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A number of studies point to slow (0.1–2 Hz) brain rhythms as the basis for

the resting-state functional magnetic resonance imaging (rsfMRI) signal. Slow

waves exist in the absence of stimulation, propagate across the cortex, and are

strongly modulated by vigilance similar to large portions of the rsfMRI signal.

However, it is not clear if slow rhythms serve as the basis of all neural activity

reflected in rsfMRI signals, or just the vigilance-dependent components. The

rsfMRI data exhibit quasi-periodic patterns (QPPs) that appear to increase

in strength with decreasing vigilance and propagate across the brain similar

to slow rhythms. These QPPs can complicate the estimation of functional

connectivity (FC) via rsfMRI, either by existing as unmodeled signal or by

inducing additional wide-spread correlation between voxel-time courses

of functionally connected brain regions. In this study, we examined the

relationship between cortical slow rhythms and the rsfMRI signal, using a well-

established pharmacological model of slow wave suppression. Suppression

of cortical slow rhythms led to significant reduction in the amplitude of

QPPs but increased rsfMRI measures of intrinsic FC in rats. The results

suggest that cortical slow rhythms serve as the basis of only the vigilance-

dependent components (e.g., QPPs) of rsfMRI signals. Further attenuation of

these non-specific signals enhances delineation of brain functional networks.
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Introduction

Blood oxygenation level-dependent (BOLD) resting-state
fMRI (rsfMRI) is a powerful tool for mapping the brain
connectomes during normal function and illness (Bullmore and
Sporns, 2009; Buckner et al., 2013). Numerous studies have
shown that the performance in cognitive and sensory tasks is
strongly influenced by the resting-state functional connectivity
(FC) in relevant networks (Smith et al., 2009; Laird et al., 2011;
Tavor et al., 2016). Impairments in brain FC networks have
been shown to serve as biomarkers in a number of disease
models (Greicius, 2008; Jalilianhasanpour et al., 2019). However,
the neurophysiological basis underlying rsfMRI signals are
not completely understood, which impedes the interpretation
of these studies.

Brain slow rhythms and resting-state
functional magnetic resonance
imaging (rsfMRI)

Several studies have surmised that rsfMRI signals are related
to expression of cortical brain rhythms (He and Raichle,
2009; Scholvinck et al., 2010; Wang et al., 2012; Amemiya
et al., 2016; Leong et al., 2016; Lu et al., 2016; Matsui et al.,
2016; Wen and Liu, 2016; Chan et al., 2017), especially in
gamma rhythms (Scholvinck et al., 2010; Liu et al., 2015a,b)
and slow/delta rhythms (Lu et al., 2016; Matsui et al., 2016;
Chan et al., 2017) frequency bands. Of particular interest
are sub-1 Hz (∼0.1–1 Hz) fluctuations in delta rhythms (1–
4 Hz) (Steriade et al., 1993a,b; Steriade, 2000; Crunelli and
Hughes, 2010). From here onward, we refer to sub-1Hz
waves as slow rhythms, and coherent oscillations in the 1–
4-Hz band delta rhythms to avoid confusion. Slow rhythms
share many properties with rsfMRI signals. They exist in the
absence of stimulation, during wakefulness (Vyazovskiy et al.,
2011; McCormick et al., 2015), sleep (Massimini et al., 2004;
Crunelli and Hughes, 2010; Nir et al., 2011; David et al.,
2013), and under sedation (Steriade et al., 1993b; Volgushev
et al., 2006; Chauvette et al., 2011; David et al., 2013) and
are influenced by vigilance/arousal (Steriade, 2000; Llinas and
Steriade, 2006; Chauvette et al., 2011; McCormick et al., 2015),
and propagate across the brain (Massimini et al., 2004; Sheroziya
and Timofeev, 2014; Matsui et al., 2016). These properties
are seen in rsfMRI signal patterns (Majeed et al., 2011; Mitra
et al., 2015; Matsui et al., 2016; Yousefi et al., 2018; Liu
and Falahpour, 2020) as well. In a series of studies (Leong
et al., 2016; Chan et al., 2017; Wang et al., 2019), one group
has shown that that low-frequency (e.g., 1 Hz) optogenetic
stimulation of specific hippocampal and thalamic regions in
rats evoked increased interhemispheric homotopic FC (IHFC)
in various brain regions, whereas high-frequency stimulation of
the same hippocampal region at 40 Hz had no effect on FCs

(Chan et al., 2017; Wang et al., 2019), indicating that FC of
rsfMRI signals may reflect neuronal dynamic related to slow
rhythms. Another study in mice (Matsui et al., 2016) found
that hemodynamic signals were closely associated with transient
neuronal co-activations embedded in slow globally propagating
waves of neural activity during rest, strengthening the view
that the rsfMRI signals reflect slow wave activity. However,
resting-state FC can in principle also be generated through
other mechanisms such as gamma rhythms (Scholvinck et al.,
2010) and spontaneous fluctuations in action potential (Ponce-
Alvarez et al., 2015) between functionally connected brain
regions. Importantly, unlike slow/delta rhythms, the strength
of FC in canonical brain function networks generally decreases
with reductions in vigilance and arousal levels (Larson-Prior
et al., 2009; Hutchison et al., 2014; Bettinardi et al., 2015).
Relatedly, a recent optical imaging study (Brier et al., 2019)
indicated that the slow globally propagating neural activity in
resting-state calcium and hemoglobin signals is separable from
those that drive correlations between functionally connected
brain regions. Another study (Okun et al., 2019) showed that
the populations of neurons, which exhibit coherent fluctuations
across the brain over slow and fast time-scales, are distinct
from each other. Thus, a number of indicators exist that
suggest rsfMRI signals encoding FC in brain functional and
structural networks are distinct from fMRI signals reflecting
slow rhythms. It is also possible that these rhythms serve as
the basis of just the vigilance-dependent components of rsfMRI
signals. For instance, the rsfMRI data exhibit quasi-periodic
patterns (QPPs) wherein sets of cortical brain regions exhibit
transient coherent activity (Thompson et al., 2014, 2015; Yousefi
et al., 2018; Abbas et al., 2019). QPPs increase in strength with
decreasing vigilance/arousal (Thompson et al., 2013a; Billings
and Keilholz, 2018) and propagate across the brain (Majeed
et al., 2009; Belloy et al., 2018) similar to brain slow rhythms.
Another vigilance/arousal-dependent feature of rsfMRI signals
is a transient cortex-wide neural signal component called global
signal (Scholvinck et al., 2010; Falahpour et al., 2018) that
induces correlations between voxel time-series across the brain
that are not specific to any brain function networks. Global
signal also increases with decreasing vigilance (Falahpour et al.,
2018). In fact, some studies have shown that global signal is
related to QPPs (Belloy et al., 2018). Both QPP and global signal
complicate/confound the estimation of intrinsic FC in brain
function networks.

Role of T-type calcium channels in
generation of slow rhythms

Given the contradictory hypotheses and findings regarding
the relationship of BOLD rsfMRI signal and slow rhythms, a
critical need exists to investigate the relationship between them.
One way to do this is by examining the effects of systematically
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manipulating the expression of slow rhythms on rsfMRI signals.
This can be achieved through pharmacological interventions.
Although the slow rhythms are primarily generated through
interaction of excitatory and inhibitory neurons in the cortex
(Crunelli et al., 2015; McCormick et al., 2015), one mechanism
for expression and maintenance of slow rhythms in the brain
is through the interplay between cortical and thalamic slow
rhythm generating oscillators (Crunelli et al., 2015). This
mechanism is reviewed in detail in Crunelli and Hughes (2010)
and Crunelli et al. (2015). In brief, cortical slow rhythms are
characterized by long periods (“DOWN” states) of low-neural
activity interspersed with “UP” states of increased excitability.
The prolonged “UP” states of slow rhythms in cortical layer 5/6
neurons lead to long-lasting excitatory postsynaptic potentials
(EPSPs) in thalamocortical neurons. These EPSPs induce
slow rhythms in thalamic nuclei, which receive input from
the cortical layer 5/6 neurons. The “UP” states in thalamus
are preceded by a high-frequency burst generated by low-
threshold T-type calcium (Ca2+) channels (TTCCs). These
high-frequency bursts generate a new “UP” state of slow
rhythms in cortical layer 4 neurons. This cycle of cortex to
thalamus to cortex induction of UP and DOWN states helps
maintain the rhythms. Slow waves in different thalamocortical
circuits are not fully synchronized, which likely provide the
basis for propagative properties of slow rhythms (Crunelli
et al., 2015). A selective TTCC blocker (Dreyfus et al., 2010)
TTA-P2 (3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-
4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide), has
been shown to inhibit this thalamic bursting activity, resulting
in suppression of slow rhythms (Crunelli and Hughes, 2010;
Crunelli et al., 2014). Selective blockade of voltage-gated
Cav3.1 TTCCs in first-order thalamic nuclei leads to significant
reductions in the power of slow waves in corresponding primary
cortices in rats (David et al., 2013). Systemic administration of
the TTA-P2 induces an even greater (up to 60%) suppression of
slow cortical oscillations (David et al., 2013) in rats, both during
natural sleep and under anesthesia. TTA-P2 reversibly inhibits
TTCCs but does not engage L-type calcium channels, sodium
channels, or potassium channels and does not interfere with
glutamatergic or GABAergic synaptic currents (Dreyfus et al.,
2010). Hence, it provides ideal means for examining the effects
of suppression of slow waves without affecting other forms
of neural activity not related to TTCCs, e.g., tonic neuronal
firing that subserve cognition (Sherman, 2001). Importantly,
though TTA-P2 administration suppresses slow rhythms,
it paradoxically increases somnolence in rats (Kraus et al.,
2009; McCafferty et al., 2012; Crunelli et al., 2014). TTA-P2
does not have any renal or cardiovascular effects (Shipe et al.,
2008), and it does not affect arterial blood flow (Masicampo
et al., 2018). Hence, it is not likely to induce global changes in
cerebral blood flow.

In this preliminary study, we examined the effects of TTA-
P2 on rsfMRI signals in rodents. Based on the studies described

above, we hypothesized that systemic administration of TTA-P2
will induce significant decrease in the strength of rsfMRI QPPs.
And this reduction in the strength of signals, not specific to brain
function networks, will increase rsfMRI estimates of intrinsic
FC, thereby enhancing the power of rsfMRI technique to probe
brain function networks.

Materials and methods

Rodents and preparation

All protocols for animal studies were reviewed and approved
by the Emory University Institutional Animal Care and Use
Committee (IACUC) and were in compliance with the NIH
guidelines. Twelve Sprague-Dawley rats (male, 300–350 g) were
employed in this study. Seven rats were administered the
TTCC TTA-P2, and five were administered the vehicle. Animal
preparation and imaging were conducted with long established
techniques (Pan et al., 2013; Thompson et al., 2014, 2015) and
more details are provided in Supplementary materials. The
fMRI data were collected under dexmedetomidine (Dexmed)
anesthesia using long-established techniques (Thompson et al.,
2013b, 2014, 2015). Dexmed was administered in the form
of a 0.025-mg/kg bolus and maintained under sedation with
a constant subcutaneous (s.c.) infusion of 0.05 mg/kg/h.
Pancuronium bromide was simultaneously administered at
a constant rate of 1 mg/kg/h to minimize animal motion.
Body temperature, respiration rate, end-tidal CO2, blood
oxygen saturation (SpO2), and heart rate were all continuously
monitored. After acquiring rsfMRI data under these conditions
for 20–90 min, seven rats were injected (s.c.) with 6 mg/kg TTA-
P2 dissolved in 2.5 ml of vehicle (4% dimethyl sulfoxide (DMSO)
saline) and studied for another 60–90 min. Similarly, data from
5 other rats were acquired with just the vehicle control.

Magnetic resonance (MR) imaging

The MRI data were acquired in a 9.4-T Bruker MRI scanner
under Dexmed anesthesia regime as described above. A custom-
made oval surface transceiver radiofrequency (RF) coil with
an internal diameter of 2 cm × 2.5 cm (Pan et al., 2021) was
placed directly over the rat brain to acquire MRI signals. The
fMRI scans were acquired with a gradient-echo EPI sequence
with the following parameters: TR = 2,000 ms, TE = 20 ms, flip
angle = 60◦, matrix size 70× 70, field of view 3.45 cm× 3.45 cm.
Twenty-four 0.5-mm thick coronal slices covering the almost
the entire brain (see Supplementary Figure 1). A 2D fast
spin echo MRI scan (TR/TE = 3,500 ms/44 ms; 24 coronal
slices) was also acquired with the same resolution and coverage
as the EPI scans.

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.909999
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-909999 August 4, 2022 Time: 11:48 # 4

Khalilzad Sharghi et al. 10.3389/fnins.2022.909999

Data analysis

Functional magnetic resonance imaging (fMRI)
data preprocessing

An fMRI data preprocessing was conducted with FSL
(Smith et al., 2004) and AFNI (Cox, 1996) tools, and
in-house MATLAB scripts. The rsfMRI voxel time-series
were corrected for magnetic susceptibility-induced geometric
distortions (Andersson et al., 2018), temporally shifted to
account for differences in slice acquisition times and 3D
volume registered to a base volume to account for global rigid
motion. These time-series were co-registered to the T2-weighted
high-resolution anatomic scan, and spatially normalized to
the Paxinos atlas template (Valdes-Hernandez et al., 2011;
Paxinos and Watson, 2014), with the warp computed from
alignment of the high-resolution T2-weighted anatomic to the
Paxinos atlas template. The spatially normalized fMRI time-
series were bandpass (0.01–0.20 Hz) filtered, detrended of
similarly filtered estimated motion parameters time-courses
through linear regression, and standardized. The resultant time-
series were spatially smoothed with an isotropic Gaussian
filter (FWHM = 1 mm).

Quasi-periodic pattern (QPP) analysis
Since global signal regression (GSR) enhances the

delineation of QPPs (Yousefi et al., 2018; Abbas et al., 2019),
the whole-brain average fMRI signal was filtered (0.01–0.20 Hz)
and regressed out during the preprocessing fMRI time-series
(see Section “Functional magnetic resonance imaging (fMRI)
data preprocessing”). Finally, QPPs were extracted from the
concatenated pre-injection (Baseline) of all rats’ fMRI data.
Supplementary Figure 2 illustrates the process of identifying
the expression of a QPP from a representative rsfMRI time-
series dataset. Briefly, the QPP algorithm (Majeed et al., 2011)
randomly selects an epoch (initial guess for a QPP template)
of spatiotemporal data (5- to 10-s duration) and calculates
sliding-window correlation between the template and the
entire time-course, identifying time points of high correlation
(with a set threshold arrived at with bootstrapping; see Majeed
et al., 2011). The spatiotemporal blocks centered on these time
points are then averaged to create a revised spatiotemporal
template of that QPP, and this process is repeated until
the template converges. The changes in the strength of the
expression of QPPs over time for each fMRI scan (Baseline
and TTA-P2) for each rat were estimated through the sliding
window spatiotemporal correlation (STC) of the corresponding
fMRI time-series with the rats’ QPP template (Majeed et al.,
2011). The effects of TTA-P2 on QPPs were assessed with
between-session (TTA-P2 vs. Baseline) paired t-tests on the
mean of positive excursions of the STC curve above zero.
Similar analysis was performed to assess differences between
Vehicle and Baseline sessions for the five rats, which were only
administered the vehicle.

Interhemispheric homotopic functional
connectivity (FC) analysis

The FCs in intrinsic brain function networks were assessed
by examining the FC between homotopic brain regions in the
two hemispheres, since these are in general known to possess
high FC (Stark et al., 2008; Shen et al., 2015; Wang et al., 2019).
Further IHFC has been employed as a measure of intrinsic
FC in some recent studies examining the neurophysiological
basis of rsfMRI, which implicates slow rhythms as a likely
basis for intrinsic FC (Matsui et al., 2016; Chan et al., 2017).
To examine the effects of slow wave suppression on fMRI
IHFC, the preprocessed time-series (see Section “Functional
magnetic resonance imaging (fMRI) data preprocessing”) was
broken down into 10-min segments (in order to examine any
systematic evolution of the FC over time). Subsequently, region
of interest (ROI) average reference vectors were obtained from
the 48 homotopic brain regions that were labeled in the Paxinos
atlas space in a well-established rat MRI template (Valdes-
Hernandez et al., 2011). IHFC for each region (for a given 10-
min segment) was assessed during Baseline and TTA-P2/Vehicle
sessions through the cross-correlation coefficient (CC) between
the left and right hemisphere ROIs of the corresponding regions
in a general linear regression framework (Cox, 1996). Since the
dynamic effects of TTA-P2 on FC were found to be transient
and variable across the rats, the 10-min segment for each rat
where most of the homotopic ROIs showed maximum FC was
selected as the one where the effects of TTA-P2 was strongest
across the brain. Since all the 10-min segments in the Baseline
condition are equivalent, Baseline IHFC was arrived at by taking
the median of the IHFC in all 10-min segments. The effects
of TTA-P2 (and Vehicle) were assessed through paired t-test
on the IHFC of different brain regions. Multiple-comparison
correction was conducted through false discovery rate (FDR)
(Benjamini, 2010). Further reproducibility of TTA-P2 effects
across the rats for each ROI was assessed via the number of rats,
which exhibited increased IHFC after TTA-P2 administration as
a fraction of the total number of rats.

Thalamocortical functional connectivity (FC)
analysis

Since the mechanism of slow rhythms suppression
involves blockade of thalamic TTCCs, the FCs in different
thalamocortical networks were estimated through the CC
between ipsilateral Paxinos ROIs of primary somatosensory,
motor, auditory and visual cortex and their corresponding
thalamic centers (ventrobasal (VB) nucleus, ventrolateral
(VL) nucleus, medial geniculate nucleus (MGN), and lateral
geniculate nucleus (LGN) ROIs). Similarly, IHFC of these
four first-order thalamic nuclei and intrathalamic FC between
them were also obtained. TTA-P2 effects on FC were assessed
as described above (Section “Interhemispheric homotopic
functional connectivity (FC) analysis”). Intrathalamic FC were
assessed between LGN and the ventrobasal (VB) nucleus
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complex, and between MGN and ventrolateral (VL) nucleus.
This was because VB and VL nuclei, and LGN and MGN are
adjacent, which could lead to overlap between some of their
fMRI voxels, and vasculature. The thalamic nuclei ROIs were
obtained using a publicly available atlas (Papp et al., 2014).

Seed-based cross-correlation maps
Finally, the whole-brain FC maps of the rat barrel cortex

(S1BF) and auditory cortex [both of which are unimodal regions,
which are known to possess high IHFC (Stark et al., 2008)],
were obtained through CC between all voxels in the brain and
the right S1BF and right auditory cortex seed ROI average
fMRI time-series vectors, for all 10-min fMRI segments of each
session. TTA-P2/Vehicle vs. Baseline differences in the FC group
paired t-tests are as described above (Section “Interhemispheric
homotopic functional connectivity (FC) analysis”). Statistical
inference test maps were clustered, and the significance of
activations, accounting for multiple comparisons, was derived
by means of Monte Carlo simulation of the process of image
generation, spatial correlation of voxels, intensity thresholding,
masking, and cluster identification (Cox et al., 2017; Gopinath
et al., 2018).

Results

None of the rats exhibited significant motion (i.e., frame-
to-frame displacement was always less than 0.02 mm).
Furthermore, no meaningful changes were observed in the
physiological signals monitored: respiration rate, hear rate,
oxygen saturation, and body temperature between Baseline and
TTA-P2/Vehicle sessions.

TTA-P2 administration reduced
strength of quasi-periodic patterns
(QPPs)

Figure 1A shows a QPP with anterior-to-posterior
propagation. The fluctuation in the strength of the QPP before
and after injection of TTA-P2 is shown for a representative
rat administered TTA-P2 (Figure 1B), and one administered
vehicle (Figure 1C). TTA-P2 administration significantly
(paired t-test, p < 0.002) reduced the strength (mean of
positive STC values) of QPPs compared to Baseline. All the rats
exhibited suppression of QPPs after TTA-P2 administration.
The amount of suppression of QPPs induced by TTA-P2 varied
from 18 to 58% (mean 48%) across the rats (see Figure 1D).
Performing QPP analysis without GSR (Supplementary
Figure 3) reduced the significance of TTA-P2 vs. Baseline
differences to paired t-test, p < 0.005. This analysis yielded
8–37% (mean 27%) suppression in QPPs after TTA-P2

administration. Vehicle did not appreciably alter the strength of
the QPPs, with or without GSR.

TTA-P2 administration increased
interhemispheric homotopic
functional connectivity (IHFC)

Next, we examined IHFC of the Paxinos atlas regions.
This Paxinos template (Valdes-Hernandez et al., 2011) has 48
homotopic ROIs (as listed in Supplementary Table 1), but 8
of these ROIs did not yield any fMRI signal in one or both
hemispheres. Thirty-one of the remaining forty ROIs exhibited
(Figure 2) significantly [paired t-test, p < 0.05 (Table 1)]
increased IHFC after injection of TTA-P2. FDR correction
rendered TTA-P2 vs. Baseline differences in IHFC in 4 out of
these 31 ROIs above significance (FDR q = 0.05) after accounting
for multiple comparisons. Reproducibility of the IHFC increases
after TTA-P2 administration varied between 86% and 100%
(mean 93%) among the IHFCs of the ROIs, which exhibited
significant increase in IHFC after TTA-P2 administration
(Supplementary Figure 4). Analyzing IHFC after GSR yielded
TTA-P2 engendered enhancements in 22 ROIs after FDR
correction (Supplementary Table 2). Vehicle administration
did not evoke appreciable (significant) changes in IHFC.

TTA-P2 administration did not affect
thalamocortical functional
connectivity (FC)

The FC between primary sensory and motor cortices
and their corresponding first-order thalamic nuclei were not
significant (1-sample t-tests, p > 0.05), both in Baseline
and TTA-P2 sessions. TTA-P2 administration did not have
appreciable effect on these connections. The IHFC of these
thalamic nuclei, and FC between VB and LGN thalamus,
and between MGN and VL thalamus increased with TTA-
P2 administration, but the results were not significant at
paired t-test, p < 0.05. However, these intrathalamic FCs were
significantly strong (1-sample t-tests, p < 0.05) in both sessions.
GSR did not change the results appreciably.

TTA-P2 administration increased
functional connectivity (FC) in
canonical brain function networks

The TTA-P2 significantly (paired t-test, FWE α < 0.05)
increased the rsfMRI FC between right S1BF and some
areas in somatosensory, motor, auditory, visual, and parietal
cortices bilaterally (Figure 3). Right auditory cortex exhibited
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FIGURE 1

(A) Eight frames from the quasi-periodic pattern (QPP) template obtained from both groups’ pre-injection concatenated functional time-series
(window length = 10 s). (B,C) The evolution of the QPP strength with time assessed with spatiotemporal correlation of the fMRI time-series with
corresponding QPP template on one rat (B) after systematic administration of TTA-P2; and one rat (C) after systematic administration of Vehicle.
(D) The QPP strength changes for each rat in the TTA-P2 group. The values are estimated as the mean of positive excursions of the
spatiotemporal correlation (STC) curve above zero, normalized by the maximum correlations for each subject.

FIGURE 2

Paxinos region of interest (ROIs) exhibiting significantly (p < 0.05) enhanced interhemispheric homotopic functional connectivity (IHFC) relative
to Baseline after TTA-P2 injection overlaid on a Paxinos atlas brain. ROIs shown in blue did not achieve significance.
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TABLE 1 TTA-P2 vs. baseline interhemispheric homotopic functional connectivity (IHFC) paired t-test for different Paxinos region of interest (ROIs).

Paxinos ROI t p FDR p Paxinos ROI t p FDR p

AID right 4.209 0.006 0.02 PtPD right 4.038 0.007 0.021

AIP right 2.57 0.042 0.056 PtPR right 4.443 0.004 0.02

AIV right 6.048 0.001 0.017 RSD right 2.011 0.091 0.104

APir right NA NA NA RSGb right 1.079 0.322 0.322

Au1 right 3.29 0.017 0.036 RSGc right 1.597 0.161 0.17

AUD right 4.266 0.005 0.02 S1 right 5.687 0.001 0.017

AuV right 2.126 0.078 0.091 S1BF right 3.277 0.017 0.036

Cg1 right 3.056 0.022 0.039 S1DZ right 3.002 0.024 0.039

Cg2 right 3.192 0.019 0.038 S1DZ0 right 1.805 0.121 0.131

DI right 3.258 0.017 0.036 S1FL right 3.944 0.008 0.022

DIEnt right NA NA NA S1HL right 4.796 0.003 0.02

DLEnt right 2.544 0.044 0.057 S1J right 1.918 0.104 0.115

DLO right 2.623 0.039 0.054 S1Sh right NA NA NA

Ect right 3.821 0.009 0.023 S1Tr right 5.168 0.002 0.02

Fr3 right 2.289 0.062 0.078 S1ULp right 3.047 0.023 0.039

GI right 2.891 0.028 0.041 S2 right 3.562 0.012 0.03

GIDI right NA NA NA TeA right 2.633 0.039 0.054

LPtA right 4.809 0.003 0.02 V1 right 6.126 0.001 0.017

M1 right 2.956 0.025 0.039 V1B right 3.124 0.02 0.039

M2 right 4.427 0.004 0.02 V1M right 4.026 0.007 0.021

MEnt right NA NA NA V2L right 4.277 0.005 0.02

MPtA right 2.21 0.069 0.084 V2ML right 2.967 0.025 0.039

PRh right NA NA NA V2MM right 1.458 0.195 0.2

PtPC right NA NA NA VIEnt right NA NA NA

dof, degrees of freedom; FDR p, false discovery rate corrected p; see Supplementary materials for Paxinos ROI abbreviations.

significantly increased FC to contralateral auditory, visual, and
somatosensory areas (Figure 4). Both seed ROIs exhibited
strong FC with most of the above functionally connected
regions in the Baseline session (Supplementary Figures 5, 6 ).
These effects persisted after GSR (Supplementary Figures 7, 8),
but the extent and strength of the TTA-P2 vs. Baseline FC
differences decreased. Vehicle administration did not evoke
appreciable changes in FC.

Discussion

Context and rationale for study

Although 20–40% of the rsfMRI signal can be attributed
to vasomotion, and physiological noise, there remains a large
portion of the rsfMRI signal that can be attributed to neural
signals (Mayhew et al., 1996; Biswal et al., 1997; Mitra et al., 1997;
Birn et al., 2006; Bianciardi et al., 2009). The neurophysiological
basis of these signals are not clear with the first studies directly
relating rsfMRI signal to neural activity published not long
ago (Leopold et al., 2003; Nir et al., 2008). Some groups
have hypothesized that rsfMRI signal underlying FC in brain

function networks could arise from spontaneous neural activity
in these networks in the absence of any tasks (Chan et al., 2015;
Ponce-Alvarez et al., 2015). On the other hand, many groups
have observed correlations between fluctuations in the power
of different brain rhythms obtained from electrophysiological
recordings and BOLD fMRI signal (Scholvinck et al., 2010;
Pan et al., 2013; Liu et al., 2015b; Lu et al., 2016). However, it
must be noted that these observations do not clarify whether
fMRI signal encode all of the neuronal dynamics that compose
brain rhythms (Matsui et al., 2016), or discrete events within
or driving these rhythms (Schwalm et al., 2017). It must be
noted that different components of the rsfMRI signal could
reflect different neural phenomena. For instance, fMRI signals
linked to slow rhythms could be distinct from those that
serve as the basis for rsfMRI FC in canonical brain function
networks. In contrast with slow rhythms, the strength of FC
in resting-state brain function networks generally decreases
with reductions in vigilance and arousal levels (Larson-
Prior et al., 2009; Hutchison et al., 2014). Relatedly, results
from a few recent studies (Brier et al., 2019; Okun et al.,
2019) indicated that hemodynamic signals related to globally
propagating slow waves of neural activity are distinct from those
that induce correlations between functionally connected brain
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FIGURE 3

TTA-P2 vs. Baseline t-statistic maps highlighting regions with enhanced functional connectivity (FC) to right S1BF ROI after TTA-P2
administration. The slice-location coordinates are in Paxinos space. Left hemisphere is on the left-hand side of the maps.

FIGURE 4

TTA-P2 vs. Baseline t-statistic maps highlighting regions with enhanced functional connectivity (FC) to right auditory cortex region of interest
(ROI) after TTA-P2 administration. The slice-location coordinates are in Paxinos space. Left hemisphere is on the left-hand side of the maps.

regions. Hence, we hypothesized that only the arousal/vigilance-
dependent components of rsfMRI signals arise from neural
events related to expression of slow rhythms. And removing
these rsfMRI signal components will enhance the delineation of
brain function networks.

TTA-P2 attenuates functional magnetic
resonance imaging (fMRI)
quasi-periodic patterns

The fMRI data exhibit QPPs wherein sets of cortical brain
regions exhibit transient coherent activity (Majeed et al., 2009,
2011). These patterns propagate across the brain similar to
slow rhythms brain (Majeed et al., 2009; Belloy et al., 2018). In
addition, just like slow rhythms, QPPs increase in strength with
decreasing vigilance/arousal (Thompson et al., 2013a; Billings
and Keilholz, 2018), QPPs also complicate the estimation of

FC with rsfMRI, either by existing as unmodeled signal or
by inducing additional wide-spread correlation between voxel
time-courses of functionally disparate brain regions. To examine
the dependence of QPPs on slow rhythms, we employed a
well-established pharmacological model, which has been shown
to reproducibly suppress slow rhythms in rats (Dreyfus et al.,
2010; Crunelli et al., 2015). As described in “Role of T-type
calcium channels in generation of slow rhythms,” slow waves are
maintained through the interplay between cortical and thalamic
slow rhythm generating oscillators (Crunelli and Hughes, 2010;
Crunelli et al., 2015). Importantly, the initiation of UP states
of slow rhythms in thalamus is preceded by a TTCC-mediated
high-frequency burst of thalamocortical EPSPs that initiate a
new UP state of slow rhythm in the cortex. Administration of
the TTCC blocker TTA-P2 suppresses this high-frequency burst
of thalamocortical EPSPs, thereby suppressing slow rhythms
(Dreyfus et al., 2010; David et al., 2013). In our experiment,
systemic administration of TTA-P2 led to significant attenuation
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in the strength of the QPPs. These results indicate that
putative suppression of slow rhythms diminishes the strength
of QPPs, thereby reducing the arousal/vigilance-dependent
contributions to fMRI signal. This effect was observed in all
seven rats, which were administered TTA-P2 in this experiment,
indicating that it is very reproducible. The suppression of QPPs
occurred almost immediately after TTA-P2 administration. The
absence of electrophysiological recordings time-locked to the
fMRI signal in this study rendered it impossible to estimate
relationship between QPPs and slow rhythms. However, one
group (Schwalm et al., 2017) has shown cortex-wide correlations
between fMRI signal and onset of cortical slow waves. This
indicates that the global increases in signal often seen with
transition between vigilance/arousal states (Liu et al., 2015a; Liu
and Falahpour, 2020) could be related to the high-frequency
burst of EPSPs that thalamus sends to the cortex at onsets
of slow wave UP states. Similarly, QPPs could be related to
the propagation of these slow wave onsets across the cortex
(Crunelli et al., 2015). The fact that the strength of both global
signal and QPPs are low during wakefulness could be related to
the decreased frequency of thalamic bursting events, and hence
onsets of slow wave UP states during wakefulness (Sherman
et al., 2006; Vyazovskiy et al., 2011).

TTA-P2 enhances functional
connectivity (FC) in brain function
networks

In addition to suppression of QPPs, TTA-P2 administration
led to increased IHFC between homotopic cortical ROIs,
especially those belonging to unimodal regions (e.g., primary
sensory and motor cortices), which have been shown to possess
highest IHFCs in the brain (Stark et al., 2008). Nine Paxinos
cortical ROIs did not exhibit significant increase in IHFC after
TTA-P2 administration. Seven of these nine ROIs were in
heteromodal regions (frontal and associative cortices), which
generally do not exhibit strong IHFC in rsfMRI studies (Stark
et al., 2008; Shen et al., 2015). The remaining two were very small
ROIs, thereby more susceptible to noise. The reproducibility
of these results was not as strong as the suppression of QPPs
(Supplementary Figure 4). Reproducibility varied between
86 and 100% (mean 93%) among the IHFCs of the ROIs,
which exhibited significant increase in IHFC after TTA-P2
administration. This lack of perfect reproducibility could be
due to variations in effects of anesthesia and/or the drug
across the rats. The effects of the drug were variable with
some rats exhibiting immediate decreases in IHFC after
TTA-P2 injection, whereas in some cases, IHFC increases
were more delayed.

Similar to IHFC, intrinsic FC in brain areas functionally
connected to rat barrel and auditory cortices also increased
after TTA-P2 administration. TTA-P2 significantly increased

the rsfMRI FC between right S1BF and some areas in
somatosensory, motor, auditory, visual, and parietal cortices
bilaterally. Anatomical and functional connections between
rat barrel cortex and these brain areas have been observed
in a number of studies (Frostig et al., 2008; Bedwell et al.,
2014; Zakiewicz et al., 2014). Right auditory cortex exhibited
significantly increased FC to contralateral auditory, visual,
and somatosensory areas, consistent with prior functional and
anatomic tracing studies (Smith et al., 2010; Schormans et al.,
2016; Thomas et al., 2020). Thus, the suppression of arousal-
dependent fMRI signals (QPPs) by TTA-P2 increases apparent
intrinsic FC in cortical brain function networks as hypothesized.

Finally, thalamocortical FC between first-order thalamic
nuclei and cortical regions to which they project to did not
change appreciably after TTA-P2 administration. However, the
strengths of thalamocortical FC in both Baseline and TTA-
P2 sessions were also low. Studies have shown that the light
anesthetic regimen employed in our study could be analogous
to slow wave sleep, both in terms of the slow rhythms
(Torao-Angosto et al., 2021) and FC patterns (Greicius et al.,
2008; Bettinardi et al., 2015). Thalamus can be decoupled
from cortex (in terms of tonic thalamic activity) during some
general anesthesia conditions (Suzuki and Larkum, 2020), and
thalamocortical connectivity is often reduced during anesthesia
and deep sleep (Esser et al., 2009; Hudetz, 2012; Picchioni
et al., 2014). On the other hand, IHFC of thalamic nuclei and
intrathalamic FC, both increased after TTA-P2 administration,
though the differences were not significant (paired t-test,
p > 0.05). Furthermore, both IHFC and intrathalamic FC were
significant and strong in both Baseline and TTA-P2 session.
Since there are no interhemispheric homotopic monosynaptic
connections between these thalamic nuclei, this indicates that
the strong rsfMRI IHFC observed between them is polysynaptic
in nature. Interestingly, thalamic fMRI signal has been observed
to decrease with arousal/vigilance in contrast to cortical global
signal and QPPs in many studies (Chang et al., 2016; Liu and
Falahpour, 2020). Blockade of TTCCs suppress slow rhythms
in thalamus along with the cortex. However, thalamic signal
increased in our study after TTA-P2 administration (i.e., slow
wave suppression). Hence, decreases observed in thalamic signal
with vigilance/arousal (Chang et al., 2016; Liu and Falahpour,
2020) are likely not related to slow rhythms.

Limitations and pitfalls

Since this was a preliminary study, there are still a lot
of unresolved issues. The major drawback of this study is
that electrophysiological data were not acquired during the
fMRI scans. Hence, there is no direct evidence that cortical
slow rhythms were attenuated by TTA-P2. Although a well-
established pharmacological model (David et al., 2013) for slow
wave suppression was employed, lack of electrophysiological
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recordings time-locked to the fMRI data hindered both
confirmation of slow wave suppression and ability to obtain
quantitative relationships between slow rhythms and fMRI
QPPs. Furthermore, although strength of QPPs decreased after
TTA-P2 administration in all rats, the magnitude of suppression
of QPPs varied significantly across the rats. In addition, the
dynamic changes in IHFC with time exhibited large variations
across the rats in both Baseline and TTA-P2 sessions. Obtaining
simultaneous electrophysiological data could have helped to
separate the variabilities that could be attributed to drug and
anesthetic effects.

Second, although physiological parameters: respiration
rate, end-tidal CO2, hear rate, oxygen saturation, and body
temperature were monitored, these data could not be digitally
recorded and time-locked to the fMRI data. Observationally,
no substantial changes were observed in these physiological
responses between Baseline and TTA-P2 sessions, which is
consistent with previous studies (Shipe et al., 2008; David
et al., 2013). However, the contributions of these physiological
responses, which are known to affect BOLD fMRI data (Birn
et al., 2006; Chang et al., 2009), could not be regressed out.
Physiological noise was minimized before estimation of QPPs
with GSR. Performing QPP analysis without GSR did not
change the conclusion that QPP strengths were significantly
attenuated upon TTA-P2 administration. The FC results
presented in Figures 2–4 were obtained without GSR due to
well-known confounds (Murphy et al., 2009) during estimation
of correlations. Analyzing seed ROI based FC after GSR yielded
TTA-P2 engendered IHFC enhancements in only 22 ROIs after
FDR correction (Supplementary Table 2). However, GSR did
not affect the maps of TTAP2 vs. Baseline paired t-tests in FC
to right S1BF and right auditory cortices ROIs significantly (see
Supplementary Figures 7, 8).

Ideally, the rats should be scanned when they are awake.
However, this was not feasible within the constraints of this
study. Slow rhythms are suppressed by TTA-P2 under even deep
levels of anesthesia in the studies (David et al., 2013) validating
the pharmacological model employed in this project. These
studies employed xylazine and ketamine, whereas Dexmed and
pancuronium bromide were employed in this project. At the
low levels of anesthesia employed in this study, the two drug
combinations should have similar effects. FC networks have
been reliably obtained under both these anesthesia regimens
in rats (Hutchison et al., 2010; Magnuson et al., 2014).
However, Dexmed anesthesia best approximates natural sleep,
in terms of its electrophysiological signatures and sensitivity to
slow rhythms among different classes of anesthesia including
isoflurane and ketamine (Musizza et al., 2007; Akeju and
Brown, 2017). Furthermore, we could not employ isoflurane
in this study as it can affect the action of the drug TTA-P2
(Joksovic et al., 2005).

The fMRI cortico-cortical FC decreases but is by and large
intact in general going from wakefulness to the low levels of

anesthesia employed in this project (Hutchison et al., 2014;
Magnuson et al., 2014; Bettinardi et al., 2015). This is consistent
with the results of this project. Similarly, arousal-dependent
fMRI signal and slow rhythms, while reduced, are also present
during light anesthesia and wakefulness. Hence, results of our
project are translatable to common fMRI studies conducted
while subjects are awake.

Finally, the sample size of this preliminary study was small,
which reduced the effect size. Hence, the experiments will need
to be repeated with larger sample sizes to confirm these results.
All of these above limitations will be eliminated in future studies
planned for this project.

Conclusion

The results indicate that the vigilance-dependent
components of the rsfMRI signal (e.g., QPPs) reflect the
dynamics of cortical slow rhythms. Suppression of slow
rhythms reduces the strength of vigilance-dependent rsfMRI
signals and enhances intrinsic FC derived via rsfMRI in
canonical brain function networks. These results have profound
implications to our understanding of neurophysiological
basis of rsfMRI signals. Future work would include
large sample sizes, and simultaneous EEG/optical imaging
recordings to directly examine cortical slow rhythms, and
intrathalamic administration of TTA-P2 to specifically target
only those TTCCs that are part of thalamocortical slow wave
generating unit.
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