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Carsharing scale has been increasing rapidly with sharing economy. However, many

users are reluctant to rent cars any longer due to the low-quality of interactive experience

and usability, especially in terms of the dashboard design. This challenge should be

urgently addressed in order to maintain the sustainable development of car-sharing

industry and its environmental benefits. This study aims to investigate the relationship

between users’ driving activities (e.g., searching time, reading time, eye movement,

heart rate) and dashboard layout. This study was conducted based on the experimental

investigation among 58 respondents who were required to complete driving tasks in

four types of cars with different dashboard layouts. Afterwards, a prediction model was

developed to predict users heart rate (HR) based on the long short-term memory model,

and logistic models were used to examine the relationship between the occurrence

probability of minimum HR and dashboard reading. The results showed that the system

usability of a dashboard was related to the drivers’ eye movement characteristics

including fixation duration, fixation times and pupil diameter. Most indicators had

significant effects (p < 0.05) on the system usability score of corresponding dashboard.

The long short-termmemorymodel network (RMSE= 1.105, MAE= 0.009) was capable

of predicting heart rate (HR) that happened in the process of instrument reading, which

presented a periodic pattern rather than a continuous increase or decrease. It reflected

that the network could better fit the non-linear and time-sequential laws of HR data.

Furthermore, the probability of the lowest heart rate occurrence during the interaction

with four dashboards was influenced by the average searching time, reading time and

reading accuracy that were related to a specific layout. Overall, this study provided a

theoretical reference for uncovering users’ adaptive behaviors with the central control

screen and for the optimal choice of a suitable dashboard layout in interface design.
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INTRODUCTION

Sharing economy has promoted automobile industry
development, along with which car-sharing scale has been
expanding dramatically. It is estimated that there have been more
than five million carsharing users all over the world (1). However,
many users are unwilling to use shared cars any longer, whilst
the business modes (e.g., business to customer, peer-to-peer) are
mature and friendly and carsharing has a series of environmental
benefits (the reduction of vehicle ownership and emissions,
the increase of flexibility of transit and the increase in land
effectiveness) (2). To uncover the reason making these people
abandon carsharing service is urgent andmeaningful to maintain
carsharing industry and promote its environmental benefits for
sustainable development. Using behavior difference from the
private cars is one of the key factors, where users can only own
the right to use the car for a temporarily short term so that
people will feel difficult in adapting themselves fully to shared
cars, similar with the driving experience of a newly purchased
car. Besides, car rental needs the users to go through processes
of car ordering, car searching in the parking lot and getting
in the car. When the user accesses to the car, it is necessary
to judge whether the car is consistent with that displayed on
the ordering APP interface and whether there are damaged or
missing parts. These early cognitive activities would enhance
users’ sense of tension and fatigue, which is different from private
cars that can be driven directly. It indicates that carsharing needs
to be additionally compensated in terms of drivers’ cognition
to make the industry obtain more acceptance. In addition,
for both business to customer car sharing or time-sharing car
rental, human machine interface (HMI) features exclusive to an
individual automobile brand are not suited for car sharing and
will cut down the flexibility of users when interacting with the
cars (3).

During the use of shared cars, drivers are required to read
necessary information from dashboards to master running state
of cars. This process indicates the significance of dashboard
design for improving people’s interactive experience with cars. In
particular, the development of dashboard design has experienced
many stages such as pure machinery, liquid crystal display
(LCD) combined with machinery, and digital instrument. These
different dashboard features may lead users to be exposed to
different types of automobiles and a variety of dashboards in
shared cars. As a consequence, the adaptability of dashboard
needs to be revealed. No matter how advanced the dashboard
display technology is, if the information recognition and visual
interaction with the interface are improper, there will be
increasing possibilities of safety issues. In particular, it is found
that an off-road glance of more than 2 s would greatly increase
the incidence of driving risks (4).

A digital instrument panel integrates more driving
information into the interface, displaying navigation
information, running status and vehicle driving control
through an LCD screen. Drivers can get an overall description
of the car intuitively from the instrument panel (5). However,
the mode that drivers receive the feedback from cars, such
as the visual feedback and auditory feedback, through digital

instrument panels should be concerned, in particular when
drivers should be informed appropriate feedback according to
actual driving scenes. Nevertheless, the cognitive process of the
use of shared cars are different from those of private cars (6).
It is difficult for users to quickly understand and master the
information through an unfamiliar interaction scheme. In the
context of time-sharing rental cars, reading efficiency and mental
load induced by different dashboard layouts are of great value to
improve driving safety and user experience.

A driving simulator was therefore used to simulate
acceleration, uniform velocity running and deceleration
behaviors in this paper, in order to study the usability of
different dashboard layouts. In particular, reading efficiency and
driver’s mental load of tested users were investigated with the
requirements of reporting their readings on digital dashboard
during driving. Afterwards, this study develops the prediction
models of heart rates of drivers based both the long short-term
memory model (LSTM) and logistic model in order to reveal
the relationship between user heart rate and reading efficiency.
Overall, this study is of significance to understand people’s
physiological behaviors toward environmental design in the
shared cars and to promote the optimization of dashboard design.

LITERATURE REVIEW

The HMI research works provided theoretical support for
ergonomic assessment and interface evaluation of mechanical
equipment and medical devices (7–9). The study on distraction
and inattention caused by the HMI of in-vehicle information
system (IVIS) was also a hot spot. For drivers, more than
90% information was obtained through visual channels when
perceiving the external environment (10). In recent years, there
were a growing number of driver assistance systems (DAS) in the
automobile market. These functions, such as self-adaptive cruise
and lane keeping system, reduced the measurement and control
tasks of drivers (11), but put forward greater demands for the
layout design works of dashboards and the recognition efficiency
of drivers, especially in the era of aging. For example, from the
perspective of take-over performance in intelligent vehicles, the
average reacting time of older drivers was at least 1.2 s longer than
that of young drivers (12). The in-vehicle HMI dimensions had
a significant impact on drivers’ task completion time (13), but
a reasonable layout of the dashboard also played an important
role in the driver’s recognition efficiency. However, at present,
people tended to just study the shape and character encoding
of instrument panels (14). There are few researches on how
these specific design factors are organized together to affect the
driver, which may cause the influence of the design factors to be
explained vaguely.

The display interface had an important effect on the visual
load, work performance and subjective reaction in the use
of automobiles (15). In the transition period to intelligent
vehicles, new technologies drove the design works of automobile
interactive experience to users’ pleasure, integrated touch panel
research, multi-channel interaction mode and so on (16). The
emotion of car sharing users during driving was an important
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embodiment of the quality of in-vehicle display design. For
example, drivers’ satisfaction was related to the character lines
of the dashboard with a 30% further converging point (17).
For the automobile instrument panels, users could identify the
images of dashboards according to the dimensions of visual
acceptability, emotion and evaluation by the PAD scale, and
there was a correlation between the arousal and the evaluation
when reading the dashboard (18). A research using a virtual
prototype also showed that a relationship existed between user
impression and size, color, number of items, character/graphic
size and gauge size of the dashboard (19). The results of these case
studies illustrated that interaction performance of the dashboard
could be adequately explained by design. However, in addition
to impression and emotion, the effect of the designed dashboard
layout on human physiological senses were not fully explained.

Automobile dashboards could be mainly divided into two
types: center-locational ones and driver-orientational ones (20),
and the visual ergonomic performance during interaction with
the two types of panels was divergent. The dashboard system
might produce different effects on the driver’s psychological
burden and feelings, thus affecting the information acquisition
and operation behaviors of the driver in the cabin (21). The visual
recognition efficiency of the form (circle or linear), indicators
(pointers or bar graphs), and direction (horizontal or vertical) of
the gauges on various instrument panels was different. Among
these elements, the efficiency of linear instrument form with
a pointer as the indicator and horizontal direction display
was higher, while the drivers preferred round instruments
subjectively (5).

For automobile users, the eye-movement data could be
used to uncover their visual perception of grille, waistline,
and engine hood, etc. (22). And some ocular parameters
could distinguish a certain degree of sleepiness accurately
in commercial motor vehicles (23). Besides, eye-movement
interaction was an important interaction mode of autonomous
driving (24), which was of great significance to the driving
scenes with a large amount of information such as instrument
reading. Eye-movement data, including gaze and blinks, could
be combined with physiology signals (such as heart rate and
skin conductance), facial expression and behaviors to evaluate
the state of intelligent vehicle drivers effectively (25). Yet, some
limitations existed in the collection and analysis of eye tracking
data. For example, although the driver noticed a stimulus and
some fixations occurred, the eye tracking information could not
determine whether the fixations were due to interface interaction,
or purely because the driver was obliged to look elsewhere (26).
Therefore, this paper integrated task completion time andmental
stress changes of the drivers with eye-movement analysis to get
the conclusions.

Physiological control system maintained the balance between
the system and the internal and external environment through
the interaction and feedback among multiple variables. Among
them, heart rate (HR), respiration (RESP), blood pressure (BP),
and other important physiological variables could show complex
variation patterns in different time scales (27). In transportation,
such as cycling, electrocardiogram (ECG) could be used to
estimate the real-time blood pressure as a feedback of the

physiological signal changes during the process of behavior
completion (28). For a driver who was stimulated by a nervous
or intellectual signal while other conditions were relatively
unchanged, the HR varied with the strength of the signal (29). On
the part of car driving, the alteration of information input would
give rise to the variation of stress level and then the fluctuation
of HR, which was the physiological connection between HR
and stress (30). Literatures (31–33) all applied ECG signals to
analyze human-vehicle interaction behaviors. The measurement
and analysis of driver ECG is a common research method from
the field of neuropsychology, but from the perspective of driver
visual attention, few studies combined ECG signal with eye
movement. In this study, ECG data were put into practice to
combine with the eye movement law and explore the subject’s
visual arousal degree during the dashboard reading experiment.

In recent years, data-driven prediction methods had attracted
more attention from researchers (34–36). Like many machine
learning applications, this kind of prediction problems adopted
classification algorithm and regression algorithm to deal with
the data. With a series of major breakthroughs in speech
and behavior recognition in the field of transportation, the
long short-term memory (LSTM) network showed a strong
ability in information mining and deep representation when
tackling time series problems. Duan et al. successfully solved
the problem of pedestrian trajectory prediction using LSTM
(37). And some scholars tried to apply this network to vehicle
trajectory prediction (38, 39). Besides, Alahi et al. proposed a
Social Long Short-Term Memory (S-LSTM) model (40). The
space was meshed, and then the implicit features of nearby
individuals around a certain one were pooled according to the
grid structure. For people’s mental stress prediction, the model
could not only reflect the forward and backward correlation
of HR signals, but also deal with the problem of long-term
dependencies (41). However, research on the recognition of HR
in the process of instrument reading is not sufficient. For the
prediction of HR data during the specific task, the parameter
adjustment of the model needs to be studied.

METHODS

Experiment
The study was oriented to typical dashboard layouts and used
a simple driving simulator to conduct experiments (Figure 1).
The simulator was commonly used in driving schools in
China, and existing research showed that it could effectively
collect people’s driving behaviors (13). Interaction efficiency,
eye movement characteristics, mental stress changes and system
usability were collected.

Stimuli
Digital dashboards of different automobile brands present
various information element layouts, which are based on
the distinctions of the instrument information architectures.
Conventional functions of the dashboards are composed
of relatively fixed parts, which can be summarized as:
tachometer, speedometer, water temperature gauge, fuel gauge,
gear information, signal light, air temperature, time, multimedia
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FIGURE 1 | Diagram of experimental design.

information and other driving related information. According to
our investigation to the market and the conclusion of literatures
(42, 43), the current layouts of automobile dashboards could be
divided into four types (Figure 2).

Interface prototypes of four kinds of dashboard layouts as
the stimuli were adopted in this paper. These prototypes were
saved as GIF images and the pointers could rotate at a certain
speed to simulate the readings of the dashboard. The dashboard
size, line width, division value, scale and pointers were unified.
The colors of the background, pointers and scale lines of the
instrument panels were set to black, red and white, respectively.
In order to avoid the difference of scale line density on arcuate
meters from affecting the subjects’ cognition, the instruments in
the four interface prototypes were all circular. An iPad 2 (1024 ∗

768dpi) was used to present the prototypes, which was attached in
front of the dashboard position of the driving simulator’s screen
(21.5 inches, 1920∗1080dpi). The size of the prototypes on the
iPad was the same as the dashboard in the simulator display,
and other information on the screen would not be sheltered. The
subjects were asked to use the driving simulator to complete the
driving tasks.

Equipment
The ECG signals were collected by a 16-channel bioelectrical
amplifier (Neuracle Co. Ltd., China) equipped with a NeuSen
system. Two electrodes were attached to the back of the
subjects’ hands to gather the signals. The amplifier would
not hamper the driver’s operations. The sampling frequency
was 1,000 Hz.

After analyzing the raw ECG with noise and observing
the amplitude spectrum, a band-pass filter was devised
by MATLAB ver. R2018a. By filtering the original ECG
signals, high frequency noise and interferences were removed.

The filtered signals including P waves, QRS waves, T
waves and U waves were more in line with the rhythm
of heartbeat.

For collecting the subjects’ eye movement data, a head
mounted eye tracker (SMI Co. Ltd., German) was utilized with
a sampling frequency of 60 Hz.

Procedure
The experiment was divided into three stages to be carried out
(Figure 3):

(1) Before the experiment, the staff explained the test items
and precautions to ensure that the subjects understood the
purpose and process of the experiment.

(2) At the beginning of the experiment, the subjects needed to
accelerate to the speed of 60 km/h [the high speed on ordinary
roads in China (44)] and drove at this speed. After that, the
staff placed the iPad with the dashboard prototypes in front
of the simulator screen and started recording. Each round of
driving tasks lasted about 135 s. The driving environment was on
urban roads (Figure 4). The driving tasks included: (1) straight
line driving; (2) turning left; (3) turning right; (4) shifting
gears according to the prompt information; (5) crossing an
intersection; (6) crossing a crosswalk; (7) turning around; (8)
parking on the side. The subjects needed to perform four rounds
of driving tasks totally and the whole experiment lasted about
9min. Each time the subject completed one round of tasks
and returned to the starting point of the route, the dashboard
prototype on the iPad would be switched to the next one. In
the process of driving, the subjects should observe the prototype
according to the voice prompt, and report the reading of the
tachometer and speedometer every 20 s. There was no time limit
for reading the dashboard so that the subjects should finish
reading in their normal cognitive state. If the subjects felt tired,
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FIGURE 2 | The stimuli of the experiment: (A–D) four types of dashboard layouts.

FIGURE 3 | Workflow diagram of the experiment.

they could apply to terminate the test and start again after a rest
so as to eliminate the error caused by fatigue effect.

In the experiment, only the reading of tachometer and
speedometer was studied. Other information, such as gear
position, navigation prompt, emergency alarm, time, and
temperature, were not included. Besides, considering the
universality in the context of sharing, the study focused
on the functional layout of the dashboards. And personal
preference settings such as the font, dynamic effect, visual

style of graphics, color, and brightness were taken as
controlled variables.

(3) After the experiment, the subjects were required to fill in
the system usability scale (SUS) record sheet. Then the staff saved
the data and cleaned the test site.

The period from the beginning of scanning to the time when
the subject discovered the target dial was the searching time. And
the duration from the beginning of reading the instruments to
the end of reading was the reading time. The sum of the above

Frontiers in Public Health | www.frontiersin.org 5 February 2022 | Volume 10 | Article 813859

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Yang et al. Dashboard Layout Effects on Drivers

FIGURE 4 | Part of the scenes on the driving simulator screen: (A) straight line, (B) crosswalk, (C) left turning, and (D) a photograph of field display.

two was the total task completion time. Through real-time eye
tracking, the three durations could be obtained. And the operant
behaviors of the subjects were recorded simultaneously.

Based on the car sharing application situation, the experiment
mainly evaluated the interaction efficiency, eye movement
characteristics and mental stress changes of the drivers (Table 1).
When users accessed a shared car and faced with unfamiliar
equipment and environment, the three indicators were important
feedback of user experience. In addition, the subjective evaluation
was collected by SUS to analyze the relationship between
eye movement characteristics of the subjects and usability
of the dashboard. The scale being made up of 10 items
had gained widespread application in the field of usability
research (45). Respondents were asked to score the items
with an integer value from 1 to 5 according to their
perception after using an interface system (45). The scale was
applicable to appraise the HMI of passenger cars (20, 44).
Large sample researches on the scale presented a reliability
coefficient of 0.91, which showed a good internal consistency
reliability (46, 47).

Subjects
Fifty-eight subjects were recruited to participate in the
experiment, aged 23–36. The subjects consisted of postgraduates,
Ph. D candidates and young teachers whomajored in ergonomics
or industrial design. All the subjects had more than 3 years of
driving experience and were familiar with the information on the
digital instruments. All of them had used rental cars and among
them, 38 (about 65.5% of the subjects) had rented both basic and
high-end cars and could adapt to a variety of dashboard layouts.
The car sharing platforms that the subjects had used included
GoFun, Yidu, Morefun, CAR (China Auto Rental), EVCARD,

Urcar, and GreenGo. Basic information of the subjects is listed in
Table 2.

Besides, the recruited subjects ought to meet the
following requirements:

(1) They could realize and comprehend the instrument
prototypes presented in the experiment;

(2) They were in good health and had no chronic diseases such
as cardiopathy or epilepsy;

(3) Their eyesight (wearing glasses) was normal and there was
no eye diseases.

LSTM Network and the Time Series
Characteristics of HR
HR, which means the frequency of heart contraction, is an
important factor in cardiac work and one of the important
mechanisms of increased cardiac output. HR related indicators
could effectively describe the driver’s psychological state and
mental stress changes (30). In studies of dashboard recognition
performance, it is needed to consider the driver’s HR variation
patterns during the experiment. The driver’s ECG is physiological
data collected according to the time series, which contains
abundant characteristic information in time sequence. In this
study, an LSTM network was used to identify and predict the
mean HR of the subjects in the process of dashboard interaction,
and to judge its time series characteristics.

In researches of regression and prediction of time series
data, the Auto-Regressive Integrated Moving Average (ARIMA)
model is a classical method, which can better reflect the linear
characteristics in time series. However, it is difficult to deal
with the non-linear changes of the data fully and effectively by
the ARIMA model. In addition, existing researches showed that
prediction models based on traditional back propagation (BP)
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TABLE 1 | Dashboard interaction evaluation index system of shared cars.

The 1st-grade index The 2nd-grade index Description

Interaction efficiency Searching time The period from the beginning of scanning to the time when the subject discovered the target dial

Reading time The duration from the beginning of reading the instruments to the end of reading

Total task completion time The sum of the searching time and reading time

Reading accuracy The ratio of cases being read correctly to the total number of reading times

Eye movement characteristics Fixation times The average number of fixation times of the subjects under each dashboard during the reading process

Fixation duration The average fixation time of the subjects under each dashboard during the reading process

Pupil diameter The average pupil diameter of the subjects under each dashboard during the reading process

Mental stress changes Heart rate The frequency of heart contraction (times/min), which was taken every 3s

System usability SUS score The subjects assessed the 10 items in the scale and calculated the score.

TABLE 2 | Basic information of the subjects.

Gender N % Driving experience N %

Male 31 53.45 3–5 years 39 67.24

Female 27 46.55 5.1–10 years 17 29.31

More than 10 years 2 3.45

Age N % Education N %

23–29 years old 46 79.31 College and University 32 55.17

30–36 years old 12 20.69 Master 18 31.04

Ph.D 8 13.79

neural network or radial basis function (RBF) neural network
could achieve good prediction results of time series, but the
robustness was poor (48, 49). An effective method to solve this
kind of problem is recurrent neural network (RNN). RNN not
only learnt the information of current time, but also relied on
the previous sequence information. For example, Vemula et al.
used structured RNN to model each individual, and used the
spatiotemporal relationship diagram to describe the trajectory
change law of each individual with time and space (50). The
network was suitable for dealing with ECG signals during
driving. But the main problem of traditional RNN was gradient
disappearance. LSTM is a form of RNN. The emergence of LSTM
solved this problem and could effectively handle and predict the
problems of relatively long intervals and delay in time series
(51). The model could not only reflect the forward and backward
correlation of HR signals, but also dispose of the long-term
dependencies problem (41). In the analysis of many time series
subjects, such as voice recognition, natural language processing
and electroencephalogram (EEG), LSTM network had achieved
important results. Because the time characteristics of HR during
driving were similar to the above time series information, we
applied LSTM to recognize and predict the subjects’ average
HR after parameter debugging and analyzed the accuracy of

the model.
The three gates in the memory cell of LSTM were input

gate, forget gate and output gate, respectively. When the HR

information of a certain time point was input into the network,

the structure of the network determined whether the information

was useful. Information that needed to be memorized for a

long time was remembered, and unimportant information was

FIGURE 5 | The memory cell of LSTM.

forgotten. The learning model of HR changes during a period
of reading interaction was a model based on time series and
selective memory. Therefore, we used LSTM to train the driver’s
HR variation.

Figure 5 described the memory unit of the LSTM network
(52). For the input vector sequence x = (x1, . . . , xT) in the
recurrent neural network, the hidden layer vector sequence h =

(h1, . . . , hT) and the output vector sequence y = (y1, . . . , yT)
were calculated through the iterations of the following formulas
from time step 1 to time step T:

h1 = ϕ(Wxhxt + Whhht − 1 + bh) (1)
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yt = Whyht + by (2)

whereW was the weight matrix, for example,Wxh was the weight
matrix from the input layer to the hidden layer. b was the bias
vector, for example, bh was the hidden layer bias vector. ϕ was a
hidden layer function. The calculation of ϕ function was realized
by the following formulas:

it = σ (Wxixt + Whiht − 1 + Wcict − 1 + bi) (3)

ft = σ (Wxf xt + Whf ht − 1 + Wcf ct − 1 + bf ) (4)

ot = σ (Wxoxt + Whoht − 1 + Wcoct − 1 + bo) (5)

ct = ftct − 1 + ittanh(Wxcxt + Whcht − 1 + bc) (6)

ht = ottanh(ct) (7)

where σ was the sigmoid function given by σ (x) =

(1 + e−x)
−1

. i, f , o and c were the input gate, forget gate, output
gate and activation vector of the memory cell, respectively, which
had the same dimension as the hidden layer vector h. The weight
matrices from the memory cell to the gates (such as Wci) were
diagonal matrices.

The input of LSTMnetwork of the next time point was affected
by the output information of the previous moment. The network
had prolongment in time series, which could save the timing
information forward and backwards, and was no longer restricted
by the limitation of traditional neural networks that only stored
spatial information. When integrated with ECG signals, LSTM
could deeply mine the time correlations among the signal points.

In this experiment, mainly the single layer LSTM structure
was applied. The input data of the model was the first to the
penultimate HR value of the training set or the testing set, and
the output data was the second to the last value. The tanh
function was selected as the activation function of the model.
The initial learning rate was set to 0.005 and the number of
nodes in the hidden layer was 150. In the process of training
and recognition, the current state of the hidden layer could be
changed by inputting the current information and the state of the
previous moment. And this step was cycled continuously until
the end of processing. The maximum number of epochs was set
to 150.

The loss on the mini-batch was devoted by the
following formula:

loss =
1

2N

M
∑

i = 1

(Xi − Ti)
2 (8)

where Xi was the network prediction, Ti was the real value, M
was the total number of prediction values in X, and N was the
total number of observations in X.

Multinomial Logistic Regression
Binomial and multinomial logit models played an important
role in studies of traffic demands and vehicle safety (53, 54). In
this experiment, the subjects needed to interact with the four

dashboard prototypes to complete the tasks of reading. In order
to analyze the relationship between users’ interaction efficiency
and their HR variation during the interface interaction, an
unordered multinomial logistic regression model was introduced
in the study. The predicted variable was the type of the dashboard
layouts, which could be divided into four categories (Figure 2).
Therefore, the logistic regression model was expressed as follows:

ln

[

p(y = j|x)

p(y = J|x)

]

= αj +

k
∑

k = 1

βjkxk (9)

where j = 1, 2, 3, 4 was the type of the dashboard layouts,
p(yi = j) represented the probability that the lowest HR occurred
in the interaction process with a certain dashboard in the 4-stage
experiment. xk(k = 1, 2, 3) meant the kth explanatory variable
that could predict the type of dashboard. The explanatory
variables included average searching time, average reading time
and total reading accuracy. βjk was the regression coefficient
vector of the model. Taking J as the reference type, the ratio

(
p(y = j|x)
p(y = J|x)

) of the probability of the lowest HR in the 4-stage

experiment occurring on other types of dashboards to the
probability of occurring on the type J was the odds ratio value
(OR). We chose type A dashboard as the reference type, and the
following three logistic models were set up:

ln

(

p2

p1

)

= α2 +

k
∑

k = 1

β2kxk (10)

ln

(

p3

p1

)

= α3 +

k
∑

k = 1

β3kxk (11)

ln

(

p4

p1

)

= α4 +

k
∑

k = 1

β4kxk (12)

RESULTS

Interaction Features and Usability of the
Dashboard Layouts
In order to understand the user experience of different dashboard
layouts, we analyzed the task completion time under the four
layouts. The searching time and reading time under each layout
were obtained by averaging the data of themultiple oral reports in
each round of reading tasks. The results were shown in Figure 6.

The average searching time and reading time of each
type could be used to explore the influencing factors of
dashboard recognition efficiency. In the analysis of the
differences among the four groups, we chose paired sample
t-test because the intergroup standard deviation of the two
indicators was much larger than the between-group standard
deviation. The results showed that the differences in the average
searching time and reading time among the dashboards were
significant (Tables 3, 4).

As can be seen from Figure 6, the shortest searching time
appeared during the interaction with type B instrument, while the
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FIGURE 6 | Dashboard reading task completion time vs layouts.

TABLE 3 | Results of paired sample t-test on searching time.

t-values Type B Type C Type D

Type A 2.235* −2.76** −7.569***

Type B −7.755*** −9.118***

Type C −8.736***

*p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 4 | Results of paired sample t-test on reading time.

t-values Type B Type C Type D

Type A −7.161*** −6.42*** −6.555***

Type B 2.536* 3.862***

Type C 2.99**

*p < 0.05; **p < 0.01; ***p < 0.001.

shortest reading time and task completion time occurred in the
interaction process of type A, which reflected that the attention
level and usability of a certain instrument were not completely
consistent. The completion time of a reading task started from the
beginning of scanning. And vision played an important role in
the accomplishment of the task. Therefore, we made statistics on
eye movement data and SUS scores under the four instruments.
The results were shown in Table 5.

Taking the fixation duration (FD), fixation times (FT), and
pupil diameter (PD) of each instrument as independent variables
and SUS score as the dependent variable, four regression models
could be established as follows:

SUSA = 7.128X1A + 1.03X2A − 1.821X3A (13)

SUSB = 8.358X1B + 0.549X2B − 3.873X3B (14)

SUSC = −3.42X1C + 0.802X2C − 3.571X3C (15)

SUSD = 10.476X1D − 0.359X2D − 2.068X3D (16)

TABLE 5 | The eye movement characteristics and SUS scores under the four

dashboard layouts.

Variables (n = 58) Mean Std. Deviation Minimum Maximum

A_FD (s) 1.029 0.131 0.704 1.243

A_FT (times) 7.766 1.567 4.116 11.285

A_PD (mm) 3.193 0.577 1.836 4.466

A_SUS 84.612 3.529 77.5 92.5

B_FD (s) 1.129 0.133 0.818 1.377

B_FT (times) 7.364 1.197 4.886 10.59

B_PD (mm) 3.56 0.42 2.81 4.572

B_SUS 81.595 3.796 75 90

C_FD (s) 1.378 0.18 0.977 1.739

C_FT (times) 8.029 1.819 3.871 12.132

C_PD (mm) 4.025 0.351 3.233 4.79

C_SUS 78.578 4.192 67.5 87.5

D_FD (s) 1.061 0.098 0.835 1.284

D_FT (times) 8.06 1.065 5.426 9.877

D_PD (mm) 3.828 0.512 2.87 5.199

D_SUS 80.862 3.161 72.5 87.5

The results of significance tests showed that most eye movement
indicators were related to system usability of the dashboards.
Except for FT of type B and D instruments (X2B and X2D) and
FD of type C (X1C), other indicators had significant effects on
the SUS score of corresponding instruments (p < 0.05). Among
them, FD and FT both had positive effects on the usability of A-
type dashboard. In addition, for type B and D, FD had a positive
effect. And for type C, the effect of FT was positive. In contrast,
PD had a significant negative effect on the SUS scores of all
the four instruments, indicating that during the reading process,
the smaller the PD got, the higher the dashboard’s usability
was. In conclusion, the system usability of the dashboards was
in connection with visual ergonomics. And among the four
dashboard layouts, the SUS score of type A was the highest
(A_SUS = 84.612), while that of type C was the lowest (C_SUS
= 78.578).

Prediction Results of HR Change
In addition to task completion time and system usability,
the change of drivers’ mental stress was also an important
indicator to further reflect the user experience brought by
different dashboard layouts. In this study, the subjects’ ECG
signals in instrument reading tasks were analyzed. Time domain
signals were collected in the experiment. In Figure 7, the ECG
waveforms (a) of one of the subjects during driving in a straight
section of the road (from the 14th to 30th second of the
experiment) and the waveforms (b) while turning along a large
radius curve (in the period from the 135th to 145th second)
were illustrated.

An LSTM model was established to predict HR. Eighty
percentage of all the HR values were taken as the training
set and the remaining data as the testing set. After analyzing
the change curve of root mean squared error (RMSE) and the
training loss curve of the training process, it could be seen that
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FIGURE 7 | The ECG waveforms of a subject during driving (A) in a straight section of the road and (B) turning along a large radius curve.

after 80 cycles of iterations, the above two curves entered into a
convergence state, and the values of the loss function were stable
near the minimum value. It meant that the network could also
accommodate a larger scale of drivers’ HR data and recognize the
features, which reflected a good potential for large-scale database
recognition. On the other hand, it also indicated that the network
was not likely to produce gradient explosion or vanishing, and
had a good stability.

Figure 8A revealed the gap between the real values of the
testing set (the blue curve) and the predicted values of the model

(the orange curve). The horizontal axis represented the number
of samples in the testing set, and the vertical axis meant the HR
values of the samples. Figure 8B showed the change of errors
generated in each prediction. It could be seen that the trend of
predicted values of this model was basically consistent with that
of real values.

For HR recognition during a driving process with only 9min,
the prediction accuracy of this model (RMSE = 1.105, MAE
= 0.009) was acceptable, which reflected that the LSTM model
could better fit the non-linear, abrupt and periodic laws of HR
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FIGURE 8 | (A) HR prediction results and (B) RMSE changes.

data. Hence one could see that the model was more suitable for
the prediction and analysis of HR during driving. Due to the short
experimental time, the size of the collected data was small. And
only 58 subjects’ HR data were included in the network. If the
scale of the training set was expanded in practical application, the
prediction accuracy should be improved.

In the experiment, the average HR of the subjects fluctuated
regularly with time, which showed that the ECG during a driving
task would change with the time going on and the subjects’
attention switching between the HMI and the road. This series of
HR variation when reading the instruments was consistent with
the subjects’ nervous mood. Literature (55) also discovered that
when the driver was in the emotional situation of appreciation
or mental focus (during simple tasks), the HR would show
fluctuations similar to Figure 8A. The HR during the interaction
with a dashboard presented a periodic pattern rather than a
continuous increase or decrease. Therefore, it was unreasonable
to evaluate the quality of an interface design and its level of
information transmission only by the users’ HR variation. It was
also necessary to consider the influence of searching time and
reading time on the HR.

Influencing Factors of the Occurrence
Probability of Minimum HR
After understanding the time characteristics of HR in the process
of driving and instrument reading, we used logistic regression
models to analyze the influencing factors of the probability of
the lowest HR occurring during the interaction with a certain
instrument layout. The results were shown in Table 6.

Pseudo R2 of the model was 0.453. Besides, an likelihood
ratio test was done and the chi-square value was 68.08 (p <
0.001), indicating that the overall fitting effect of the model
was good. It could be seen that compared with type A, the
subjects’ searching time and reading time when interacting with
type B and C instruments presented a significant influence on
the dependent variable, while the total reading accuracy had no
significant impact. Nevertheless, in the reading process of type D,
the searching time, reading time and reading accuracy all had a
significant effect on the dependent variable.

To sum up, in the process of instrument reading interaction,
which kind of interface layout the lowest mental stress occurred
on could be explained by these three variables to a certain extent.
The users’ average searching time, reading time and reading
accuracy brought about by different layouts were important
for the context of car sharing, and needed to be taken into
consideration in usability tests of dashboard design schemes.

DISCUSSION

For any interface design, a reasonable information architecture
is a key factor to build user experience. When it comes to
automobile digital instrument panels, the layouts should be
convenient for drivers to quickly identify and organize a variety
of information types. According to the existing literatures, at
present, researchers tended to study the shape and character
encoding of instrument panels (14), or different properties of
the gauges, such as the form (circle or linear), indicator styles
(pointers or bar graphs) and direction (horizontal or vertical) (5).
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TABLE 6 | Results of the logistic regression.

Coef. Std. Err. z p > |z|

Type A (base outcome)

Type B Searching time −3.68 1.448 −2.54 0.011

Reading time 2.223 1.112 2 0.046

Reading accuracy −3.016 2.745 −1.1 0.272

_cons 0.015 2.243 0.01 0.995

Type C Searching time 5.248 2.124 2.47 0.013

Reading time −3.64 1.526 −2.39 0.017

Reading accuracy −5.022 3.374 −1.49 0.137

_cons 2.91 2.818 1.03 0.302

Type D Searching time 6.967 2.63 2.65 0.008

Reading time −5.963 1.97 −3.03 0.002

Reading accuracy −8.848 4.414 −2 0.045

_cons 5.686 3.163 1.8 0.072

However, there is a shortage of researches for a specific layout.
This will lead to an unclear effect of information architecture and
inadequate research on dashboard interaction. A dashboard with
a clear display layout design should methodically feed back the
information to the tenants who do not know the vehicle very well.

In this study, from the perspective of recognition efficiency
in human-computer interaction, we found a suitable dashboard
layout for shared cars. The results showed that when users
accessed unfamiliar dashboards, different layouts would bring
about significant distinctions in interactive performance. Besides,
the HR during driving and reading the instruments presented a
certain periodicity, which should be considered in design works
for shared cars. Currently, the particularity of user experience in
shared cars compared with that in private cars was a hot issue. For
example, the stated preference (SP) approach (56) was frequently
used to determine the characteristics of car-sharing users. The
usability and ease of use of human-computer interaction was
very important for shared car users when being transmitted to a
specific vehicle. Kuemmerling et al. had studied the efficiency of
human-vehicle-interfaces in shared vehicles when setting driver
assistant functions on the dashboard, so as to improve the

safety, comfort and usability (3). This study further clarified the

problems about instrument layouts that shared cars should pay

attention to when considering dashboard recognition.
Regression models were established to explore the effects

of fixation duration, fixation times and pupil diameter on the

usability of the four dashboard layouts. The results showed

that the usability of a dashboard system had a bearing on
visual ergonomics, which was consistent with existing research
conclusions. Some eye movement characteristics during driving,
such as fixations and glances, could reflect the driver’s workload
(44) and information demands under a certain dashboard, which
related to in-vehicle display and traffic light situation (57).
Therefore, the study further analyzed the impact of visual task
completion time and reading efficiency on drivers’ mental stress
under various dashboard layouts, which provided a theoretical
basis for HMI design of shared cars.

In order to probe the drivers’ mental stress changes, we
analyzed the HR data. Although some studies had traditionally
used feedforward neural networks such as Back Propagation
Neural Networks to predict HR (55), which could also get good
accuracy, this kind of networks had no connection among nodes,
and could only sense the data fluctuation in a very short time
in time series, or adopted the same time-varying weights. ECG
signals were collected according to time series. Feedforward
networks could not fully learn the non-linear trend of ECG with
time, which limited the performance of the models. The study
indicated that constructing an LSTM network was an effective
way to solve this problem. The results showed that using the
LSTM model to mine the strong correlations among HR data
points and extract the time characteristics could improve the
prediction effect of HR in terms of algorithm.

Existing researches showed that HR was significantly affected
by speed [F(3,184) = 43.076; p < 0.001], but not by interface
[F(1,184) = 1.726; p = 0.191] (44). However, this study found
that the drivers’ HR in the process of interface interaction
presented characteristics in time series. Thus, it was necessary
to take the influence of interaction features on HR brought by
different interfaces into consideration. The study indicated that
type A layout was the most conducive to the overall reading
of an instrument to some extent because the searching time
and reading time under this layout were both the shortest. And
compared with type A instruments, the shorter the searching
time under type B was, or the shorter the reading time under
type C and D was, the more drivers would present lower HR.
This meant that the differences in task completion time caused
by the dashboard layout design had an impact on drivers’ mental
stress. Existing researches had also shown that when drivers
interacted with a cockpit, the panel components would influence
the quality of information delivery and the accomplishment of
visual tasks (58, 59). Meanwhile, in design works of layouts, it
was inappropriate to pursue a shorter time only. For example,
compared with type A layout, a lower HR under type D was
accompanied by a lower reading accuracy (p < 0.05), which
was not good for driving safety. Therefore, for dashboard layout
design, it was necessary to consider both reading time and
reading accuracy according to the results in Table 6.

Entropy weight method can be used in future research. Based
on the characteristics of the tachometer and speedometer studied
in this study, the indicators of other dashboard information
under the four layouts, such as gear position, navigation
prompt, emergency alarm, time and temperature, can be further
supplemented. Through the original data matrix and the entropy
weight of each indicator, the comprehensive scores of the layouts
can be calculated, so as to sort the importance of each layout.
Based on the optimal scheme, visual elements such as color,
texture and dynamic effect can be added, which will help to
achieve a reasonable interface design that is more in line with the
driver’s eye movement and favorable to adjusting their heart rate.

Although the specific implementation of car sharing varied
with business models, these implementation schemes shared
common goals in reducing total travel volume and distance,
diversifying travel modes and improving efficiency (60, 61).
When consumers decided to adopt peer-to-peer car sharing
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services instead of business-to-customer services, public
concerns about sustainable solutions would play a certain
role (62). However, the willingness of current consumers to
continue using shared cars was not high. By optimizing the user
experience, this willingness could be strengthened to contribute
to the promotion of shared cars. In this way the green level of
the urban environment and sustainable utilization of resources
could be improved.

LIMITATION

One limitation came from the immersion degree of the
experiment. In order to reduce the subjects’ sense of strangeness,
the simulator we chose was a simple one commonly used in
driving school training. The simulator and display screen were
separate and not integrated into one workspace, which led
to a lower immersion. In the experiment, the subjects had a
subconscious feeling that they were observed and was more
tense than driving in normal times. In future, we plan to use
an integrated driving simulator to carry out experiments with
a higher immersion degree, and collect ECG signals in a more
natural state. Besides, in the process we found that the total
experiment duration about 9min was a little short. Some subjects
failed to fully enter the natural driving state, while the experiment
had been over. In order to get truer HR data, the experiment time
should be lengthened.

Another shortcoming existed in the limited sample size. It
took a long time to train the LSTM model, which prevented
us from testing all possible parameters. Due to the complexity
of driving behaviors, for the sake of improving the robustness
of the network, a dataset provided by a larger scale of subjects
would be better. What’s more, speed was taken as a controlled
variable in this experiment, so the differences of HR and eye
movement characteristics when reading instruments at various
speed were not explored. In next phase, the speed would be
taken into the study to analyze the influence of different speed
on instrument recognition.

CONCLUSIONS

In this study, we reported an experiment about dashboard
recognition of 58 subjects, which compared the reading
efficiency, system usability and drivers’ mental stress of four
typical dashboard layouts under the context of car sharing. The
main conclusions were as follows:

(1) A statistical analysis presented that among the four types
of dashboards, the reading time and task completion time of type
A were the shortest, but the searching time was longer than that
of type B. Besides, the average fixation time of type A was the
shortest (Mean = 1.029), and the system usability of this type
was the highest correspondingly (SUS = 84.612). On the other
side, the average fixation times of type B was the lowest (Mean=

7.364). By linear regression models, it could be found that most
of the eye movement indicators under the four dashboards had

significant impacts on system usability. Therefore, optimizing the
visual ergonomics of a dashboard through the interface layout
design helps to improve the usability of the system. And it will
affect the task completion time, and raise the efficiency of reading.

(2) The prediction effect of the LSTM model was good with
an RMSE = 1.105 and an MAE = 0.009. It confirmed that the
network could effectively fit the non-linear, abrupt and periodic
laws of HR data after parameter debugging. Better prediction
performance was achieved from the perspective of algorithm,
which contributed to analyzing the HR changes in the process
of dashboard interaction.

(3) Multinomial logistic regression models indicated that the
searching time, reading time and reading accuracy could explain
what kind of dashboard layout a low mental stress was prone
to occur on. For example, compared with type A layout, the
higher the reading accuracy under type D was, the higher the
HR would be (p < 0.05). Thus, in design works for shared
car dashboard layouts, it was unreasonable to appraise the
interaction performance of a design scheme only by temporal
indicators such as searching time and reading time. The reading
accuracy was also crucial.
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