh2 also increases to
02
inhibit the expression of MMR genes. Hypoxia also

participates in the activation of the BRCA1 and RAD51 genes

(11, 12), which can further increase GI.

In this study, we observed significant differences in the

proportions of stromal-cell components, as calculated by the

ESTIMATE algorithm, between patient groups with large

differences in the number of mutations. We established a four-

gene prognostic prediction model by least absolute shrinkage

and selection operator (12) Cox analysis, based on the

intersection of StromalScore-related and GI-related genes

(GIRGs). Combined with multiple prognostic factors, this

comprehensive predictor was validated as robust and effective

in the external dataset GSE44001. After successfully constructing

and validating the prognostic model, we calculated risk scores

for CC samples and divided them into two groups based on these

scores, and found that the two groups differed significantly with

respect to overall survival (OS) rate. We compared immune- and

genomic-related features including distribution of common

immune checkpoints (ICPs), correlations with DDR genes,

and immune cell distributions between different risk groups

using various tools—maftools, the CIBERSORT algorithm,

single-sample gene set enrichment analysis (ssGSEA), etc.

Among the genes used to construct the model, only Rho

family-interacting-cell polarization regulator 2 (RIPOR2) was

closely related to ImmuneScore; therefore, RIPOR2 was chosen

as a hub gene for subsequent analyses. Generally, the high

RIPOR2 expression group had a lower tumor mutation burden

(TMB), higher ESTIMATEScore, and higher proportions of

ICPs, and patients in this group responded better to

immunotherapy with PD-1 alone or combined with CTLA4.

Notably, high RIPOR2 expression was associated with

significantly higher levels of CD8 T cells. For validation, we

overexpressed RIPOR2 in SiHa and HeLa cell lines and carried

out a series of experiments to verify the important role of

RIPOR2 in CC, including immunohistochemistry (IHC),

immunofluorescence (IF), quantitative reverse transcription

PCR (RT-qPCR), transwell assays, cell counting kit-8 (CCK8)

assays, EdU assay, cell cycle detection, colony formation assay,

and Western blotting (WB). The RT-qPCR and WB results

demonstrated that the distribution of ICPs and DDR-related

genes differed among CC cell lines with differential RIPOR2
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expression. Importantly, poly (ADP-ribose) polymerase 1

(PARP1) was found to have a strong relationship with

RIPOR2; this finding could guide clinical therapeutic strategies

used in CC patients. Other experimental results showed that

RIPOR2 represented an anti-tumor signature in CC, consistent

with the results of the bioinformatical analyses. Comparisons

based on GSEA were also carried out; pathways related to

mediating fluid immunity and cellular immunity were

significantly enriched in the high RIPOR2 expression cohort.

Moreover, patients with low RIPOR2 expression tend to have a

“desert” immune phenotype, which may make them less likely to

benefit from immunotherapy. This study identified a prognostic

biomarker based principally on GI and TME, thereby offering

new biomolecular targets for clinical therapy for CC.
Materials and methods

Data collection

Somatic mutational spectra and transcriptome data of 306

CC tumor cases were obtained from The Cancer Genome Atlas

(TCGA; https://portal.gdc.cancer.gov/), and clinical data were

extracted from cBioportal (http://www.cbioportal.org), to

construct a prognostic model for CC. The expression matrix

and clinical characteristics of the GSE44001 dataset (300 CC

samples) were downloaded from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) (13).
Group division and other analyses based
on mutation data

The somatic mutational information of CC cases from the

TCGA was stored in MAF form. According to the somatic

mutation profiles, we calculated the cumulative number of

somatic mutations per sample, then classified all the patients

in the highest and lowest quartiles into two mutator phenotypes,

denoted genomic unstable (GU) and genome stable (14),

respectively. The top 20 genes with the highest cumulative

number of mutations in the GU and GS groups are shown in

descending order separately. The mutation score of each sample

(TMB) was calculated using the following formula: (total

mutation/total covered bases) × 106. The mutation

information of genes was compared between the GU and GS

groups and between the different risk groups as determined by

the prognostic model, and genes with co-mutations were also

identified via the maftools package (15).
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Extraction of genomic instability-related
genes and stromal-related key genes

The ESTIMATE tool with the R software (version 4.0.5)

was used to obtain the proportions of the immune,

stromal, and TME components of each CC sample. The

results are presented as ImmuneScore, StromalScore, and

ESTIMATEScore (16). where a higher score represents a

higher proportion. Of the three scores, StromalScore showed

the most significant difference in distribution between the GU

and GS groups. Differentially expressed genes (DEGs) between

the two groups were extracted using the “limma” (17) tool in R,

with criteria of false discovery rate (FDR) <0.05 and absolute

value of log2 fold change (FC) >1. DEGs from the GU and GS

groups were considered as GIRGs, and groups with differently

distributed StromalScores were considered stromal-

related genes.
Survival analysis

All survival analyses were done in this paper with the R

packages “survival” and “survminer” (18). A total of 230 tumor

samples were obtained from 306 patients after excluding patients

who met the following criteria (1): days to death ≤1 month (2);

normal samples; and (3) incomplete clinical data (19). Results

were presented by the survival curve drawn in the Kaplan–Meier

method, and a log-rank test with a p-value <0.05 showed

statistical significance. Results were presented as survival

curves drawn using the Kaplan–Meier method, and a log-rank

p-value <0.05 was considered to indicate statistical significance.

Then, the effects of gene expression on survival rates were

determined using the KM Plotter online database (http://

kmplot.com).
GSEA and functional enrichment
analyses

We conducted functional enrichment analyses of the DEGs

using the R tools “enrichplot,” “clusterProfiler” (20), and

“ggplot2.” Enriched gene ontology terms were identified using

the following criteria: p-value <0.05 and q-value <0.05. The C2.

CP. KEGG. v7.2, and HALLMARK gene sets were used for the

analysis of the different risk cohorts through GSEA, using the

GSEA 4.0.3 software. A 5% NOM p-value and a 25% FDR q-

value were considered significant.
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Establishment of prognostic model with
external verification

As GI and stromal scores were both found to significantly

contribute to patient prognosis, the intersection of 947 stromal-

related genes and 207 GIRGs was obtained using the R package

“VennDiagram.” Next, the 110 intersecting genes were used to

construct a prognostic model to predict the survival outcomes of

CC patients. The GSE44001 cohort was used to demonstrate the

effectiveness of the model as a predictor. The model was

constructed as follows: As a first step, we used the “survival” R

package to conduct univariate Cox regression analysis with a

threshold of p <0.05, and ten key genes were identified for

further analyses. Next, LASSO (12) penalized Cox analysis was

carried out via the R tool “glmnet” (21). Multivariate Cox

regression analysis was performed using the “survival”

package, then risk scores were exported. The expression data

of the four genes were used to calculate risk scores according to

the following formula: risk score = expression × coefficient of

gene 1 + expression × coefficient of gene 2 + expression ×

coefficient of gene n (22). The model was verified using the

GSE44001 cohort with the same formula. We took the median of

the risk scores as a threshold to compartmentalize CC patients

into different risk clusters. To assess the predictive effectiveness

of the signatures, “survivalROC” (23, 24) was used to calculate

the area under the curve, which was proportional to the

predictive capability. Other analyses were performed to

determine differences in survival between the two groups, such

as survival status.
Analyses of tumor microenvironment
and immunotherapy

CIBERSORT (25) and ssGSEA algorithms were used for

evaluation of the proportions of tumor-infiltrating cells in all CC

samples to determine the differences between the different risk

groups. ssGSEA was performed using the “GSVA” R package

(26) with an immune gene collection downloaded from MSigDB

(https://www.gsea-msigdb.org/). The online tool TIMER (http://

timer.cistrome.org/) was employed to explore the relationship

between gene expression and immune cells (27). We also

investigated how patients in the different risk cohorts

responded to immunotherapy. ICPs were obtained from the

TISIDB website (http://cis.hku.hk/TISIDB) (28) and already

existing studies (29–31). The immunophenoscores of CC

samples were obtained from the TCIA (The Cancer

Immunome Database; https://tcia.at/home). The IMvigor210

cohort (32) was applied for further validation of the

prognostic effect of the hallmarks specific to immunotherapy

response. The R packages “limma,” “ggplot,” and “ggplot2” were

used to visualize the different distributions of immune
Frontiers in Immunology 04
components. Information about the immune subtypes of

various cancers was obtained from the website UCSC Xena

(http://xena.ucsc.edu/).
Verification experiments

Clinical samples
A total of ten cervical cancer tissues were acquired from the

Shanghai First Maternity and Infant Hospital, including five

early-stage specimens and five late ones. The histological types of

acquired samples were all carefully certified as squamous

carcinoma by experienced pathologists. The diagnostic

standards were based on the latest International Federation of

Gynecology and Obstetrics (FIGO) guidelines. All clinical

samples have got informed consent with the permission of the

Medical Ethics Committee of Shanghai First Maternity and

Infant Hospital (Approval notice: KS21264), which were fixed

with formalin and embedded with paraffin for further

histological analyses.

Immunohistochemistry and
immunofluorescence of cervical cancer tissues

IHC staining was performed to explore the expression of the

RIPOR2 protein in formalin-fixed, paraffin-embedded cervical

cancer tissue sections. Primary antibody against RIPOR2

(TD12398, abmart, China) was applied overnight at 4°C.

Besides, the sections were further incubated for another 1 h

using a secondary antibody (#PK-8501, Vector Lab, USA).

Moreover, the Rabbit IgG mini-PLUS Kit was used to detect

and visualize the DAB complex (#PK-8501, Vector Lab, USA),

along with hematoxylin to counterstain the nuclei. Finally, slides

were photographed via a microscope. Additionally, IF staining

was also conducted using the above sections. After dewaxing and

dehydrating, the slides were further treated with tissue

microwave antigen retrieval. Then, a blocking procedure was

employed at room temperature for 2 h. Afterwards, the slides

were added with primary antibody against RIPOR2 (1:150,

abclonal, China) overnight at 4°C. After washing the sections

three times with PBS for 5 min, Alexa-647 goat anti-rabbit

(1:500, CST, America) was applied as the secondary antibody for

another 2 h at room temperature. Ultimately, the nuclei were

stained with DAPI for 10 min, and the slides were photographed

using a confocal microscope.

Cell culture, RNA extraction, and real-time
qPCR

The SiHa and HeLa CC cell lines were purchased from

ATCC (Manassas, VA, USA) for verification experiments.

RIPOR2-overexpression plasmids were obtained from the

Public Protein/Plasmid Library. The CC cell lines were

cultured in high-glucose Dulbecco’s modified Eagle medium
frontiersin.org
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(DMEM; Servicebio, China) containing 10% FBS (fetal bovine

serum, Biological Industries, Israel) and 1% antibiotic

(penicillin/streptomycin; New Cell & Molecular Biotech Co.,

China) in an incubator at a temperature of 37°C and 5% CO2.

The SiHa HeLa cells were then transfected for 48 h with

RIPOR2-overexpression plasmids (RIPOR2-pcDNA3.1, 1216

ng/ml) and control empty plasmids (pcDNA3.1, 500 ng/ml)
using Lipofectamine 2000 reagent (Invitrogen, USA). RT-

qPCR was conducted after transfection to test the efficiency.

We also extracted total RNA from the SiHa and HeLa cells

using TRIzol (Invitrogen, USA), measured the concentration

and purity of the product, and reversely transcribed it to cDNA

with a 5× ALL-IN-One RT Master Mix kit (Applied Biological

Materials Inc., Canada). RT-qPCR was performed using a TB

Green Premix Ex Taq kit (Takara, Japan), with GAPDH serving

as the control. The relative mRNA expression was calculated

based on the 2−△Ct method (33). The primers used are shown in

Table S1.

CCK-8 and transwell assays
After successfully transfecting CC cell lines with RIPOR2

(RIPOR2-pcDNA3.1, 1216 ng/ml) and empty (pcDNA3.1)

plasmids at a concentration of 500 ng/ml, we used CCK-8

reagent (GeneView, USA) to roughly determine the cell

viability. The transfected CC cells were first diluted to a

density of 2 × 104 cells/ml; then, 100 ml of cells were plated

in each well of 96-well microtiter plates (Coring, NY, USA) for

72 h. Every 24 h, 10 µl of CCK-8 reagent was applied to each

well, followed by a further incubation period of 2 h. The optical

density (OD) was measured at a wavelength of 450 nm as an

indicator of the cell viability. Furthermore, we performed

transwell assays to detect the migration ability of the CC

cells, with the cell density adjusted to 2 × 105 cells/ml. To

establish a suitable concentration gradient to force the cell

migration, 150 ml of cell suspension and 800 ml of DMEM

containing 20% FBS were distributed, respectively, in the upper

and lower chambers of a 24-well plate. At the end of incubation

for 24 h at 37°C with 5% CO2, cotton swabs were applied

immediately to eliminate the upper-layer cells of the

membrane. The upper chamber cells were fixed and dyed

with methanol and crystal violet for 15 and 30 min,

respectively, and rinsed twice with phosphate-buffered saline.

We selected five visual fields at random for imaging and to

estimate the quantity of migrated cells.

5−Ethynyl−20−deoxyuridine, cell cycle
detection, and colony formation assays

After successfully transfecting CC cells with empty

plasmids (pcDNA3.1) and RIPOR2-overexpressing plasmids,

we used a BeyoClick™ EdU Cell Proliferation Kit with Alexa

Fluor 555 (Beyotime, China) to perform the EdU assay. EdU

was added to the cell medium, followed by incubation for 2 h.
Frontiers in Immunology 05
Afterwards, we used 4% paraformaldehyde to fix the CC cells,

followed by permeabilization with 0.3% Triton X-100. The

Click solution was then prepared according to the instructions

of the manufacturer and used for the incubation of cells for

half an hour in the dark. Hoechst 33342 was used to

counterstain the cells, and they were imaged and observed

via an inverted fluorescence microscope (Carl Zeiss,

Germany). Cell cycle detection was conducted using the Cell

Cycle and Apoptosis Analysis Kit (Beyotime, China). Briefly,

PBS and 70% glacial ethanol were used successively to wash

and fix the transfected cells at 4 °C for 24 h after CC cells were

harvested. Moreover, propidium iodide (PI) was used to

suspend the cells and then incubate them for another

30 min in a dark room after washing with PBS. Ultimately,

flow cytometry was employed to detect the cell cycle and the

frequency of different phases (G0/G1, S, or G2/M) was

compared. For the colony formation assay, we seeded CC

cells at a density of 800 cells per well in a six-well plate and

incubated them for 14 days at the condition of 37°C with 5%

CO2. Afterwards, 4% paraformaldehyde and crystal violet

were applied to fix and stain the cells, respectively. Colonies

were then imaged using a camera and counted.
Western blot assay
RIPA buffer supplemented with protease and phosphatase

inhibitors (TargetMol, America) was used to lyse the cells. The

protein supernatant was then collected and preserved at −80°C.

The BCA (Beyotime, China) method was used to detect protein

concentrations. The sample proteins were first heated at 99°C

for 20 min, then separated by 10% sodium dodecyl sulfate

polyacrylamide gel electrophoresis (Servicebio, China) and

transferred to polyvinylidene fluoride membranes. After

blocking with 5% non-fat milk for 90 min, the membranes

were incubated with primary antibodies at 4°C overnight, then

washed and incubated with secondary antibodies for another

2 h at room temperature. An enhanced chemiluminescence

reagent (Servicebio, China) was used to image the protein

bands. The primary antibodies used in this study were

PARP1 (1:1,000, CST, America) and GAPDH (1:10,000,

Proteintech, USA). The secondary antibodies were purchased

from HuaBio, China.
Statistical analysis

All statistical analyses were performed using the R 4.0.5

software (version 4.0.5), GraphPad Prism 8 (GraphPad, La Jolla,

CA, USA), and SPSS 26.0 (IBM, SPSS, Chicago, USA) software.

Unpaired Student’s t-tests were used to compare differences

between the two groups. P <0.05 served as the cutoff value for a

significant difference. All experiments were repeated at least

three times.
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Results

Screening for prognosis-related
signatures in CC patients

Group division based on GI and stromal score
The GU cohort contained 71 samples, with the number of

mutual alterations ranked in the top quarter, while the last

quarter (n = 72) in the GS cluster. Using the “limma” R

package, we screened out DEG between the GU and GS

groups as GIRGs based on the following criteria: |log2 FC|

>1, FDR <0.05. A total of 207 GIRGs were obtained for

further analysis.

CC patients were sorted into GU and GS groups (details in

Group division and other analyses based on mutation data
Frontiers in Immunology 06
section), and the correlations of ImmuneScore, StromalScore,

and ESTIMATEScore between the two groups were calculated.

According to the results, StromalScore showed the most

significant difference between the groups, with p = 0.002.

Therefore, we divided the CC patients into two groups using

the median of the StromalScore as the cut-off. The 947 DEGs

between these two groups were filtered out in the same way as

the GIRGs, and the top 40 were visualized using heatmaps

(Figures 1A, B).

StromalScore appeared to differ most between GU and

GS clusters

Stromal-related DEGs were enriched most in pathways

involving immunological-cell activity, for instance, T-cell

triggering, adjustment of lymphocyte trends, positive

regulation of cellular adhesion, and leukocyte cell–cell
A B

D

E F

C

FIGURE 1

The top forty genes in the StromalScore related genes (A) and GIRGs (B) groups were respectively selected according to the descending order
of the significance of the expression difference. The heatmap was drawn, from the color red to blue, representing the expression from high to
low. The result from GO analyses of stromal-related DEGs (C) and GIRGs (D) was separately displayed. The pathways with the top 10 high gene
ratios, respectively, belonging to different oncologies, were shaped into different graphs. In the stromal-related DEGs set, the pathways were
mainly enriched in pathways concerning immune cell activity. For GIRGs, there is massive enrichment in pathways related to an extracellular
matrix structure. Pathways with the top 10 high gene ratios according to KEGG analyses were exhibited. For stromal-related DEGs (E) and
GIRGs (F).
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adhesion, as well as substance synthesis pathways including

carbohydrate binding and glycosaminoglycan binding

(Figure 1C). GIRGs showed massive enrichment in pathways

related to extracellular matrix structure, including extracellular

matrix with collagenous components, positive regulation of cell

adhesion, organization of extracellular matrix and structure,

structure-shaping components, and adhesion between cell and

substrate (Figure 1D). Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis of stromal-related DEGs yielded

pathways with large numbers (more than 30) of enriched

genes; these included CCR interaction, chemokine signaling

pathway, PI3K–AKT pathway, and cellular adhesion molecules

(Figure 1E). The results for GIRGs were as follows: PI3K–AKT

pathway, the regulation of actin cytoskeleton, protein digestion

and absorption, focal cling, amebiasis, relaxin pathway, RAS

pathway, AGE–RAGE pathway in diabetic complications, and

ECM–receptor interaction (Figure 1F).
Frontiers in Immunology 07
Intersection of stromal-related DEGs and
GIRGs considered as prognostic signatures

For constructing a prognostic model, we focused on genes

with significant involvement in both GI and TME. Therefore, the

intersection of GIRGs and stromal-related DEGs was obtained,

resulting in 110 genes for further research (Figure 2A).
Establishment of prognostic model via
LASSO penalized Cox analysis

Model construction
Through univariate Cox analysis using the log-rank test and

the “survival” R package, 10 of the 110 intersecting genes were

identified as candidates (p <0.05) for LASSO Cox regression

[CLEC3B, CD1C, BMP6, fibrillin 1 (FBN1), C–C motif

chemokine ligand 22 (CCL22), peptidase domain-containing
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FIGURE 2

(A) The 110 common genes in the intersection analysis of GIRGs and Stromal-Related DEGs. (B) 10 prognostic intersection genes filtered out by
the univariate Cox analysis with the p-value of <0.05, inclusive of CLEC3B, CD1C, BMP6, FBN1, CCL22, PAMR1, CYTL1, HTRA3, PI16, RIPOR2. (C,
D) Inferred from the 10-folded LASSO regression results, four signatures were screened out: CCL22, FBN1, RIPOR2, and PAMR1. (E–G) Survival
distribution-related analyses for the TCGA cohort. (E) Survival at 1, 3, and 5 years was drawn in ROC curves. The areas under the curves (AUC)
were 0.793 (1 year), 0.719 (3 years), and 0.758 (5 years). (F) The result of the Kaplan–Meier analysis showed a higher overall survival rate in the
low-risk group with p = 0.004. (G) The expression pattern distribution of the model genes was shown by the order of risk scores. (H–J) (H) For
the GEO dataset, the time-ROC went as follows: 0.865 (1 year), 0.807 (3 years), and 0.802 (5 years). (I) Survival rate differed with p <0.001. (J)
The heatmap was also shown.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.930488
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2022.930488
associated muscle regeneration 1 (PAMR1), CYTL1, HTRA3,

PI16, and RIPOR2] (Figure 2B). The results are shown in Table

S2. Details of the LASSO regression and Cox proportional

hazard analyses can be found in the Materials and methods

section. The independent variables (candidate signatures) can be

made into a better match and we explored a restrained

condition, which was to calculate the | coefficient | and take

the summation, for data dimensionality reduction. In the LASSO

Cox analysis, we set ‘Cox’ as the family parameter with 10-fold

cross-validation for LASSO analysis. The signature genes

identified in this analysis were considered covariates and

subjected to multivariate Cox analysis. Based on their

expression values and regression coefficients, four genes

were selected for final model construction: CCL22, FBN1,

RIPOR2, and PAMR1 (Figures 2C, D). A risk score for

each patient was calculated using the following formula:

Risk Score = (FBN1 expression ∗ 0.07057) − (CCL22

expression ∗ 0.11517) − (PAMR1 expression ∗ 0.12912) −

(RIPOR2 expression ∗ 0.48548).

External validation
The data source used for validation was described in the

Establishment of prognostic model with external verification

section. The GSE44001 dataset was processed using the

prognostic prediction formula given above. Expression values

of the four key genes were set as variables; then, we computed

risk scores for each patient based on the GEO data. Patients from

the GEO cohort were sorted into different risk cohorts based on

the median value of the risk scores, and so were those from the

TCGA cohort. During the data processing, various discrepancies

were discovered between groups with different risk score

distributions. The newly built prognostic risk model still

functioned well when using external data for validation.

Combined with information about the survival status of CC

patients, a series of analyses were conducted in the GEO and

TCGA cohorts, and the survival rates were displayed

descendingly by the order of risk scores. Receiver operating

characteristic curves for 1-, 3-, and 5-year survival of CC patients

were constructed to demonstrate the performance of the newly

built model. For the TCGA dataset, the area under the curve

(AUC) values were 0.793 (1 year), 0.719 (3 years), and 0.758 (5

years) (Figure 2E). An area under the curve greater than 0.7 is

considered to indicate satisfactory performance of a prognostic

model. Kaplan–Meier analyses showed a higher OS rate in the

low-risk cluster [p = 0.004 (Figure 2F)]. The expression patterns

of the signatures in different risk groups were visualized using

heatmaps (Figures 2G). For the GEO dataset, the AUC values

were 0.865 (1 year), 0.807 (3 years), and 0.802 (5 years)

(Figure 2H). The survival rate differed in high- and low-risk

groups, with p <0.001 (Figure 2I). These results were also

visualized as a heatmap (Figure 2J).
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Immune-related and other analyses
between different risk cohorts

Immune-related cell infiltration analysis,
immunotherapeutic response, and GSEA

The low-risk population generally had lower somatic

mutation counts than the high-risk group (p = 0.034)

(Figure 3A). CC patients in different risk groups also differed

with respect to TME-related scores calculated via the

ESTIMATE algorithm: p = 4.1∗e−07 for ImmuneScore

(Figure 3B), p = 1.2∗e−05 for StromalScore (Figure 3C), and

p = 1.2∗e−07 for ESTIMATEScore (Figure 3D).

We investigated the associations of risk scores with the

expression of ICPs, including PD1, PDL1, PDL2, CTLA4,

CD86, and LAG3. The distributions of specific ICPs in

different risk cohorts and corresponding p-values are shown in

Figure 3E. Generally, all the above mentioned ICPs were more

highly expressed in the low-risk samples. This applied to all

types of ICPs, regardless of whether their role was in immune

activation (CD86, ICOS) or immunosuppression (PD1,

PDL1, etc.).

Immunophenoscores acquired from the TCIA database were

included in the statistics, as shown in the following boxplots;

patients with lower risk scores showed significantly greater

response to immunotherapy with PD1 alone (p = 0.039;

Figure 3F) or along with CTLA4 (p = 0.0054; Figure 3G).

CIBERSORT and ssGSEA were used to verify the

relationship between the model scores and aspects of the

TME. We compared the different risk clusters with respect to

the distribution of immunological components. Using ssGSEA,

we quantified and visualized enrichment scores for various

immunological cellular subpopulations, pathways, and

functions. As shown in Figure 3H, 16 immune cell

subpopulations [B cells, CD8+ T cells, macrophages, dendritic

cells (DCs), human leukocyte antigen (HLA), mast cells,

immature dendritic cells (iDCs), neutrophils, natural killer

(NK) cells, T helper cells, plasmacytoid dendritic cells (pDCs),

follicular helper T cells, regulatory cells (Tregs), Th1, and Th2

cells, and tumor-infiltrating lymphocytes] and 11 immune-

related pathways (type I and type II IFN response, CCR,

inflammation promotion, checkpoints, cytolytic activity,

parainflammation, APC co-inhibition and co-stimulation, and

T-cell co-inhibition and stimulation) had higher scores in the

low-risk group compared with the high-risk group (p <0.05).

The distributions of immunological components are shown in

the heatmap in Figure 3I along with the ESTIMATEScore. These

findings demonstrate that the risk score based on our model is

significantly associated with aspects of the TME, especially

immune components.

The GSEA analysis was also used to compare the two risk

groups. In the high-risk group, 17 pathways were significantly
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enriched, of which many were related to GI, for instance, cell cycle,

MMR, DNA replication, pyruvate metabolism, and purine

metabolism (Figure 4A). In contrast, the low-risk group was

principally enriched in pathways of immune-related biological

functions, including the BCR pathway, chemokine pathway, NK-

cell-mediated cytotoxicity, and TCR pathway (Figure 4B). The

enriched KEGG gene sets are shown in Table S3. These results

support the ability of the prognostic model to distinguish groups of

CC patients at risk of cancer cell proliferation as well as those who

have the advantage of an active immune environment.

Analysis with the CIBERSORT algorithm showed a higher

proportion of M0 macrophages, natural killer cells, M2

macrophages, and activated mast cells in the high-risk cohort,

whereas the low-risk cohort had higher levels of resting mast

cells (Figure 4C). Some DDR-related genes and m6A

methylation-related biomarkers were more enriched in the

high-risk group (Figures 4D, E).
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The scoring system and survival analysis were applied to CC

patient groups with different clinical characteristics. The

prognostic model was more effective when applied to patients

w i th ea r l y - s t age CC (c l i n i c a l and pa tho log i c a l )

(Supplementary Figure 1).

Contrast between high- and low-risk score
clusters on somatic mutations

We further investigated how genomic-related features

differed between the different risk cohorts. The top 20 samples

with the most somatic mutations in each group are shown in

Supplementary Figures 2A, B. Via the “maftools” R package, we

used pairwise Fisher’s exact test to detect mutually altered and

co-occurring gene sets among the top 20 samples of each group

(Supplementary Figures 2C, D). MUC17, HUWE1 (HECT,

UBA, and WWE domain containing E3 ubiquitin protein

ligase 1), DST, ADGRV1, DNAH8, and SPEN were found to
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FIGURE 3

(A) The boxplots showed the results of the Wilcoxon test for some characteristic distribution differences between discrepantly-risked clusters,
including TMB. The low-risk population takes fewer somatic mutation counts, with a p-value = 0.034. (B) Immune Score with p-value =
4.1∗e−07, (C) Stromal Score with p-value = 1.2∗e−05, (D) ESTIMATE Score with p-value = 1.2∗e−07 and all of them appeared to be higher in low-
risk cohort. (E) ICPs differently distributed were also depicted in the boxplot, including PD1, PDL1, PD2, CTLA4, CD86, LAG3, TIM3, TIGIT, CTSS,
ICOS. (p-value: ***p <0.001, **p <0.01, *p <0.05). (F, G) The low-risk cluster had a significantly greater response to immunotherapy of PD1
applied alone with p-value = 0.039 (F), and treatment in combination with CTLA4 and PD1 with p-value = 0.0054 (G). (H) According to the
ssGSEA calculating results, all the immune cell subpopulations along with immune-related pathway distribution were displayed. (I) A
corresponding heatmap was shown with an ESTIMATE-related score distribution in the top bars.
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have large numbers of mutations only in the high-risk cohort.

Fisher’s test was also used to identify differentially mutated genes

(DMGs) between the low- and high-risk groups; the results are

shown in Supplementary Figure 2E. Combining the results of

these two analyses, HUWE1, DST, and SPEN were found to

mutate more in the high-risk cohort. HUWE1 and EP300 (E1A

binding protein P300) showed a positive co-occurrence

tendency (p <0.05). The set of samples with mutations in both

HUWE1 and EP300 was marked as “Geneset,” and the wild-type

samples with no mutations in HUWE1 or EP300 were annotated

as “WT.” Then, Kaplan–Meier analysis was performed; the

results showed that survival probability differed between

mutant and wi ld types in the h igh-r i sk c lus te r s

(Supplementary Figures 2F, G). In the high-risk group, the

wild-type patients showed significantly better survival rates

[p = 0.0147; hazard ratio (HR) = 3.47]. However, in the low-
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risk group, there was no statistically significant difference in

survival probability (p = 0.667; HR = 1.09∗e−07).
Further analysis of RIPOR2 as the only
ImmuneScore-related model gene

Immuno-features and gene function related
analyses of hub gene RIPOR2

Our previous studies confirmed that ImmuneScore has a

significant impact on the prognosis of CC patients (34, 35).

Therefore, we selected genes related to the ImmuneScore (GRIS)

for further analysis. Setting the median immune score as the

cutoff, we divided CC samples into two ImmuneScore-related

clusters and followed the same method used for DEG screening

above to take the intersection, containing 1,067 genes. So
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FIGURE 4

GSEA analysis was done under the high-risk group (A) along with the low-risk group (B). (C) CIBERSORT analysis result got shown in violin plot.
(D) Except for ATM, other DDR-related genes with significantly expressed differences are expressed higher in the cluster with high risk (p-Value:
** p < 0.01, * p <0.05). (E) M6A methylation-related genes got showed in box-plot (p-Value: *** p < 0.001, ** p < 0.01, * p < 0.05;ns p >0.05).
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RIPOR2 was targeted and figured out (Figure 5A). Patients were

sorted into different expression groups based on the median

value of RIPOR2, and more bioinformatical analyses were

performed, such as immune- and mutation-correlated

characteristics and functional enrichment analysis. CC patients

with higher RIPOR2 expression were found to have a longer OS

time (Figure 5B), demonstrating that this gene was a protective

factor in CC. The results obtained using the KM Plotter online

database also confirmed RIPOR2 as a protective signature in CC

patients (Supplementary Figure 3).

Generally, the low RIPOR2 expression group carried a

greater TMB (Figure 5C), as well as lower ESTIMATE-related

scores. When we compared the high and low RIPOR2 expression

groups using the ESTIMATE algorithm, there were significant

differences in ImmuneScore (p = 3.1∗e−16; Figure 5D),

StromalScore (p-value = 3.4∗e−1 ; Figure 5E) , and

ESTIMATEScore (p <2.22∗e−16; Figure 5F). Moreover, when

we analyzed the expression of DDR-related genes in the two

groups, as shown in Figure 5G, flap structure-specific

endonuclease 1 (FEN1), PARP2, RPA3, and XRCC6 were

expressed more highly in the low RIPOR2 group, whereas the
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opposite pattern was seen for PARP3, XPC, and ataxia

telangiectasia-mutated (ATM).

A GSEA was conducted in the two RIPOR2 expression

groups. Pathways related to mediating fluid immunity and

cellular immunity were significantly enriched in the high

RIPOR2 expression group; these included the chemokine

pathway, cytokine receptor interaction, TCR pathway, BCR

signaling pathway, and cellular adhesion molecules

(Figure 5H). In the low RIPOR2 expression group, most

enriched pathways were involved in GI-related biological

processes, such as DNA replication and MMR (Figure 5I).

These above results are the reasons for us to believe that high

expression of RIPOR2 promotes the recognition and elimination

of tumor cells in the human body via processes such as

chemotaxis, phagocytosis of immune cells, and processing and

presentation of antigens.

ICPs related to RIPOR2 expression are displayed in

Figure 6A, the distribution of which confirms the view that

RIPOR2 can enhance the immune response. Evidence for this

included the better response of the high expression group to

immunotherapy with PD1 combined with CTLA4 or alone
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FIGURE 5

(A) RIPOR2 was the only DEG judged by the prognostic model and Immune-Scores. (B) Survival analysis for CC patients with different RIPOR2
expression. Patients were marked with high expression or low expression depending on comparing with the median expression level. p = 0.015
by the log-rank test. (C–F) The discrepantly distributed features and corresponding p-values were shown in box-plots. The low-RIPOR2 group
carried a greater TMB (C) with p-value = 0.0028, p-value = 3.1∗e−16 (D) with Immune Score, p-value = 3.4∗e−11 (E) with Stromal Score,
p-value <2.22∗−16 (F) with ESTIMATE Score. (G) Analysis of DDR-related genes expression showed that FEN1, PARP2, RPA3, XRCC6 expressed
more actively in the low-RIPOR2, while PARP3, XPC, ATM went the opposite (p-Value: ** p < 0.01, * p <0.05, ns p > 0.05). (H, I) A GSEA analysis
was conducted based on the expression level of RIPOR2, with a low-expression cluster (H) and a high-expression group (I).
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(Figures 6B, C). As one of the most representative immune cells

with immuno-functions, CD8+ and activated CD4+ memory T

cells showed a significantly higher expression in the high

RIPOR2 expression group (Figure 6D). The correlations of

RIPOR2 expression with CD8+ T and B cells were further

explored using the online web tool TIMER; the results showed

that RIPOR2 expression had a positive relationship with the
Frontiers in Immunology 12
above immune cells according to various methods (TIMER,

XCEL L , MCP - c o u n t e r , q u a nT I s e q , a n d EP IC ;

Supplementary Figure 4).

Subsequently, we performed statistical analyses of the immune

phenotype distribution in different RIPOR2 expression groups

using the IMvigor210 cohort; the phenotypes comprised “desert”,

“excluded”, and “inflamed”. Patients with inflamed immune
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FIGURE 6

(A) The expression of ICPs concerning RIPOR2 was displayed (p-Value: *** p < 0.001). The high expression group responded better under the
operation of immunotherapy with PD1 combined with CTLA4 (B) or applied alone (C). (D) The CIBERSORT result was shown in the comparison
between low- and high-RIPOR2 groups by violin plot. (E) A statistic on the immune phenotype distribution in different RIPOR2 expression levels
comprising “desert,” “excluded,” and “inflamed” were depicted. Patients with low expression of RIPOR2 tend have with the desert phenotype. (F)
Multialgorithm analytical results on immune cells of tumor microenvironment (TME) in cervical cancer, including existing data from platform
TIMER, XCELL, MCP-counter, quanTIseq, and EPIC. The top-bars show the distribution of TME-related scores along with the
RIPOR2 expression.
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phenotypes commonly show a better response to immunotherapy.

As shown in Figure 6E, our results provide strong evidence that

patients with low expression of RIPOR2 tend to have the desert

phenotype. This may limit the benefit they receive from

immunotherapy. To further investigate the relationship between

RIPOR2 and different immune cells, we applied several

bioinformatical methods to determine the correlations (TIMER,

XCELL, MCP-counter, quanTIseq, EPIC, etc.). Based on the results

of these algorithms, we could conclude that RIPOR2 was strongly

related to various immune cells, especially T and B cells (Figure 6F

and Table S4).

Pan-cancer analyses about general survival,
TME, immuno-subtypes, TMB, MSI, and ICP
distributions conducted on RIPOR2

To determine whether the protective role of RIPOR2 was

unique to CC or also existed in other cancers, we conducted a

pan-cancer analysis of RIPOR2 expression levels using data from

the TCGA. This was also intended as preparation for further

research on the underlying principles of the model. The

discrepant expression patterns of RIPOR2 in tumor and
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normal samples are displayed in Figure 7A. Based on a

comprehensive analysis of 33 cancer types, we concluded that

RIPOR2 was generally a protective factor in tumor patients.

Nine cancer types showed no significant differences between

normal and tumor tissues, and nine types for which no normal

sample data were available for comparison. However, RIPOR2

was expressed at significantly higher levels in normal tissues

than tumor tissues in patients with bladder urothelial carcinoma,

breast invasive carcinoma, CC, colon adenocarcinoma (COAD),

glioblastoma (GBM), kidney chromophobe, liver hepatocellular

carcinoma (LIHC), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma, prostate adenocarcinoma, rectum

adenocarcinoma (READ), and uterine corpus endometrial

carcinoma (UCEC). In contrast, kidney renal clear cell

carcinoma (4), pheochromocytoma and paraganglioma

(PCPG), and thyroid carcinoma showed higher expression in

tumor samples compared with normal tissues.

Figures 7B, C depict the distributions of TMB and

microsatellite instability (MSI), respectively. In the pan-cancer

analyses, high RIPOR2 expression was significantly associated

with lower TMB in all cancer types, as well as with lower MSI in
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FIGURE 7

(A) The discrepant expression patterns of RIPOR2 in tumorous and normal samples were displayed (p-Value: *** p < 0.001, ** p < 0.01, * p <
0.05, ns p > 0.05). (B, C) The radar charts depicted the distributions of TMB (B) and microsatellite instability (MSI) (C) respectively. Corresponding
to the circle representing value zero, the relative position of the points indicates the values of the index. (D) The forest plot showed the hazard
ratios and p-values of how RIPOR2 affects the prognoses of various tumors. When RIPOR2 functions as a protective indicator, the pot gets
drawn in blue when the risky factor is red. (E) We showed the results of correlation analyses in dot plots with R and p-values. The orange hill
represents the distribution of immune-score and the blue hill of RIPOR2 expression. The positiveness of the relations can be seen from the
rising fitting line. (F) The grid heatmaps show the relations between RIPOR2 and ICPs with different functions in immune response, inhibitory
ICPs on the top-left and the sub-figure on the top-right, in contrast with the association between the expression of methylated RIPOR2
distribution and the same ICPs. The stimulatory ICP group is in the bottom-left corner, and HLA-related genes are on the bottom-right. (G) The
samples can be divided into six immune subtypes: C1–C6 corresponding to Wound Healing, IFN-g Dominant, Inflammatory, Lymphocyte
Depleted, Immunologically Quiet, and TGF-b Dominant. The scattering situation was shown in boxplots. If any of the immune subtypes do not
exist in a cancer species, they will not appear in the sub-picture.
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most tumor types except COAD, PCPG, and READ. The results

of the univariate Cox proportional hazard regression analysis

showed that the expression of RIPOR2 was associated with the

OS of cancer patients. It served as a protective factor in KIRC,

LUAD, head and neck squamous cell carcinoma, and ovarian

serous cystadenocarcinoma, and as a risk factor in acute myeloid

leukemia and GBM (Figure 7D).

As mentioned earlier, RIPOR2 expression was correlated

with immune scores calculated via ESTIMATE in CC. When we

explored potential interactions between RIPOR2 expression and

immune scores on a larger scale, a highly positive relationship

was discovered in all tumor types. The strongest correlation was

found for pancreatic adenocarcinoma (PAAD; R = 0.79,

p <2.2e−16) (Figure 7E).

Thereafter, we analyzed ICPs to determine the influence of

RIPOR2 on the immune environment of tumor patients. ICP

molecules include both inhibitory and stimulatory types;

therefore, they have diverse effects on the tumor immune

microenvironment (TIME). The above results suggest that

both types of ICPs are expressed in numerous tumor types.

Inhibitory ICPs have long been considered to mediate immune

evasion in tumor patients; they also function in many other

malignant behaviors, including self-renewal, metastasis, and

drug resistance. As shown in Figure 7F, most of the 24

inhibitory ICPs showed positive correlations with RIPOR2 in

most of the 30 cancer types considered here, with the exceptions

of brain lower grade glioma (LGG), GBM, PCPG, uterine

carcinosarcoma (UCS), and uveal melanoma (UVM).

Compared with the results obtained with the same cancer

types and methylated RIPOR2 on the top-right, the color

block shows the corresponding degree of negative correlation,

consistent with the previous results. However, when the same

analysis was applied to the 45 stimulatory ICP genes, RIPOR2

had a close correlation with the expression of ICPs. With the

exceptions of LGG, PCPG, and UVM, strong correlations

between RIPOR2 and ICP expression were found in all cancer

types. Human leucocyte antigen (HLA), the product of the major

histocompatibility complex in humans, is in charge of induction

and regulation of the immune response. HLA-related genes were

found to correlate with RIPOR2 expression in the pan-cancer

analysis in all cancers apart from LGG, PCPG, UCS, and UVM.

In conclusion, RIPOR2 was shown to have universal relevance in

the triggering of immune responses in multiple cancers.

Based on immune subtype theory, patients across cancer

types can be identified into six immunological subtypes denoted

C1–C6, corresponding to wound healing, IFN-g dominant,

inflammatory, lymphocyte depleted, immunologically quiet,

and TGF-b dominant (36). We analyzed cancer types for

which immune-subtype information was available from the

UCSC Xena database. According to the results, CC, KIRC,

LIHC, PAAD, LUAD, and UCEC patients with the C2 and C3

subtypes—that is, a hotter tumor immune microenvironment
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and a better response to immunotherapy—had the highest levels

of RIPOR2 expression (Figure 7G).
Validated experiments for RIPOR2 in CC

IHC and immunofluorescence demonstrated
RIPOR2 expressed differently in
different stages

Clinical specimens of cervical cancer patients at different

pathological stages were acquired to further investigate the

e xp r e s s i o n o f R IPOR2 p r o t e i n u s i n g IHC and

immunofluorescence experiments. The results demonstrated

that the RIPOR2 expression was higher in samples with early

stage than in late stage (Figures 8A, B), which illustrated that

RIPOR2 expression was decreasing along with advanced

stage classification.

Transwell, CCK-8, EdU, cell cycle detection,
and colony formation assays indicated RIPOR2
as an anti-tumor signature

RIPOR2 was successfully overexpressed in SiHa cells with

p <0.0001(****) and HeLa cells with p <0.001 (***) using

transfection with plasmids as described in the Verification

experiments section (Figure 8C). Compared with normal

control CC cells, the RIPOR2-overexpression group showed

significantly weaker migration ability, as demonstrated by

transwell assay; this was the case for both SiHa and HeLa cells

(Figure 8D). Additionally, according to the results of the CCK-8

assay, the viability of HeLa cells was markedly suppressed by

RIPOR2 transfection as inferred from the OD values (Figure 8E).

Moreover, the results of EdU assays further confirmed that

RIPOR2 overexpression could inhibit the proliferation of SiHa

CC cells compared with the control group (Figure 8F). Besides,

the results of cell cycle detection revealed that overexpressing

RIPOR2 in SiHa cells could slightly increase the percentage of

G0/G1 phase cells and decrease the proportion of S and G2/M

phase cells (Figure 8G), although this association was not

statistically significant. The colony formation assay also

demonstrated that RIPOR2 could significantly inhibit the

proliferation of SiHa cells (Figure 8H).

Relationship between RIPOR2 and DDR-
related genes and ICPs

As mentioned in the Verification experiments and Transwell,

CCK-8, EdU, cell cycle detection, and colony formation assays

indicated RIPOR2 as an anti-tumor signature sections, the

correlation of RIPOR2 with ICPs was further verified by

experiments. Checkpoints LAG3, TIGIT, CTSS, ICOS, and

TIM3 showed high expression in SiHa cells transfected with

RIPOR2-overexpression plasmids (Figure 8I). Through RT-

qPCR, we demonstrated experimentally that FEN1, PARP2,
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and RAD52 were negatively correlated with RIPOR2 expression;

PARP1 was expressed more highly in the RIPOR2-

overexpression group; and POLB had the same correlation

trend with PARP1, although the difference was non-significant

(p = 0.058) (Figure 8J). PARP1 was an important factor related

to DDR, and its correlation with RIPOR2 at the protein level was

further verified by the WB assay in SiHa cells. It could be clearly

seen that the PARP1 protein level was much higher in the

RIPOR2-overexpression group (Figure 8K).
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Discussion

According to the results of our bioinformatic analyses, the

low survival rate of the high-risk group identified by our model

is accompanied by high mutation loads, high expression of

DDR-related genes (FEN1, PARP1, RAD51, ATM, etc.), and

poorer response to PD-1-based immunotherapy.

GI plays a dual role in cancer treatment and is a hallmark of

DDR-deficient cancer. As they accumulate, mutations may
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FIGURE 8

Functional experimental verification of RIPOR2. (A) The expression of RIPOR2 protein in early- and late-stage cervical cancer tissues was
detected by Immunohistochemistry (IHC), Scale bar, 100 mm. (B) Immunofluorescence (I, F) staining results of RIPOR2 protein in early- and late-
stage of cervical cancer tissues. Scale bar, 25 mm. (C) The expressing amount of RIPOR2 differed in the control cell lines and overexpression
transfected cell lines, both in the SiHa group with p-value <0.0001(****) and the HeLa group with a p-value <0.001(***). (D) The results of the
transwell assay, pictures on the left show the CC cell distributions of groups photographed in different visual fields. “NC” means normal control
with pcDNA3.1 (empty vector) transfection; “RIPOR2” represents a group with overexpression plasmid transfection. The result of differential
analysis based on cell number was shown in the bar plot. (E) It is shown that at times of 24, 48, and 72 h, the HeLa cells living in the normal
control group are always significantly greater than the RIPOR2-overexpressed group by CCK-8 (p-value: **p <0.01, ****p <0.0001). (F) EdU
assay was used to detect the proliferation ability of each group of SiHa cells. Scale bar, 100 mm. (G) Flow cytometry analysis showed
overexpression of RIPOR2 in SiHa cells slightly increased the percentage of the G0/G1 phase cells and decreased the percentage of S and G2/M
phage cells. (H) Colon formation assay was performed to determine the proliferation ability of each group of cells. The bar plot showed the
number of colonies in SiHa cells, with p <0.01 (**). (I) Inferred from RT-qPCR, checkpoints LAG3, TIGIT, CTSS, ICOS, and TIM3 showed
correspondingly high expression in the SiHa cell lines transfected with RIPOR2-overexpressing plasmids. (J) RT-qPCR results indicated that
FEN1, PARP2, and RAD52 negatively correlated with RIPOR2, PARP1 expressed more in the SiHa-RIPOR2 group, and POLB got a higher
expression amount in the RIPOR2 group however with p-value = 0.058. (K) “−” represents the normal control group, while “+”is for the RIPOR2-
overexpressed cluster. The protein level of PARP1 is much stronger with RIPOR2-overexpression of SiHa cells, which corresponds to the results
of the RNA level.
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accelerate the evolution of cancer cells; moreover, deleterious

mutations can also create vulnerabilities in cancer cells (37). In

addition to GI, the TME plays an important part in the main

malignant tumors affecting women (including epithelial ovarian

and endometrial cancers as well as CC). Owing to the strong

crosstalk between stromal and cancer cells, the environment in

which they co-exist develops viciously circulative properties

(38). Evidence from the previously published pieces of

literature shows that the TME may interact with GI,

potentially via DDR. The TME may decrease genomic

stability, via inhibition of DDR pathways. DDR defects help

the immune system with tumor cell recognition, resulting in

greater exposure of DDR-deficient cancer cells to the adaptive

immune system (39–41).

Among the differentially expressed DDR-related genes,

ATM and FEN1 cooperate with intracellular reactive oxygen

species to regulate RhoA activation, which contributes to cell

survival (42) as well as being involved in DDR (43, 44). The

recruitment of PARP1 is essential to all stages of DDR processes

in various types of DNA lesions. As PARP1 is an abundant

nuclear protein, a negatively charged polymer adheres to it after

translation, and this poly-ribosylation activity supports the

repair of single-strand and double-strand breaks, and well as

most of the known functions of PARP1 in the DDR pathway

(45–47). The RAD51 gene in the Homologous Recombination

Repair (HRR) pathway is related not only to DDR but also to

hypoxia; thus, it is indirectly connected to the increase in GI

(41). As so many DDR-related key factors showed significantly

increased expression in high-risk samples according to our

results, it is reasonable to speculate that the significantly more

frequent occurrence of DDR and consequent acceleration of

immune invasion in cancer cells is among the reasons for the

higher risk level of this patient group.

To further investigate the underlying principles of our

prognostic risk model, we considered the function of the

prognostic candidates in a tumorous environment. FBN1, a

risk factor according to our analysis, has been shown by

previous research to be posit ively correlated with

carcinogenesis, as well as with a higher risk of tumor

development in a pan-cancer analysis based on a million-case

Taiwan cohort (48). CCL22, a protein secreted by M2

macrophages, recruits Th2 cells, resulting in better survival

(48). The gathering effect seems to work on Treg cells as well;

however, it shows a contrary influence in CC (49, 50). Consistent

with our results, PAMR1 has long been considered an inhibitor

of tumor activities such as spread, migration, and development

in CC. In CC tissues, PAMR1 was expressed at lower levels than

in normal samples and was associated with worse survival.

Evidence suggests that PAMR1 participates in the suppression

of MYC targets and mTORC1 signaling pathways (51).

As mentioned above, the TME plays a vital role in the effect

exerted by GI on the survival of tumor patients. Here, we

focused on RIPOR2, as the only gene in the intersection
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between the GIRG and GRIS groups. RIPOR2, a member of

the recently discovered RIPOR (RHO family interacting cell

polarization regulator) family, exerts an inhibitory influence on

RHO activity and on cellular functions affected by RHO.

RIPORs were previously reported to play a role in cell

polarization and migration, owing to phosphorylation

induced by chemokine stimulation, which influences their

interplay with RHO and has consequent effects on the

activation of RHO downstream targets. In most tumor types,

RIPOR2 expression is relatively suppressed compared with

normal samples, particularly in gynecologic malignancies like

endometrial carcinoma. Evidence to date suggests that RIPOR2

is a pan-cancer protective factor. However, the precise role of

RIPOR2 in carcinogenesis and tumor development remains to

be clarified, and there are still pressing questions left to

be explored.

Of note, in addition to its role as a downregulator of RHOA,

RIPOR2 functions in cellular proliferation independently of

RHOA via its inhibitory regulation of HDAC6. HDAC6, a

cytoplasmic deacetylase that accelerates tumor proliferation by

triggering deacetylase activity, can bind to phosphorylated

RIPOR2 and 14-3-3, forming a tripartite complex and

disrupting its original function of forming a mitotic spindle.

However, RIPOR2 with a S5A mutation lacks this

antiproliferative function. Another impressive finding is the

inner relationship between RIPOR2 and T cells. In our

analyses of immune cell expression in this study, the patient

group with high expression of RIPOR2 had significantly higher

levels of CD8+ T cells. Previous research suggests that RIPOR2

has a RHOA-dependent impact on various T-cell activities,

including polarization, clinging, and migration of T cells (52).

The differences in survival between different CC patient

groups according to risk level may be related to immune

checkpoint inhibitors (ICIs). Inspired by newly identified

biomarkers and neoantigens created by DDR alterations,

DDR-targeting drugs have emerged as a promising therapeutic

approach. These drugs may function better in combination with

ICI-based immunotherapies, according to experimental studies

demonstrating the successful application of PD-1 suppressors in

cancers with MMR deficiency (53). Combination therapy is of

particular use in situations where insufficient neoantigens are

produced to activate the immune system. The interaction

between immunoregulators and DDR factors may improve the

stimulation of the immune response against tumor cells (54).

As mentioned before, PARP1 is an essential participant in

the DDR process. Owing to its functions in promoting cell

stability and survival, PARP1 is considered to contribute to the

immune evasion and drug resistance of cancer cells. Therefore,

PARP1 inhibitors are widely used for anti-cancer treatment.

PARP1 has been explored to influence immune components in

some types of cancers (55, 56), which may also explain the

higher proportion of inflamed immune subtypes in low-risk CC

patient populations. However, the application of PARP
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inhibitors has its limitations. For example, blockade of PARP1

inactivates glycogen synthase kinase 3b, resulting in dose-

dependent upregulation of PD-L1 and thus suppressing T-cell

activity. Combinations of PD-L1 blockers are tailored to address

this situation by restoring the sensitivity of tumor cells to the T-

cell response. Combining PARP inhibitors with anti-PD-L1

antibodies (alazaparib, olparib, and rucaparib) in therapeutic

modalities resulted in a better response than either drug

alone (57).

The repair and maintenance of PARP1 also affects immune

cells. In the process of lymphatic proliferation, coordinated

signals from PARP1 and PARP2 are needed to maintain

genomic integrity, for instance, in the maturation of T cells

(58, 59). Either PARP1 or PARP2 deficiency alone does not affect

the quantity of T cells; however, a dual deficiency will lead to a

significant reduction in numbers of peripheral blood T cells such

as CD4+ and CD8+ T cells (59). In mouse experiments,

decreased numbers of B cells were observed in the bone

marrow of animals with dual PARP1 and PARP2 gene defects.

Similar to the case of T cells, this was caused by an accumulation

of unrepaired DNA damage during proliferation (14, 60).

PARP1 and PARP2 also participate in the natural immune

response, including the activities of phagocytes and NK cells.

It is worth noting that PARP1 is essential for the inflammatory

response of phagocytes; for instance, in macrophages, it

accelerates the transcription of pro-inflammatory genes and

saves M1 macrophages from death under oxidative conditions

(61, 62). Recent studies have shown that PARP1 makes an

essential contribution to NK cell biology, for instance, in

gathering NK cells to a virus-infected area and participating in

killing tumor cells (63–65). In this study, RIPOR2 was found to

possess a strong relationship with PARP1 expression at both the

RNA and protein levels; thus, it could serve as a meaningful

signature for use in decision-making about the clinical treatment

of CC patients.

This comprehensive analysis indicates that the difference in

survival between different risk score groups is related to

interactions among GI, the stromal environment, and DDR-

related genes and the influence of these factors on the

effectiveness of immunotherapy. Among the various factors

identified here, the core protective gene RIPOR2 in the model

made the greatest contribution to many aspects, such as survival

and immunotherapy response. Thus, the expression of RIPOR2

is a potential effective marker in CC patients, with applications

in predicting response to immunotherapy.
Conclusion

To sum up, we successfully constructed a four-signature CC

prognostic risk model based on GI and TME related factors. The

model has been verified to predict all-stage CC patients
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effectively. The efficacy of prediction may result from the

comprehensive interaction between GI, DDR, and TME.

RIPOR2 showed its potential ability to foreshadow prognosis,

its positive relationship with immunological functioning cells

like T cells and ICPs, and a promisingly better response to

immunotherapy when highly expressed. Comprehensive

bioinformatical analyses combined with corresponding

validated experiments have indicated that RIPOR2 was a

protective factor in CC, which also appeared to have a close

relationship with immunotherapy responses. Furthermore,

RIPOR2 has also shown links with diversely functioning ICPs

in plenty of cancer types, the summation of which tends to

enhance immunity. In all, RIPOR2 can be taken as a promising

signature, predicting better prognosis with a wide scope

of application.
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